1. Field of the Invention
The present invention relates to grout and lifting tubes of the type used for moving and placing concrete sections.
2. Description of the Related Art
Grout and lifting tubes are often used in the tunnel industry, for example, for moving and placing the large concrete sections that form the walls of tunnels. In one system, one or more such tubes are cast into each concrete segment, and a lift member is threaded into each tube. The lift member is grasped by a crane or other device to move the concrete section into place, followed by removing the lift member from the tube. Thereafter, grout is pumped through a non-return valve in the tube to the outside of the concrete section, and the grout cures to seal the exterior of the tunnel. Finally, caps are threaded into the open ends of the tube to close same.
The tube typically includes one or more hydrophilic O-rings fitted about its exterior surface to provide a seal between the tube and the surrounding concrete in order to prevent moisture infiltration into the interior of the tunnel. A disadvantage of using O-rings is that same are expensive, particularly when a number of O-rings are needed for each tube, and when the tunnel may include hundreds or even thousands of concrete sections and tubes. It is also thought that such O-rings could potentially not provide sufficient sealing in applications where the O-rings may be subjected to high hydrostatic pressure, such as in deep underground tunnels or underwater tunnels.
What is needed is a grout and lifting tube that is an improvement over the foregoing.
The present invention provides a grout and lifting tube for casting within a concrete segment. The tube provides enhanced sealing between the tube and the concrete to prevent moisture leakage into a structure formed by a plurality of the concrete segments. The tube includes a generally cylindrical body having an exterior with an anchoring rib structure, a threaded interior, a proximal end, a distal end. An annular gasket is disposed at the proximal end of the tube body, and may be secured to the proximal end of the tube body by a mechanical interlock and/or by unitary co-molding. After the concrete section is placed and grout is pumped through the tube, a plug is threadable into the proximal end of the tube to both compress the gasket between the plug and the tube at a first seal, and to compress the gasket between the plug and the concrete surrounding the proximal end of the tube at a second seal to provide robust, watertight sealing.
In one form thereof, the present invention provides a grout and lifting tube assembly, including a tube having a generally cylindrical body defining perpendicular axial and radial directions, the body including an interior thread, a proximal end, and a distal end; a gasket at the proximal end of the body; and a plug including an exterior thread and a radial flange, the plug threadable into the proximal end of the tube whereby the gasket is compressible between the radial flange of the plug and the proximal end of the body.
In another form thereof, the present invention provides, in combination, a concrete segment; and a grout and lifting tube cast into the concrete segment, the tube including a generally cylindrical body defining perpendicular axial and radial directions, the body including an interior thread, a proximal end, and a distal end; a gasket at the proximal end of the body, the gasket extending in the radial direction beyond the proximal end of the body; and a plug including an exterior thread and a radial flange, the radial flange extending in the radial direction beyond the proximal end of the body, the plug threadable into the proximal end of the tube to compress a first portion of the gasket between the radial flange of the plug and the proximal end of the body to provide a first seal, and to compress a second portion of the gasket between the radial flange of the plug and the concrete segment to provide a second seal spaced radially outwardly of the first seal.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention any manner.
Referring to
The exterior of tube body 12 includes an anchoring structure for anchoring tube 10 within cast concrete in the manner described below, including a plurality of annular radial ribs 18 that are perpendicular to, and spaced along, the longitudinal axis L1-L1 of tube body 12, together with three or more longitudinal ribs 20 extending along longitudinal axis L1-L1 of tube body 12, and which are radially spaced around tube body 12. The exterior anchoring structure of tube body 12 and other features of its exterior geometry are similar to that of the concrete anchoring members disclosed in U.S. Pat. Nos. 5,490,750 and 5,641,256, each assigned to the assignee of the present invention, the disclosures of which are expressly incorporated herein by reference.
The interior of tube body 12 includes an interior thread 22, and tube body 12 includes an annular radial flange 24 having a radially-extending surface perpendicular to longitudinal axis L1-L1 and surrounding opening 26 at proximal end 14 of tube body 12. Flange 24 includes an annular, axially-facing projection 28, best shown in
Distal end 16 of tube body 12 includes a tubular section 30 with opening 32, together with one or more exterior flanges that form one or more O-ring grooves 34 in which O-rings 35 may optionally be placed to provide a seal between distal end 16 of tube 10 and the surrounding concrete in which tube 10 is cast.
Cap 36, shown in solid lines to the left in
Gasket 38 may be secured to proximal end 14 of tube body 12 in the manner described below. Gasket 38 may be generally annular in shape, and is made of a relatively resilient, compressible material as compared to tube body 12, such as thermoplastic elastomer or a rubber material, for example.
In manufacturing tube 10, gasket 38 may first be molded to include an axially-facing annular groove 40, best shown in
Additionally, if the material of gasket 38 is not fully cured prior to molding tube body 12, a rigid chemical bond may be formed between gasket 38 and tube body 12 upon full curing of their respective materials such that the foregoing components are unitarily co-molded to one another. This co-molding of gasket 38 to tube body 12 is similar to the co-molding of the relatively rigid body to the relatively resilient sealing portion of the cast-in type gasket disclosed in U.S. patent application Ser. No. 11/220,229, published as U.S. Patent Application Publication No. 2006/0049627, assigned to the assignee of the present invention, the disclosure of which is expressly incorporated herein by reference.
Plug 42 is formed of metal or a rigid plastic material, and is generally cylindrically shaped, including an exterior thread 44 threadable within the interior thread 22 of tube body 12. Plug 42 includes a septum 46 separating its interior into two sections and, at its proximal end 48, includes an annular radial flange 50 having a radially-extending surface, the function of which is described below.
In use, tube 10 is cast within a concrete segment in the following manner. First, cap 36 is fitted, such as with a friction fit, onto distal end 16 of tube body 12 to close opening 32, and a suitable casting plug (not shown) is threaded into proximal end 14 of tube body 12 to enclose opening 26. The casting plug includes a cone-like structure (not shown) disposed exteriorly of tube body 12. Thereafter, concrete is cast around tube 10 and cures to form the concrete segment CS. As shown in
Alternatively, as shown to the right in
After concrete segment CS is cast, a lifting plug (not shown) may be threaded into proximal end 14 of tube body 12, which lifting plug includes an eye-bolt or other structure by which a crane or other device may grasp the lifting plug to move the concrete segment CS to a desired location, such as within the wall of a tunnel, for example. After the concrete segment CS is set in place and attached to surrounding concrete segments in a desired manner, the lifting plug is removed from tube body 12.
Thereafter, in embodiments in which cap 36 is used, a bore is drilled from proximal end 14 of tube body 12 through cap 34 and thence through the portion of concrete which overlies distal end 16 of tube body 12 and cap 36. This bore will correspond to the opening that may optionally be formed by extension member 37, discussed above. A non-return valve 52, shown in
After the grout has been pumped, plug 42 is threaded into proximal end 14 of tube body 12. As shown in
If desired, additional concrete may be filled into the conical space in concrete segment CS adjacent plug 42 to provide a smooth interior surface on concrete segment CS and thence the interior of the structure formed by a plurality of concrete segments CS, such as a tunnel, for example.
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application claims the benefit under Title 35, U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/013,717, entitled GROUT AND LIFTING TUBE, filed on Dec. 14, 2007, the entire disclosure of which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
935376 | Lennon | Sep 1909 | A |
3124385 | Neptune | Mar 1964 | A |
3492827 | Stevens | Feb 1970 | A |
3557563 | Stevens | Jan 1971 | A |
3893487 | Engelking | Jul 1975 | A |
4103498 | Steinborn et al. | Aug 1978 | A |
4183699 | Donan, Jr. et al. | Jan 1980 | A |
4290638 | Manning | Sep 1981 | A |
4325575 | Holt et al. | Apr 1982 | A |
RE31131 | Torbet et al. | Jan 1983 | E |
4507069 | Murray et al. | Mar 1985 | A |
4557649 | Jeal | Dec 1985 | A |
4615554 | Schilla et al. | Oct 1986 | A |
4679362 | Mess | Jul 1987 | A |
4826373 | Nakano | May 1989 | A |
4905429 | Fukushima et al. | Mar 1990 | A |
4956032 | Hahn et al. | Sep 1990 | A |
5033952 | Haug | Jul 1991 | A |
5176215 | Ackerman | Jan 1993 | A |
5257486 | Holmwall | Nov 1993 | A |
5476344 | Nordvall | Dec 1995 | A |
5490750 | Gundy | Feb 1996 | A |
5641256 | Gundy | Jun 1997 | A |
5881523 | Quatrochi, Jr. | Mar 1999 | A |
5913792 | Fischer | Jun 1999 | A |
6694680 | Zambelli et al. | Feb 2004 | B2 |
6792734 | Zambelli et al. | Sep 2004 | B2 |
6821056 | Mansour | Nov 2004 | B1 |
7097388 | Mansour et al. | Aug 2006 | B1 |
7213795 | Paterson | May 2007 | B2 |
7308970 | Holub | Dec 2007 | B2 |
20070090566 | Westhoff et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
1730910 | Feb 2006 | CN |
601 09 830 | Jan 2006 | DE |
0 400 814 | Dec 1990 | EP |
1 182 362 | Feb 2002 | EP |
1 382 862 | Jan 2004 | EP |
9-4378 | Jan 1997 | JP |
2004-190341 | Jul 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090155000 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
61013717 | Dec 2007 | US |