Nicoll et al. Endocrine Reviews (1986) 7, 169-203.* |
Rudinger et al. Peptide Hormones, University Park Press, Baltimore, pp. 1-7, 1976.* |
Abdel-Maeguid, S. S. et al., “Three-dimensional structure of a genetically engineered variant of porcine growth hormone”, 84 Proc. Natl. Acad. Sci. USA 6434-6437 (1987). |
Bajt et al., Characterization of a Gain of Function Mutation of Integrin αIIβ3 (Platelet Glycoprotein IIb-IIIa), 267 J. Biol. Chem. 22211-22216 (1992). |
Barlow, D. J. et al., “Continuous and discontinuous protein antigenic determinants”, 322 Nature 747-748 (1986). |
Bennett et al., “High Resolution Analysis of Functional Determinants of Human Tissue-type Plasminogen Activator”, 266 J. Biol. Chem. 5191-5201 (1991). |
Berendt et al., “The Binding Site on ICAM-1 for Plasmodium falciparum-Infected Erythrocytes Overlaps, but is Distinct LFA-1 Binding Site”, 68 Cell 71-81 (1992). |
Berlot et al., “Identification of Effector-Activating Residues of G sα”, 68 Cell 911-922 (1992). |
Bettler et al., “Immunoglobulin E-binding Site in Fc Receptor FcRII/CD23) Identified by Homolog-scanning Mutagenesis”, 267 J. Biol. Chem. 185-191 (1992). |
Boutin, J. M. et al., “Cloning and Expression of the Rat Prolactin Receptor, a Member of the Growth Hormone/ Prolactin Receptor Gene Family”, 53 Cell 69-77 (1988). |
Burstein et al., “Immunoreactivity and receptor binding of mixed recombinants of human growth hormone and chorionic somatomammotropin”, 75 Proc. Natl. Acad. Sci. USA 5391-5394 (1978). |
Camble, R. et al., “Properties of Interferon-α2 Analogues Produced from Synthetic Genes in Peptides: Strucuture and Function”, Proceedings of the Ninth American Peptide Symposium 375-384 (Deber et al. eds. 1985). |
Chang, C. N. et al., “High-level secretion of human growth hormone by Escherichia coli”, 55 Gene 189-196 (1987). |
Clayton et al., “Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding”, 355 Nature 363-366 (1988). |
Cunningham, B., “Improvement in the alkaline stability of subtilisin using an efficient random mutagenesis and screening procedure”, 108 Chemical Abstracts 11 (1988). |
Cunningham, B. et al., “Receptor and Antibody Epitopes in Human Growth Hormone Identified by Homolog-Scanning Mutagenesis”, 243 Science 1330-1336 (1989). |
Cunningham, B. et al., “High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis”, 244 Science 1081-1085 (1989). |
Ge et al., “Functional Domains of Bacillus thuringiensis Insecticidal Crystal Proteins”, 266 J. Biol. Chem. 17954-17958 (1991). |
Geysen et al., 81 P.N.A.S., USA 3998-4002 (1984). |
Goeddel et al., “Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone”, 281 Nature 544-548 (1979). |
Gray et al., “Periplasmic production of correctly processed human growth in Escherichia coli: nature and bacterial signal sequences are interchangeable”, 39 Gene 247-254 (1985). |
Hotta et al., 149 Biochem. and Biophys. Res. Comm. 531-537 (1987). |
Huang et al., 223 FEBS Letters 294-298 (1987). |
Jones, P. T. et al., “Replacing the complementarity-determining regions in a human antibody with those from a mouse”, 321 Nature 522-525 (1986). |
Kobilka, B. et al., “Chemeric α2-, β2-Adrenergic Receptors: Delineation of Domains Involved in Effector Coupling and Ligand Binding Specificity”, 240 Science 1310-1316 (1988). |
Kostyo, J. L. et al., “Biological characterization of purified native 20-kDa human growth hormone”, 925 Biochemica et Biohysica Acta 314 (1987). |
Krivi, G. G. et al., “Immunohistochemcial Expression of Insulin-like growth factor I during Skeletal Muscle Regeneration in Normal . . . ”, Abstract I-18, Int'l. Symp. on Growth Hormone; Basic and Clin. Aspects, Final Program, sponsored by Serono Sympsoia, USA (Jun. 14-18, 1987). |
Laskowski, M. et al., “Postivie Darwinian Selection in Evolution of Protein Inhibitors of Serine Proteinases”, 52 Cold Spring Harbor Symp. Quant. Biol. 545 (1987). |
Leung, D. W. et al., “Growth hormone receptor and serum binding protein: purification, cloning and expression”, 330 Nature 537-543 (1987). |
Lewis, U. J. et al., “A Naturally Occurring Structural Variant of Human Growth Hormone”, 253 J. Biol. Chem. 2679-2687 (1978). |
Lewis, U. J., “Variants of Growth Hormone and Prolactin and Their Posttranslational Modifications”, 46 Ann. Rev. Physiol. 33-42 (1984). |
Li, C. H., “Human growth hormone: 1974-1981”, 46 Mol. Cell. Biochem. 31-41 (1982). |
Marseigne et al., 31 J. Med. Chem. 966-970 (1988). |
Mills, J. B. et al., “Fragments of Human Growth Hormone Produced by Digestion with Thrombin: Chemistry and Biological Properties”, 107 Endocrinology 319-399 (1980). |
Nakashima et al., “Alanine-scanning Mutagenesis of the Epidermal Growth Factor-like Domains of Human Thrombomodulin Identifies Critical Residues for Its Cofactor Activtiy”, 268 J. Biol. Chem. 2888-2892 (1993). |
Russell et al., “Recombinant Hormones from Fragments of Human Growth Hormone and Human Placental Lactogen”, 256 J. Biol. Chem. 296-300 (1981). |
Seeberg, P. H., “The Human Growth Hormone Gene Family: Nucleotide Sequences Show Recent Divergence and Predict a New Polypeptide Hormone”, 1 DNA 239-249 (1982). |
Sourouton, M. C. et al., “Localization of Highly Immunogenic Region on the Acetylcholine Receptor Alpha-Subunit”, 135 Biochem. Biophys. Res. Commun. 82-89 (1986). |
Tokunaga, T. et al., “Synthesis and expression of a human growth hormone (somatotropin) gene mutated to change cysteine-165 to alanine”, 153 Eur. J. Biochem. 445-449 (1985). |
Venuti et al., “The Impact of Biotechnology on Drug Discovery”, Ann. Reports in Medicinal Chem. 289-298 (Vinick ed. 1989). |
Wells, J., “Systematic Mutational Analysis of Protein-Protein Interfaces”, 202 Methods in Enzymology 390-411 (1991). |
Werther et al., “Localization and Characterization of Insulin Receptors in Rat Brain and Pituitary Gland Using In-Vitro Autoradiography and Computerized Densitometry”, 121 Endocrinol. 1562-1570 (1987). |
Wertman et al., “Systematic Mutational Analysis of the Yeast ACT1 Gene”, 132 Genetics 337-350 (1992). |
Wharton, R. P. et al., “Substituting and α-Helix Switches the Sequence-Specific DNA Interactions of a Repressor”, 38 Cell 361-369 (1984). |
Wharton, R. P. et al., “Changing the binding specificity of a repressor by redesigning an α-helix”, 316 Nature 601-605 (1985). |
Wharton, R. P. et al., 38 Nature 316-369 (1985). |
Wu and Wallace, “The Ligation Amplification Reaction (LAR)—Amplification of Specific DNA Sequences Using Sequential Rounds of Template-Dependent Ligation”, 4 Genomics 560-569 (1989). |
Zhang et al., “Toward a Simplification of the Protein Folding Problem: A Stablizing Polyalanine α-Helix Ingineered in T4 Lysozyme”, 30 Biochemistry 2012-2017 (1991). |
Zoller et al., “New molecular biology methods of protein engineering”, 1 Current Opinion in Structural Biology 605-610 (1991). |