NOT APPLICABLE
NOT APPLICABLE
The application of specific electrical energy to the spinal cord for the purpose of managing pain has been actively practiced since the 1960s. It is known that application of an electrical field to spinal nervous tissue can effectively mask certain types of pain transmitted from regions of the body associated with the stimulated nervous tissue. Such masking is known as paresthesia, a subjective sensation of numbness or tingling in the afflicted bodily regions. Application of electrical energy has been based on the gate control theory of pain. Published in 1965 by Melzack and Wall, this theory states that reception of large nerve fiber information, such as touch, sense of cold, or vibration, would turn off or close the gate to reception of painful small nerve fiber information. The expected end result would, therefore, be pain relief. Based on the gate control theory, electrical stimulation of large fibers of the spinal cord cause small fiber information to be reduced or eliminated at that spinal segment and all other information downstream from that segment would be reduced or eliminated as well. Such electrical stimulation of the spinal cord, once known as dorsal column stimulation, is now referred to as spinal cord stimulation or SCS.
Implantation of a percutaneous lead 18 typically involves an incision over the low back area (for control of back and leg pain) or over the upper back and neck area (for pain in the arms). An epidural needle is placed through the incision into the epidural space and the lead is advanced and steered over the spinal cord until it reaches the area of the spinal cord that, when electrically stimulated, produces a comfortable tingling sensation (paresthesia) that covers the patient's painful area. To locate this area, the lead is moved and turned on and off while the patient provides feedback about stimulation coverage. Because the patient participates in this operation and directs the operator to the correct area of the spinal cord, the procedure is performed with local anesthesia.
Implantation of paddle leads 16 typically involves performing a mini laminotomy to implant the lead. An incision is made either slightly below or above the spinal cord segment to be stimulated. The epidural space is entered directly through the hole in the bone and a paddle lead 16 is placed over the area to stimulate the spinal cord. The target area for stimulation usually has been located before this procedure during a spinal cord stimulation trial with percutaneous leads 18.
Although such SCS systems have effectively relieved pain in some patients, these systems have a number of drawbacks. To begin, as illustrated in
Motor spinal nervous tissue, or nervous tissue from ventral nerve roots, transmits muscle/motor control signals. Sensory spinal nervous tissue, or nervous tissue from dorsal nerve roots, transmit pain signals. Corresponding dorsal and ventral nerve roots depart the spinal cord “separately”; however, immediately thereafter, the nervous tissue of the dorsal and ventral nerve roots are mixed, or intertwined. Accordingly, electrical stimulation by the lead 14 often causes undesirable stimulation of the motor nerves in addition to the sensory spinal nervous tissue.
Because the electrodes span several levels the generated stimulation energy 15 stimulates or is applied to more than one type of nerve tissue on more than one level. Moreover, these and other conventional, non-specific stimulation systems also apply stimulation energy to the spinal cord and to other neural tissue beyond the intended stimulation targets. As used herein, non-specific stimulation refers to the fact that the stimulation energy is provided to all spinal levels including the nerves and the spinal cord generally and indiscriminately. Even if the epidural electrode is reduced in size to simply stimulate only one level, that electrode will apply stimulation energy indiscriminately to everything (i.e. all nerve fibers and other tissues) within the range of the applied energy. Moreover, larger epidural electrode arrays may alter cerebral spinal fluid flow thus further altering local neural excitability states.
Another challenge confronting conventional neurostimulation systems is that since epidural electrodes must apply energy across a wide variety of tissues and fluids (i.e. CSF fluid amount varies along the spine as does pia mater thickness) the amount of stimulation energy needed to provide the desired amount of neurostimulation is difficult to precisely control. As such, increasing amounts of energy may be required to ensure sufficient stimulation energy reaches the desired stimulation area. However, as applied stimulation energy increases so too increases the likelihood of deleterious damage or stimulation of surrounding tissue, structures or neural pathways.
Improved stimulation systems and methods are desired that enable more precise and effective delivery of stimulation energy.
The present invention provides devices, systems and methods for simultaneously stimulating the spinal anatomy at various target locations, such as spinal levels, along the spinal cord. As described above, the spinal cord is a continuous body and may be considered to include various spinal levels. For example, a spinal level may be considered a sub-section of the spinal cord wherein a dorsal root and ventral root join the spinal cord. Spinal levels may also correspond to vertebral levels of the spine commonly used to describe the vertebral bodies of the spine.
The target locations are stimulated individually, in contrast to conventional SCS leads which blanketly stimulate a wide area. This provides more effective treatment of pain symptoms and reduces deleterious side effects. The present invention provides devices, systems and methods for such targeted stimulation at various spinal levels. In addition, some embodiments provide additional specificity within each targeted level.
In preferred embodiments, the devices, systems and methods stimulate the various spinal levels at specific nerve anatomies, such as the dorsal root DR or more specifically the dorsal root ganglion DRG. Examples described herein will illustrate specific stimulation of the dorsal root ganglia of various levels, however the embodiments are not so limited.
In a first aspect of the present invention, a method is provided for stimulating a plurality of dorsal root ganglia. In some embodiments, the method comprises positioning a lead within an epidural space, wherein the lead has a longitudinal axis and at least two electrodes disposed along the longitudinal axis, aligning the lead so that each of the at least two electrodes is disposed within a distance of one of the plurality of dorsal root ganglia which allows selective stimulation thereto; and electrically energizing the lead so as to provide selective stimulation to at least one of the plurality of dorsal root ganglia. In some instances, electrically energizing comprises electrically energizing the lead so as to provide selective stimulation to at least two dorsal root ganglia which are not adjacent to each other. In other instances, the lead provides selective stimulation to at least two dorsal root ganglia which are adjacent to each other. Various combinations of dorsal root ganglions may be stimulated simultaneously or in any pattern.
In some embodiments, the at least two electrodes comprise a series of electrodes disposed along the longitudinal axis. In such embodiments, electrically energizing the lead may comprise selectively energizing individual electrodes within the series of electrodes which are disposed within the distance which allows selective stimulation to the associated dorsal root ganglion. It may be appreciated that at least some distances between the individual electrodes may be irregular.
In another aspect of the present invention, a telescoping lead is provided for stimulation of a nerve within tissue of a body. In some embodiments, the telescoping lead comprises an elongate tubular body having a proximal end, a distal end, a lumen therethrough, and at least one electrode disposed thereon. The lead also includes an inner structure having a proximal end, a distal end, and at least one electrode disposed thereon, wherein the inner structure is advanceable through the lumen so that its distal end extends beyond the distal end of the elongate tubular body, and wherein the inner structure has a strength member extending between its proximal and distal ends so as to provide sufficient strength to allow tunneling of the lead through the tissue.
The tubular body and inner structure may have a variety of cross-sectional shapes. In some embodiments, the inner structure is shaped to resist rotation within the lumen. Or, the tubular body may be shaped to resist rotation around the inner structure. In some instances, the tubular body has an oval or oblong shaped lumen.
Typically, the at least one electrodes are substantially longitudinally aligned. However, some electrodes may be adjacent to each other or longitudually offset from each other. Optionally, the electrodes may be individually energizable.
In some embodiments, the inner structure is sized for advancement through a foramen. Typically the tubular body would likewise be sized for such advancement.
In some embodiments, the telescoping lead further comprises an additional elongate tubular body having a proximal end, a distal end, a lumen therethrough, and at least one electrode disposed thereon. The additional elongate tubular body is configured to be advanceable through the lumen of the elongate tubular body and the inner structure is advanceable through the lumen of the additional elongate tubular body. Typically, the at least one electrodes are substantially longitudinally aligned.
The elongate tubular body and inner structure may be positionable so that the at least one electrode on the elongate tubular body aligns with a first dorsal root ganglion while the at least one electrode on the inner structure aligns with a second dorsal root ganglion. Or, the elongate tubular body and inner structure are positionable so that the at least one electrode on the elongate tubular body aligns with a first portion of a dorsal root ganglion while the at least one electrode on the inner structure aligns with a second portion of the dorsal root ganglion.
In another aspect of the present invention, a method is provided for stimulating at least one dorsal root ganglion. In some embodiments, the comprises advancing a telescoping lead toward a dorsal root ganglion, wherein the telescoping lead comprises an elongate tubular body having a proximal end, distal end, a lumen therethrough and at least one electrode disposed thereon, and an inner structure having at least one electrode disposed thereon, wherein the inner structure is advanceable through the lumen so that its distal end extends beyond the distal end of the elongate tubular body. The method further comprises positioning at least one of the at least one electrodes near the dorsal root ganglion so as to apply stimulation to the dorsal root ganglion.
In some embodiments, advancing the telescoping lead comprises advancing the telescoping lead at least partially through a foramen. Advancing the telescoping lead may optionally comprise laterally approaching the dorsal root ganglion from outside of a spinal column. Or, advancing the telescoping lead may comprise advancing the telescoping lead through an epidural space.
Typically, positioning comprises advancing or retracting the inner structure to position at least one of the at least one electrodes disposed on the inner structure near the dorsal root ganglion.
In some embodiments, positioning comprises advancing the inner structure so as to position at least one of the at least one electrodes disposed on the inner structure near the dorsal root ganglion and at least one of the at least one electrodes disposed on the tubular body near another dorsal root ganglion. The dorsal root ganglion and other dorsal root ganglion may be on adjacent spinal levels. However, it may be appreciated that the dorsal root ganglion and other dorsal root ganglion may not be on adjacent spinal levels.
Other objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
The device 200 is electrically connected to a power source or implantable pulse generator (IPG) 202, as shown, which is implanted in the body of the patient.
The telescoping structures 220a, 220b, 220c may be comprised of various materials, preferably a flexible polymer. In some embodiments, the inner structure 220c has a strength member extending between its proximal and distal ends so as to provide sufficient strength to allow tunneling of the device 200. Optionally, the structures 220a, 220b, 220c may be supported by a stylet during placement. The telescoping structures 220a, 220b, 220c may have various cross-sectional shapes, including shapes that resist rotation.
Electrodes 210 may be easier to attach to flat designs, conserve energy, etc. Flat designs may also provide easier determination of orientation of the electrodes 210, as describe above, during delivery and implantation. The cross-sectional shape may also be chosen based on location in anatomy where the device is to be placed.
The above embodiments describe devices, systems and methods that directly stimulate the dorsal root, particularly the dorsal root ganglion (DRG), while minimizing or excluding undesired stimulation of other anatomies. In some embodiments, this allows access to multiple levels of the spinal column with the use of a single device. This reduces procedure complexity, time and recovery since a single access path is created rather than individual access paths to each level of the spinal column. These embodiments also have a reduced number of paths to an IPG. It may be appreciated that the devices, systems and methods of the present invention may also be used to stimulate other portions of the spinal anatomy or other anatomies.
It may also be appreciated that the devices and systems of the present invention may also be used to stimulate a single DRG. For example,
Similarly,
Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications and equivalents may be used and the above description should not be taken as limiting in scope of the invention.
This application claims priority of provisional patent application No. 60/873,464 (Attorney Docket No. 10088-706.101), filed on Dec. 6, 2006, which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
60873464 | Dec 2006 | US |