The subject matter disclosed herein relates generally to the field of elevator systems, and specifically to a method and apparatus for coordinating the operation of multiple elevator cars.
Commonly, very tall buildings (ex: high rise or sky scrapers) require sky lobbies or transfer floors, which are intermediate interchange (i.e. transfer) floors where people may transfer from an elevator serving an upper portion of the building to an elevator serving a lower portion of the building. Sky lobbies pose challenges during an evacuation and a more efficient solution is desired.
According to one embodiment, a method of operating a building elevator system is provided. The method of operation a building elevator system includes: controlling a first elevator system and a second elevator system, floor coverage of the first elevator system overlapping floor coverage of the second elevator system at a least one transfer floor; receiving an evacuation call from an evacuation floor; detecting when a first elevator car of the first elevator system is dispatched to the transfer floor; and dispatching a second elevator car of the second elevator system to the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include dispatching the second elevator car to a discharge floor after occupants have loaded into the second elevator car on the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include dispatching the second elevator car to a second transfer floor after occupants have loaded into the second elevator car on the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include determining a projected arrival time of the first elevator car at the transfer floor; wherein second elevator car is dispatched to arrive at the transfer floor within a selected time period of the projected arrival time.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include providing, using a notification device, transfer instructions to occupants.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include detecting, using a sensor system, a number of occupants within the first elevator car.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include determining a number of elevators cars from the second elevator system to be dispatched to the transfer floor in response to the number of occupants within the first elevator car.
According to another embodiment, a control system of a building elevator system is provided. The control system including: a processor; a memory comprising computer-executable instructions that, when executed by the processor, cause the processor to perform operations. The operations include: controlling a first elevator system and a second elevator system, floor coverage of the first elevator system overlapping floor coverage of the second elevator system at a least one transfer floor; receiving an evacuation call from an evacuation floor; detecting when a first elevator car of the first elevator system is dispatched to the transfer floor; and dispatching a second elevator car of the second elevator system to the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the control system may include that the operations further include: dispatching the second elevator car to a discharge floor after occupants have loaded into the second elevator car on the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the control system may include that the operations further include: dispatching the second elevator car to a second transfer floor after occupants have loaded into the second elevator car on the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the control system may include that the operations further include: determining a projected arrival time of the first elevator car at the transfer floor; wherein the second elevator car is dispatched to arrive at the transfer floor within a selected time period of the projected arrival time.
In addition to one or more of the features described above, or as an alternative, further embodiments of the control system may include that the operations further include: providing, using a notification device, transfer instructions to occupants.
In addition to one or more of the features described above, or as an alternative, further embodiments of the control system may include that the operations further include: detecting, using a sensor system, a number of occupants within the first elevator car.
In addition to one or more of the features described above, or as an alternative, further embodiments of the control system may include that the operations further include: determining a number of elevators cars from the second elevator system to be dispatched to the transfer floor in response to the number of occupants within the first elevator car.
According to another embodiment, a computer program product tangibly embodied on a computer readable medium is provided. The computer program product including instructions that, when executed by a processor, cause the processor to perform operations. The operations includes: controlling a first elevator system and a second elevator system, floor coverage of the first elevator system overlapping floor coverage of the second elevator system at a least one transfer floor; receiving an evacuation call from an evacuation floor; detecting when a first elevator car of the first elevator system is dispatched to the transfer floor; and dispatching a second elevator car of the second elevator system to the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the computer program may include that the operations further include: dispatching the second elevator car to a discharge floor after occupants have loaded into the second elevator car on the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the computer program may include that the operations further include: dispatching the second elevator car to a second transfer floor after occupants have loaded into the second elevator car on the transfer floor.
In addition to one or more of the features described above, or as an alternative, further embodiments of the computer program may include that the operations further include: determining a projected arrival time of the first elevator car at the transfer floor, wherein the second elevator car is dispatched to arrive at the transfer floor within a selected time period of the projected arrival time.
In addition to one or more of the features described above, or as an alternative, further embodiments of the computer program may include that the operations further include: providing, using a notification device, transfer instructions to occupants.
In addition to one or more of the features described above, or as an alternative, further embodiments of the computer program may include that the operations further include: detecting, using a sensor system, a number of occupants within the first elevator car; and determining a number of elevators cars from the second elevator system to be dispatched to the transfer floor in response to the number of occupants within the first elevator car.
Technical effects of embodiments of the present disclosure include a control system to control the operation of a first elevator system and a second elevator system that share a transfer floor and command an elevator car of the second elevator system to move to the transfer floor to pick up passengers when an elevator car of the first elevator system is dispatched to the transfer floor. Technical effects also include coordinating the transfer of passengers at transfer floor from one elevator car to another elevator car.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, that the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.
The foregoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which like elements are numbered alike in the several FIGURES:
The elevator assembly 10 also includes a power source 12. The power is provided from the power source 12 to a switch panel 14, which may include circuit breakers, meters, etc. From the switch panel 14, the power may be provided directly to the drive unit 20 through the controller 30 or to an internal power source charger 16, which converts AC power to direct current (DC) power to charge an internal power source 18 that requires charging. For instance, an internal power source 18 that requires charging may be a battery, capacitor, or any other type of power storage device known to one of ordinary skill in the art. Alternatively, the internal power source 18 may not require charging from the external power source 12 and may be a device such as, for example a gas powered generator, solar cells, hydroelectric generator, wind turbine generator or similar power generation device. The internal power source 18 may power various components of the elevator assembly 10 when an external power source is unavailable. The drive unit 20 drives a machine 22 to impart motion to the elevator car 23 via a traction sheave of the machine 22. The machine 22 also includes a brake 24 that can be activated to stop the machine 22 and elevator car 23. As will be appreciated by those of skill in the art,
The controller 30 is responsible for controlling the operation of the elevator assembly 10. The controller 30 is tied to a control system 110 (
As seen in
Each floor 80a-80f in the building 102 of
In a building having a second elevator system 92b and a first elevator system 92a, in the case of an evacuation, elevator cars 23a-23c of the first elevator system 92a may be carrying occupants to the transfer floor for evacuation and the control system 110 may send elevator cars 23d-23f of the second elevator system 92b to the transfer floor to receive the occupants exiting the elevator cars 23a-23c of the first elevator system 92a and, thereby, return them to the ground floor (or any other desired evacuation floor) for evacuation. In the example of
The control system 110 is operably connected to the controller 30 of each elevator assembly 10. The control system 110 is configured to the control and coordinate operation of multiple elevator systems 92a, 92b. The control system 110 may be an electronic controller including a processor and an associated memory comprising computer-executable instructions that, when executed by the processor, cause the processor to perform various operations. The processor may be, but is not limited to, a single-processor or multi-processor system of any of a wide array of possible architectures, including field programmable gate array (FPGA), central processing unit (CPU), application specific integrated circuits (ASIC), digital signal processor (DSP) or graphics processing unit (GPU) hardware arranged homogenously or heterogeneously. The memory may be but is not limited to a random access memory (RAM), read only memory (ROM), or other electronic, optical, magnetic or any other computer readable medium.
The elevator systems 92a, 92b may also include a notification device 74 as seen in
The elevator assemblies 10a-10f may also include a sensor system 76 configured to detect a number of occupants in a particular elevator car 23, as seen in
Advantageously, determining the number of occupants in an elevator car 23a-23c of the first elevator system 92a approaching the transfer floor may help the control system 110 determine how many elevators cars 23d-23f to send to the transfer floor from the second elevator system 92b. The control system 110 is configured to determine the number of occupants in an elevator car 23a-23c of the first elevator system 92a so as to send the appropriate number of elevators cars 23d-23f from the second elevator system 92b to the transfer floor, which will help expedite getting from passengers between the two elevator systems 92a, 92b.
Referring now to
At block 318, a notification device 74a-74f provides transfer instructions to the occupants of the first elevator car 23a-23c of the first elevator system 92a where on the transfer floor to board the second elevator car 23d-23f of the second elevator system 92b. At block 320, the control system 110 determines if there is a second transfer floor between the transfer floor and a discharge floor. A discharge floor may be a floor where occupants can evacuate the building 102. For example, in one embodiment the discharge floor may be a ground floor. In the example of
While the above description has described the flow process of
As described above, embodiments can be in the form of processor-implemented processes and devices for practicing those processes, such as processor. Embodiments can also be in the form of computer program code containing instructions embodied in tangible media, such as network cloud storage, SD cards, flash drives, floppy diskettes, CD ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes a device for practicing the embodiments. Embodiments can also be in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into an executed by a computer, the computer becomes an device for practicing the embodiments. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. While the description has been presented for purposes of illustration and description, it is not intended to be exhaustive or limited to embodiments in the form disclosed. Many modifications, variations, alterations, substitutions or equivalent arrangement not hereto described will be apparent to those of ordinary skill in the art without departing from the scope of the disclosure. Additionally, while the various embodiments have been described, it is to be understood that aspects may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.