The subject matter is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject matter. It may be evident, however, that subject matter embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the embodiments.
As used in this application, the term “component” is intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a computer component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
A result set for a given search term in traditional internet search engines is typically a flat list. However, this assumes that a user is only interested in one aspect of the search results. This is generally not the case, and, thus, it is beneficial to an end user to group search result sets by some additional aspect based on attributes of the search results. For example, a general search based on “jokes” can be grouped by writers, a shopping search based on “digital cameras” can be grouped by brands, and an academic paper search based on “data mining” can be grouped by authors and the like. Instances provided herein include methods that produce ‘group-buy’ search result listings. For example, popular attribute values can be utilized with object ranking that ranks attribute values by dynamic ranks of search results possessing these attribute values. Group-by search results can then be displayed on web pages according to their attribute values. In some instances, several results can follow each attribute value in a web page.
In
The attribute grouping component 102 takes the search result attribute information 104 and utilizes it to group search results 108 based on the attribute values to form the grouped search results 106. The attribute grouping component 102 can utilize various algorithms to accomplish the ranking of attribute values. Typically, the search results 108 are ranked according to a general relevancy standard in a flat search result list. This ranking can be employed along with the attribute value to form a preliminary sorting list of results. The attribute values are then ranked and employed to further sort the search results 108 to construct the grouped search results 106. The processes involved with performing the sorting is detailed infra.
The group-by sorting of the search results 108 allow the group-by search result system 100 to provide users with information in a format that provides additional inherent data information. A user can almost instantly glean information from the presented format that normally would take additional searches, or data mining, to discover. For example, the scholarly academic paper search can yield two significant authors with 50 papers each listed in the grouped search results 106. The user can easily deduce that these authors are significant contributors to this academic arena and also easily peruse their works. If a similar search showed 100's of authors with a single paper, it could be deduced that there are no single significant contributors to this area of knowledge. Thus, the user gains more from the experience of utilizing the group-by search result system 100 than just the convenience of having an author's papers grouped together. Therefore, users of the group-by search result system 100 have a significant advantage over users of traditional search engines that return flat search result lists.
Looking at
The attribute value ranking component 204 can also accept system and/or user attribute preferences 216. The system and/or user attribute preferences 216 can include, but are not limited to, desired attributes and/or attribute values and the like. This allows a system and/or user to influence which attributes are utilized by the attribute value ranking component 204 and, thus, subsequently influence the grouped search results 214. The attribute value ranking component 204 sorts the search results 218 based on their associated ranking, resorts based on their associated attribute values, ranks the attribute values, and then applies the attribute value ranking to the search results 218. This yields groups of search results 218 that are based on their associated attribute values. The attribute utilized by the attribute value ranking component 204 can, as stated previously, change based on system and/or user input and the like.
The search result display component 206 receives the group-by ranking from the attribute value ranking component 204 and formats them for relaying to a user as grouped search results 214. The relaying to the user typically consists of visual representations that allow a user to easily comprehend the groupings and, thus, the attributes and their values by a user. This can include offsetting attribute values relative to an attribute, incorporating color schemes to highlight attributes from their values, and/or other schemes to relay information to the user and the like. The search result display component 206 can also incorporate non-visual relaying to a user. This can be accomplished utilizing aural information and/or other sensory information and the like. Thus, in one instance, the grouped search results 214 can be read to a user and the like. In another instance, the grouped search results 214 can be presented in a Braille format to a user and the like. The relaying of the information by the search result display component is not limited to only those listed herein.
Turning to
Referring to
The algorithm for calculating the attribute value rank is referred to as “object ranking,” which means that each attribute value can be treated as an object and, thus, the rank of this object can be calculated. One object ranking algorithm that can be utilized for attribute value ranking is Eq. 1 where:
S
attr=(R1,R2, . . . Rk)
R
attr
=f(Sattr)
where R1, . . . Rk are dynamic ranks of results which have an attribute value “attr.” The f(Sattr) can be any combination function. For example:
where c is a constant float number (e.g., scaling factor) that can be varied to emphasize and/or de-emphasize a ranking value.
In one instance, a group-by search result process returns a list of attribute values sorted by descending attribute value rank. For each attribute value, there is typically several results which have this attribute value. Thus, some of these values can be condensed to provide a top-k search result list. In TABLE 1, below, an example sorting process is described.
“Result.root” points to a result which has the same attribute value and the highest rank. In
In
For example, a user might search on “data mining” and then peruse the traditional search result list and count how many times an author appears (which might entail several thousand search results) to get the same information as that shown in the example display format 500. The example display format 500 can also be enhanced with selectable options to allow user selection of which attribute is utilized. It can be appreciated that offsetting the attribute values 502 is not required. Other forms of distinguishing the attribute values from the search results 504 such as, underlining, bolding, font enlargement, and/or italicizing and the like are within the scope of the instances disclosed herein.
Looking at
Referring to
In view of the exemplary systems shown and described above, methodologies that may be implemented in accordance with the embodiments will be better appreciated with reference to the flow charts of
The embodiments may be described in the general context of computer-executable instructions, such as program modules, executed by one or more components. Generally, program modules include routines, programs, objects, data structures, etc., that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various instances of the embodiments.
In
Turning to
A user selectable attribute input is then provided for the grouped search result list 910. In some instances, the user selectable attribute input is a listing of possible attributes on a web page. The listing can have names of attributes that are clickable or otherwise selectable via an input means such as, for example, a mouse, keystroke, visual queuing system, and/or voice command and the like. Other instances can allow direct user input of attribute names in a text field and the like. Still other instances can allow other means of selection and/or input. The search result list is then regrouped based on the selected attribute when prompted 912, ending the flow 914. When a user (or even a system) selects a different attribute, the search results are resorted based on the selected attribute. In this manner, a user can effortlessly mine the search results for additional information. For example, a user can select ‘conferences’ and determine who attended (even though a search query was based on various paper topics) and then select ‘journals’ to see which authors publish on topics related to the search query and the like. These types of information can be easily obtained by utilizing group-by search result processing. This greatly increases the value of a search engine and substantially enhances user satisfaction.
Instances provided herein can utilize disparate locations to accomplish various methods and/or functions. Communications between these disparate entities can include global communication means such as the Internet and the like. Often this type of communication means utilizes server and client relationships.
It is to be appreciated that the systems and/or methods of the embodiments can be utilized in search result enhancement facilitating computer components and non-computer related components alike. Further, those skilled in the art will recognize that the systems and/or methods of the embodiments are employable in a vast array of electronic related technologies, including, but not limited to, computers, servers and/or handheld electronic devices, and the like.
What has been described above includes examples of the embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the embodiments, but one of ordinary skill in the art may recognize that many further combinations and permutations of the embodiments are possible. Accordingly, the subject matter is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.