1. Field
Embodiments of the disclosure relate generally to the field of removal of grout between ceramic or other tile and more particularly to embodiments for a reciprocating tool for removal of grout with enhanced durability and ergonomic design.
The current art available for tile grout removal tools includes hand tools and electrically powered devices. Electrically powered devices include tools that work using a reciprocating motion or a rotary motion. Hand tools are very labor intensive and slow in removing tile grout. They are only practical for small areas of grout removal. Powered tools are typically limited to rotary and reciprocating saw tools.
Powered rotary tools use abrasive disks that rotate at a high RPM to remove grout. These tools create large amounts of dust and are difficult to control. During the grout removal process the abrasive disk can slip from the grout groove and damage the tile. Many tiles are set with small spaces between the tile. Tiles set with such small spacing between the tiles very often have misaligned grout lines. The rotary tools cannot be used to remove the grout in the areas where the two corners of the tiles meet without damaging the tile edges. Abrasive disks are typically ⅛″ wide, so grout removal is limited to grout widths of more than ⅛′.
The available reciprocating tools use an existing reciprocating saw with a grout removal attachment. The attachment uses a metal grout removal blade with a row of teeth held parallel to the grout groove and removes the grout with a row of teeth held parallel to the grout groove and removes the grout with a sawing motion. Due to the heavy weight of the reciprocating saw the device is difficult to control which can cause the grout removal blade to slip from the grout groove and damage the tile surface. These devices have the same limitations as the rotary devices in that they cannot remove grout from narrow grout grooves at the corner intersections of slightly misaligned tiles. In addition, the wear on the grout removal blades is severe and requires frequent replacement. Replacement of the blades is time consuming, and costly. Because of the grinding motion of the grout removal blade much dust is created during the grout removal process. This device is generally limited to removing grout from grout lines that are ⅛″ wide or greater.
The current grout removal tools, both reciprocating and rotary, require the use of a vacuum during use to manage the dust created. Use of the vacuum requires a second operator for the vacuum or the tool operator must manage both the vacuum and the grout removal tool which increases the difficulty of controlling the grout removal device and increases the possibility of tile damage.
It is therefore desirable to provide a powered grout removal tool which is durable, light weight and adapted for use with small or uneven grout lines.
Embodiments described herein provide a grout removal tool that incorporates a case carrying a reciprocating motor and having an external contoured finger grip. A drive shaft extends from the motor to engage a chuck drive rod. A cooling piston is concentrically carried by the drive shaft for reciprocating motion. A chuck is attached to the chuck drive rod for removably constraining a carbide tipped bit.
The features, functions, and advantages that have been discussed can be achieved independently in various embodiments of the present invention or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
The embodiment disclosed herein provides a smaller handheld, electrically powered reciprocating device with carbide tips secured to a chuck in the reciprocating device. As shown in
The combination of the grout removal tool 10 and the carbide tip 16 allows tile grout to be chiseled loose rather than ground out as existing grout removal devices function. The carbide tip 16 is removable and various carbide tips can be configured to work with various sizes of grout widths and will effectively remove grout in areas where the grout lines are narrow and the tiles are misaligned. The shape of the carbide tip can be symmetrically pointed (as seen in
A drive shaft 28 extends from the motor for connection to a chuck drive rod 30 terminating in the chuck 18. As shown in
A cooling piston 40 is carried on the drive shaft 28 and/or chuck drive rod 30. For the embodiment shown, the center boss 42 of the piston provides the interengagement between the drive shaft and chuck drive rod. The cooling piston reciprocates with the drive shaft as driven by the reciprocating motor. Motion of the piston creates air flow within chamber 44 in the case 12 to provide cooling for the motor. Air flow is enhanced by apertures in the case including air vent holes 46 in sides 48a and 48b of the case (as best seen in
The carbide tips 16 shown in
Being of a smaller size than similar reciprocating devices used for grout removal makes the tool easy to control and reduces significantly the possibility of damage to the tile. The combination of size, cooling and efficient carbide tips with a motor size enlarged for heavy duty use allows the motor and grout removal tool to be operated continuously as opposed to prior art devices which required repeated shut down for cooling purposes. The chiseling motion for grout removal also increases the operation control over the tool which also reduces significantly any tile damage. The features of this new grout removal tool allow large areas of grout to be removed with reduced labor and tile damage.
The grout removal tool can be used to remove all sizes of grout from between tiles and allow the old grout to be replaced extending the life of the tile. The grout removal tool can be used to remove grout for tile floors, counter tops, shower and tub enclosures, and any other application using grouted tiles. Due to the ease of use and control the grout removal tool can be used to remove grout from large areas such as complete counter tops and shower and tub enclosures.
The grout removal tool can be used with narrow grout lines and in situations where the tiles are misaligned without damaging the tile surface. Removing grout on misaligned, narrow grout lines cannot be accomplished effectively with existing tools.
Various size and configurations of tips can be used depending on the precision necessary for different grout removal applications. Pointed tips can be used when precision is required or chisel shaped tips can be used when large amounts of grout need to be removed more rapidly.
Grout removal is accomplished by selecting the correct tip for the grout removal application. A pointed tip is selected where precision is required, or the grout line is narrow. A wider chisel tip is used when the grout line is wide and it is appropriate to remove large amounts of grout at a time. The pointed tip can also be used effectively when removing grout at corners where tiles are perpendicular to each other.
The grout removal tip is mounted into the chuck affixed to the front of the grout removal tool. The tip is held in the chuck by a set screw or frictionally engaged by segregated collate lips with a threaded cap which holds the tip in place during operation.
The proper tip travel is selected with the rotary dial of the adjustment potentiometer on the side of the tool. Shorter travels are selected for situations requiring precise control of the tip and longer travels are selected for situations where large amounts of grout are to be removed. The power switch is activated and the tip is held at an angle to the grout. The angle is determined by the amount of grout being removed, and the style of tip being used. The tool is moved forward along the grout line removing grout from the grout line.
Having now described various embodiments of the invention in detail as required by the patent statutes, those skilled in the art will recognize modifications and substitutions to the specific embodiments disclosed herein. Such modifications are within the scope and intent of the present invention as defined in the following claims.
This application claims priority of U.S. provisional application Ser. No. 61/326,629 filed on Apr. 21, 2010 by Michael Taylor entitled Grout Removal Tool the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/33279 | 4/20/2011 | WO | 00 | 9/5/2013 |
Number | Date | Country | |
---|---|---|---|
61326629 | Apr 2010 | US |