The present invention relates to an article of manufacture for conducting electrical signals. In particular, a guarded coaxial cable is provided for conducting signals.
Coaxial cables typically used for television including satellite, cable TV and antenna cables are typically 7 mm in diameter, a size large enough to limit signal loss over the distances traveled from an outside location to a location inside a home or building. Typically these cables originate outside a home or apartment such as a multiple dwelling unit (MDU) and terminate inside where TV, wireless, data reception, or satellite reception equipment is located.
A cable normally enters a building through a hole drilled in a wall. But, drilling a hole in a wall and routing a cable through the hole makes a permanent alteration to the building. Since MDU occupants typically do not own the premises, this simple action raises issues including unauthorized building modifications, ownership of the cable modifications, liability for changes and liability for related safety issues.
Wireless solutions do not solve this problem. While capacitive coupling solves the problem of transporting high frequency signals across a glass boundary, such wireless solutions are unable to transport mid and low frequency signals. And, transporting very high frequency signals, for example gigahertz signals such as 28 gigahertz signals, through wall & double glass structures presents problems. In particular, network signals, cable and satellite television signals, electric powering of outdoor devices, and low frequency control signals must be transported using electrical conductors such as twisted pair and coaxial cables.
A solution using the space between the windows or doors and their frame is well known. Here, cables are passed through an existing opening without modification to the building structure. But, using such openings to pass a typical 6 to 7 mm O.D. cable presents challenges including closing the window or door when it is blocked by the cable and maintaining a fully functional cable when it is deformed by impact and compression from operation of the window or door.
The gap between a window/door and its frame is typically less than the 6 to 7 mm size of the cable. In many windows and doors, the space provided for soft weather sealing material and/or the latching tolerance of the door/frame interface provides a gap on the order of about 3 mm. Therefore, a 6 to 7 mm cable in this application will likely be squeezed and damaged while a cable of 3 mm or smaller diameter will likely avoid damage.
Coaxial cable deformations are undesirable because they damage cable covering and abruptly change the coaxial cable conductor spacing. The same is true of twisted pair cabling. For example, with coaxial cable conductor spacing changes tend to change the characteristic impedance of the cable and reflect radio frequency power back toward the source, causing a condition called standing waves. The abrupt change in impedance acts as a signal bottleneck and may result in detrimental data delays and signal lock-ups found in satellite TV signal transmission systems.
Twisted pair and coaxial cable entry solutions face a variety of problems including one or more of: traveling through a small space between the closed window/door and its frame; 2) destruction or degradation from impacts when windows or doors are operated; 3) functioning within its specifications, for example a DBS Satellite coaxial cable must maintain a minimum impedance matching of the RF signal (12 dB minimum return loss at 2150 MHz) in order for the home device to operate correctly; and 4) passing electric current such as a DC current to power an outside device and low frequency control signals when needed.
The present methods of solving these problems lie in the construction of an extension cable that can pass through the small space and have coaxial connectors at each end to re-fasten the larger 7 mm coaxial long distance transmission cable at each end. These methods include using cables with diameters in the range of 3-4 mm, using armor such as metallic armor and other armoring methods known to persons of ordinary skill of the art, and using flattened cable or coaxial cable to provide a thin profile.
None of these methods provides a robust solution. The first method often fails to protect the cable since cables over 3 mm in diameter are larger than the typical available window/door to frame gaps. When the door or window is closed, these cables are deformed to varying degrees rendering them useless or degrading their performance. In addition, the outer covering on such cables is soft and easily breached by repeated operation of windows/doors.
The second method not only uses cables larger than 3 mm, it also prevents the cable from making sharp turns such as 90 degree bends typical of the window and door frame applications. Here, the minimum bending radius of the extender cable is unacceptably increased by the armor.
The third method using a flat/non-circular coaxial cable provides inferior performance even before it is installed. In addition, bending the flat twisted pair or coaxial cable in one or more sharp bends of window/door frames further distorts the cable cross-section and impairs signal transmission. Further, this solution requires a soft sheath for bends that can easily be breached by repetitive impacts from operation of windows/doors.
What is needed for various applications is a guarded cable utilizing untwisted or twisted conductors or a coaxial cable assembly. For example a cable assembly including a coaxial cable having features including one or more of the following: 1) a cable assembly providing good RF performance including meeting industry standards such as 10 dB return loss, for a 75 ohm impedance, at a highest frequency of about 2150 MHz; 2) the cable assembly safely passing DC currents up to about 1.5 amperes with acceptable and/or minimal loss; 3) the cable assembly able to make multiple 90 degree bends to fit into the door frame; and, 4) the cable assembly performing within its specifications despite repeated impacts from windows/doors.
While known solutions are widely employed and the networking and cable and satellite television industries show little interest in developing new solutions, the present invention offers significant advancements over what has been done before.
In the present invention, a guarded cable assembly includes untwisted or twisted conductors or a micro-coaxial cable and an adjacent rail or bumper member where at least a portion of the assembly can be deformed to assume and substantially maintain a plurality of different shapes. Twisted and untwisted conductors may provide maintenance of digital data rate and/or DC power for example POE (power over Ethernet).
In various embodiments the invention provides for one or more of an improved method of transporting signals such as RF signals, DC current, and low frequency control signals via a guarded coaxial cable assembly and transporting the same through a confined space such as the gap between doors/windows and an abutting frame member.
The present invention is described with reference to the accompanying figures. These figures, incorporated herein and forming part of the specification, illustrate the invention and, together with the description, further serve to explain its principles enabling a person skilled in the relevant art to make and use the invention.
The disclosure provided in the following pages describes examples of some embodiments of the invention. The designs, figures, and description are non-limiting examples of embodiments they disclose. For example, other embodiments of the disclosed device and/or method may or may not include the features described herein. Moreover, disclosed advantages and benefits may apply to only certain embodiments of the invention and should not be used to limit the disclosed invention.
To the extent parts, components and functions of the described invention exchange electric power or signals, the associated interconnections and couplings may be direct or indirect unless explicitly described as being limited to one or the other. Notably, parts that are connected or coupled may be indirectly connected and may have interposed devices including devices known to persons of ordinary skill in the art.
Any suitable coaxial cable connectors 104, 108 known to persons of ordinary skill in the art may be used with the micro-coaxial cable 206. In an embodiment, “F” type coaxial cable connectors are used. In other embodiments, BNC or RCA type connectors are used. In either case, the connectors may be male, female or mixed. In an embodiment, the guarded coaxial cable assembly includes female connectors on each end for interconnection with the male connectors of a larger feeder RF cable.
Materials suited for use as cable jackets include flexible, non-conducting and abrasion resistant materials. A number of polymers, including one or more of rubber, silicon, PVC, polyethylene, neoprene, chlorosulphonated polyethylene, and thermoplastic CPE can be used.
Construction methods for integrating the cable jacket 208, rails 202, 204 and micro-coaxial cable 206 include any suitable method known to persons of ordinary skill in the art. In an embodiment, the cable jacket 208 envelops the rails and micro-coaxial cable as it is extruded from a die. In some embodiments (as shown), the jacket envelopes the rails and micro-coaxial cable and fills the spaces between them. In yet another embodiment, the assembly is molded such as by filling a mold holding the micro-coaxial cable and rains) with a fluid that will solidify and become the cable jacket. Suitable fluids include fluids useful in making the above polymers and other fluids useful for making suitable jacket materials and known to persons of ordinary skill in the art.
In an embodiment, the invention includes use of 75 ohm micro-coaxial cable having an outside diameter less than 2 mm which can make a 90 degree bend in a small space and maintain true coaxial performance. The micro cable is protected from radial impact and abrasion by a protective jacket.
Exemplary micro-coaxial cables include MCV™ brand cables sold by Hitachi Cable Manchester. In some embodiments the micro-coaxial cable outer jacket includes a non-stick material such as Teflon® promoting relative motion between the cable and the outer jacket 208.
Whether a single rail or two or more rails are used (two are shown) 202, 204, the rail(s) preferentially bear transverse loads applied to the cableway 102 and tend to prevent harmful compression of the micro-coaxial cable. In various embodiments, the diameter of the micro-coaxial cable d2 is greater than or equal to the diameter of the rails d1. In some of these embodiments the ratio of the diameters d2/d1 is in the range of about 1.0 to 2.0.
In various other embodiments (as shown) the diameter of the micro-coaxial cable d2 is chosen to be somewhat less than the diameter of the rails d1 for added protection. In some of these embodiments the ratio of diameters d1/d2 is in the about 1.0 to 2.0.
Materials suited for rail construction are relatively incompressible as compared to cableway jacket materials. In some embodiments, rail construction materials are flexible. And, in some embodiments rail construction materials tend, at least partially, to retain deformed shapes such as an angular profile after being bent around a corner.
In various embodiments, rail construction materials include metals and metal alloys with one or more of iron, steel, copper, aluminum, tin, nickel and other metals known by persons of ordinary skill in the art to have suitable properties. In some embodiments, rail construction materials include non-metals such as polymers. For example, a segmented/articulated rail made from PVC can be used, the segments imparting flexibility and/or a tendency to retain, at least partially, a deformed shape.
In embodiments with conductive rail materials, the rails can serve as conductors. In some such embodiments using two conductive rails, the rails at one end of the guarded coaxial cable are interconnected via a lead 115 with a first electrical connector 114 and the rails at the other end of the guarded coaxial cable are interconnected via a lead 117 with a second electrical connector 118. As persons of ordinary skill in the art will understand, the power handling capability of the rails will be determined by their physical and material properties and the connectors will be chosen to suit the application.
Uses for guarded coaxial cable assemblies include passing through windows, doors and other confined spaces where an unprotected coaxial cable might otherwise be damaged. As discussed above, such protection is desirable for, inter alia, preserving signal quality. And, as discussed above various embodiments orient one or more rails 202, 204 and a micro-coaxial cable in a flat cableway 102 such that transverse loads applied to the cableway are preferentially borne by the rail(s).
In addition to a micro coaxial cable, an unshielded pair or twisted pair may be used. For example any of CAT5, CAT5e, CAT6, CAT7, and CAT7a may be used.
Any suitable twisted pair connectors known to persons of ordinary skill in the art may be used with the cableway 800A-13. In an embodiment, “RJ45” type connectors or CAT 5 compatible connectors are used. In other embodiments, BNC or RCA type connectors are used. In either case, the connectors may be male, female or mixed. In an embodiment, the guarded cable assembly includes female connectors on each end for interconnection with the male connectors. In an embodiment, the guarded cable assembly includes male connectors on each end for interconnection with female connectors.
Materials suited for use as cable jackets include flexible, non-conducting and abrasion resistant materials. A number of polymers, including one or more of rubber, silicon, PVC, polyethylene, neoprene, chlorosulphonated polyethylene, and thermoplastic CPE can be used.
Construction methods for integrating the cable jacket 806, rails 802, 804 and twisted pair(s) 811-814 include any suitable method known to persons of ordinary skill in the art. In an embodiment, the cable jacket 806 envelops the rails and twisted pairs as it is extruded from a die. In some embodiments (as shown), the jacket envelopes the rails and twisted pairs and fills the spaces between them. In yet another embodiment, the assembly is molded such as by filling a mold holding the twisted pairs and rail(s) with a fluid that will solidify and become the cable jacket. Suitable fluids include fluids useful in making the above the above polymers and other fluids useful for making suitable jacket materials and known to persons of ordinary skill in the art.
In an embodiment, the twisted pair includes two conductors that are insulated and twisted.
In an embodiment, the twisted pair cables relying on the balanced line twisted pair design and differential signaling for noise rejection and cable performance or bandwidth is 100 MHz or higher.
In an embodiment, the invention includes use of a twisted pair having an outside diameter of less than 3 mm. In an embodiment the cable can make a 90 degree bend in a small space. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance.
In an embodiment, the invention includes use of four twisted pair having an outside diameter of less than 7 mm. In an embodiment the cable can make a 90 degree bend in a small space. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance.
In some embodiments a cable or conductor outer jacket includes a non-stick material such as Teflon® promoting relative motion between the cable or conductor and the outer jacket 208.
Whether a single rail or two or more rails are used (two are shown) 802, 804, the rail(s) preferentially bear transverse loads applied to the cableway and tend to prevent harmful compression of the twisted pair(s). In some embodiments, the diameter of the twisted pair cable d2 is less than or equal to the diameter of the rails. In some of these embodiments the ratio of the diameters d1/d2 is in the range of about 1.0 to 2.0.
Any suitable twisted pair connectors known to persons of ordinary skill in the art may be used with the cableway 900A-B. In an embodiment, “RJ45” type connectors or CAT 5 compatible connectors are used. In other embodiments, BNC or RCA type connectors are used. In either case, the connectors may be male, female or mixed. In an embodiment, the guarded cable assembly includes female connectors on each end for interconnection with the male connectors. In an embodiment, the guarded cable assembly includes male connectors on each end for interconnection with female connectors.
Materials suited for use as cable jackets include flexible, non-conducting and abrasion resistant materials. A number of polymers, including one or more of rubber, silicon, PVC, polyethylene, neoprene, chlorosulphonated polyethylene, and thermoplastic CPE can be used.
Construction methods for integrating the cable jacket 906, rails 902, 904 and twisted pair(s) 911-914 include any suitable method known to persons of ordinary skill in the art. In an embodiment, the cable jacket 906 envelops the rails and twisted pairs as it is extruded from a die. In some embodiments (as shown), the jacket envelopes the rails and twisted pairs and fills the spaces between them. In yet another embodiment, the assembly is molded such as by filling a mold holding the twisted pairs and rail(s) with a fluid that will solidify and become the cable jacket. Suitable fluids include fluids useful in making the above the above polymers and other fluids useful for making suitable jacket materials and known to persons of ordinary skill in the art.
In an embodiment, the twisted pair includes two conductors that are insulated and twisted. See the discussion of
In an embodiment, the invention includes use of a twisted pair having an outside diameter of less than 3 mm. In an embodiment the cable can make a 90 degree bend in a small space. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance.
In some embodiments the cable or conductor outer jacket includes a non-stick material such as Teflon® promoting relative motion between the cable or conductor and the outer jacket 208.
Whether a single rail or two or more rails are used (two are shown) 802, 804, the rail(s) preferentially bear transverse loads applied to the cableway and tend to prevent harmful compression of the twisted pair(s). In some embodiments, the diameter of the twisted pair cable d2 is less than or equal to the diameter of the rails. In some of these embodiments the ratio of the diameters d1/d2 is in the range of about 1.0 to 2.0.
Any suitable connectors known to persons of ordinary skill in the art may be used with the cableway 1000A-B. in an embodiment, “RJ45” type connectors are used or CAT 5 compatible connectors are used. In other embodiments, BNC or RCA type connectors are used. In either case, the connectors may be male, female or mixed. In an embodiment, the guarded cable assembly includes female connectors on each end for interconnection with the male connectors. In an embodiment, the guarded cable assembly includes male connectors on each end for interconnection with female connectors.
Materials suited for use as cable jackets include flexible, non-conducting and abrasion resistant materials. A number of polymers, including one or more of rubber, silicon, PVC, polyethylene, neoprene, chlorosulphonated polyethylene, and thermoplastic CPE can be used.
Construction methods for integrating the cable jacket 1006, rails 1002, 1004 and conductors 1011-1014 include any suitable method known to persons of ordinary skill in the art. In an embodiment, the cable jacket 1006 envelops the rails and conductors as it is extruded from a die. In some embodiments (as shown), the jacket envelopes the rails and conductors and fills the spaces between them. In yet another embodiment, the assembly is molded such as by filling a mold holding the conductors and rail(s) with a fluid that will solidify and become the cable jacket. Suitable fluids include fluids useful in making the above the above polymers and other fluids useful for making suitable jacket materials and known to persons of ordinary skill in the art.
In an embodiment, the invention includes uses pair wires having an outside diameter of less than 1.5 mm. In an embodiment the cable can make a 90 degree bend in a small space. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance minimums. In an embodiment, the cable bandwidth is greater than 50 MHz.
In some embodiments the micro-coaxial cable outer jacket includes a non-stick material such as Teflon® promoting relative motion between the cable and the outer jacket 208.
Whether a single rail or two or more rails are used (two are shown) 1002, 1004, the rail(s) preferentially bear transverse loads applied to the cableway and tend to prevent harmful compression of the twisted pair(s). In some embodiments, the diameter of the pair wires d2 is less than or equal to the diameter of the rails. In some of these embodiments the ratio of the diameters d1/d2 is in the range of about 1.0 to 2.0.
In various embodiments the twisted pair is jacketed 1109 and/or in a matrix 1107 similar to the matrix above 1106. And in various embodiments the conductors “e1” of the twisted pair are jacketed 1129.
Any suitable twisted pair connectors known to persons of ordinary skill in the art may be used with this cableway 1100A. In an embodiment, “RJ45” type connectors or CAT 5 compatible connectors are used. In other embodiments, BNC or RCA type connectors are used. In either case, the connectors may be male, female or mixed. In an embodiment, the guarded cable assembly includes female connectors on each end for interconnection with the male connectors. In an embodiment, the guarded cable assembly includes male connectors on each end for interconnection with female connectors.
As shown, the cable jacket is substantially flat having a thickness “t” suitable for location in narrow passages such as between a door and a door jamb or a window and a window sill. Cableway dimensions are selected according to the application. Dimensions for specific embodiments include those found in the table below.
Materials suited for use as cable jackets include flexible, non-conducting and abrasion resistant materials. A number of polymers, including one or more of rubber, silicon, PVC, polyethylene, neoprene, chlorosulphonated polyethylene, and thermoplastic CPE can be used.
Construction methods for integrating the cable jacket 1106, rails 1102, 1104 and twisted pair(s) 1111 include any suitable method known to persons of ordinary skill in the art. In an embodiment, the cable jacket 1106 envelops the rails and twisted pairs as it is extruded from a die. In some embodiments (as shown), the jacket envelopes the rails and twisted pairs and fills the spaces between them. In yet another embodiment, the assembly is molded such as by filling a mold holding the twisted pairs and rail(s) with a fluid that will solidify and become the cable jacket. Suitable fluids include fluids useful in making the above the above polymers and other fluids useful for making suitable jacket materials and known to persons of ordinary skill in the art.
In an embodiment, the twisted pair includes two conductors that are insulated 1129 and twisted. See the discussion of
In an embodiment, the invention includes use of a twisted pair having an outside diameter of less than 3 mm and in an embodiment the cable can make a 90 degree bend in a small space, for example wrapping around doors and window frames while allowing the door or window to be closed. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance.
In some embodiments the outer jacket 1109 includes a non-stick material such as Teflon® promoting relative motion between the cable and the outer jacket 1106.
Whether a single rail or two or more rails are used (two are shown) 1102, 1104, the rail(s) bear or preferentially bear transverse loads applied to the cableway and tend to prevent harmful compression of the twisted pair(s) and/or of the conductors of the twisted pairs.
In some embodiments, the diameter of the twisted pair cable e3 is less than or equal to the diameter of the rails and in some embodiments the diameter of the rails is less than the diameter of the twisted pair, an insulated conductor of the twisted pair, or a conductor of the twisted pair. In some of these embodiments the ratio of the diameters e4/e3 is in the range of about 1.0 to 2.0. And in some embodiments the ration of the diameters e3/e4 is in the range of about 1.0 to 2.0.
Applicant notes that conductors may be arranged in substantially parallel arrangement with respect to the rail or rails. Substantially in this context means that variation owing to the twisting of the conductors required to form the twisted cable continues to be considered a parallel arrangement.
Any suitable connectors known to persons of ordinary skill in the art may be used with the cableway 1100B. In an embodiment, “RJ45” type connectors are used or CAT 5 compatible connectors e used. In other embodiments, BNC or RCA type connectors are used. In either case, the connectors may be male, female or mixed. In an embodiment, the guarded cable assembly includes female connectors on each end for interconnection with the male connectors. In an embodiment, the guarded cable assembly includes male connectors on each end for interconnection with female connectors.
In the embodiment shown, the cable jacket is substantially flat having a thickness “t” suitable for location in narrow passages such as between a door and a door jamb or a window and a window sill. Dimensions for specific embodiments include those found in the table below.
Materials suited for use as cable jackets include flexible, non-conducting and abrasion resistant materials. A number of polymers, including one or more of rubber, silicon, PVC, polyethylene, neoprene, chlorosulphonated polyethylene, and thermoplastic CPE can be used.
Construction methods for integrating the cable jacket 1156, rails 1152, 1154 and pair(s) 1011 include any suitable method known to persons of ordinary skill in the art. In an embodiment, the cable jacket 1156 envelops the rails and twisted pairs as it is extruded from a die. In some embodiments (as shown), the jacket envelopes the rails and twisted pairs and fills the spaces between them. In yet another embodiment, the assembly is molded such as by filling a mold holding the twisted pairs and rail(s) with a fluid that will solidify and become the cable jacket. Suitable fluids include fluids useful in making the above the above polymers and other fluids useful for making suitable jacket materials and known to persons of ordinary skill in the art.
In an embodiment, the invention includes uses pair wires having an outside diameter of less than 1.5 mm. In an embodiment the cable can make a 90 degree bend in a small space such as around a door or around a window frame. In various embodiments, the cable can maintain true twisted pair performance, for example CAT 5 performance. In an embodiment, the cable bandwidth is greater than 50 MHz.
In an embodiment the cable 1161 may include a jacket or insulating layer 1179. In these embodiments the cable outer jacket 1179 may include a non-stick material such as Teflon® promoting relative motion between the cable and the outer jacket 1156.
Whether a single rail or two or more rails are used (two are shown) 1152, 1154, the rail(s) bear or preferentially bear transverse loads applied to the cableway and tend to prevent harmful compression of the cables 1161. In some embodiments, the diameter of the pair wires f2 is less than or equal to the diameter of the rails 1502, 1504 and in some embodiments the diameter of the rails is less than the diameter of the pair wires. In some of these embodiments the ratio of the diameters f4/f2 or f4/f1 is in the range of about 1.0 to 2.0. In some embodiments the ration of the diameters f2/f4 or f1/f4 is in the range of about 1.0 to 2.0.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to skilled artisans that various changes in form and details can be made without departing from the spirit and scope of the invention. As such, the breadth and scope of the present invention should not be limited by the above-described examples, but should be defined only in accordance with the following claims and equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 16/799,752 filed Feb. 24, 2020, which is a continuation of U.S. patent application Ser. No. 15/796,092 filed Oct. 27, 2017, now U.S. Pat. No. 10,573,433, which claims priority to non-provisional of 62/483,435 filed Apr. 9, 2017. U.S. patent application Ser. No. 15/796,092 is a continuation-in-part of U.S. patent application Ser. No. 15/249,446 filed Aug. 28, 2016, now U.S. Pat. No. 10,438,727, which is a continuation of U.S. patent application Ser. No. 14/269,105 filed May 3, 2014, now U.S. Pat. No. 9,431,151, which is a continuation of U.S. patent application Ser. No. 13/668,260 filed Nov. 3, 2012, now U.S. Pat. No. 8,772,640, which is a continuation of U.S. patent application Ser. No. 12/634,293 filed Dec. 9, 2009, now U.S. Pat. No. 8,308,505, all of which are by this reference incorporated herein in their entireties and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3502791 | Dahlstrom | Mar 1970 | A |
3549788 | Apen | Dec 1970 | A |
3621118 | Bunish | Nov 1971 | A |
3828120 | Hansen | Aug 1974 | A |
4002820 | Panari et al. | Jan 1977 | A |
4131332 | Hogendobler et al. | Dec 1978 | A |
4313029 | Bunish | Jan 1982 | A |
4340269 | McGeary | Jul 1982 | A |
4382653 | Blanchard | May 1983 | A |
4419538 | Hansell | Dec 1983 | A |
4492815 | Maros | Jan 1985 | A |
4638117 | Ney | Jan 1987 | A |
4664464 | Hutter et al. | May 1987 | A |
4672342 | Gartzke | Jun 1987 | A |
4740658 | Hoffman | Apr 1988 | A |
4773879 | Pauza | Sep 1988 | A |
4781433 | Arroyo | Nov 1988 | A |
4801764 | Ohlhaber | Jan 1989 | A |
4983794 | Kokubu | Jan 1991 | A |
5002152 | Lebow | Mar 1991 | A |
5179251 | Mullin et al. | Jan 1993 | A |
5225966 | Basavanhally | Jul 1993 | A |
5354954 | Peterson | Oct 1994 | A |
5516986 | Peterson | May 1996 | A |
5649043 | Adams | Jul 1997 | A |
6005232 | Janvrin | Dec 1999 | A |
6281443 | Idler | Aug 2001 | B1 |
6372991 | Myers | Apr 2002 | B1 |
6384337 | Drum | May 2002 | B1 |
6417455 | Zein et al. | Jul 2002 | B1 |
6464516 | Baldock | Oct 2002 | B2 |
6542674 | Gimblet | Apr 2003 | B1 |
6756538 | Murga-Gonzalez et al. | Jun 2004 | B1 |
6844500 | Williams et al. | Jan 2005 | B2 |
6864426 | Miyazaki | Mar 2005 | B2 |
7217884 | Sezton et al. | May 2007 | B2 |
7272282 | Seddon | Sep 2007 | B1 |
7314998 | Amato et al. | Jan 2008 | B2 |
7358443 | Shatkin et al. | Apr 2008 | B2 |
8308505 | Hatton | Nov 2012 | B2 |
8598461 | Lind | Dec 2013 | B2 |
8692116 | Holland | Apr 2014 | B2 |
8727800 | Holland | May 2014 | B2 |
8772640 | Hatton | Jul 2014 | B2 |
9053837 | Holland | Jun 2015 | B2 |
9240263 | Kim | Jan 2016 | B2 |
9431151 | Hatton et al. | Aug 2016 | B2 |
9529170 | Sutehall | Dec 2016 | B2 |
9595370 | Sarchi | Mar 2017 | B2 |
10573433 | Goebel | Feb 2020 | B2 |
20020053460 | Takeda | May 2002 | A1 |
20030012529 | Kobayashi et al. | Jan 2003 | A1 |
20030141100 | Tanaka | Jul 2003 | A1 |
20040096168 | Wells | May 2004 | A1 |
20040154816 | Rainbolt | Aug 2004 | A1 |
20040154826 | Tanaka | Aug 2004 | A1 |
20040168820 | Kanamori | Sep 2004 | A1 |
20040206543 | Chuo | Oct 2004 | A1 |
20040258385 | Kadrnoska | Dec 2004 | A1 |
20050077074 | Tanaka | Apr 2005 | A1 |
20050199415 | Glew | Sep 2005 | A1 |
20060185878 | Softer | Aug 2006 | A1 |
20060237217 | Glew | Oct 2006 | A1 |
20070062721 | Shatkin et al. | Mar 2007 | A1 |
20070155231 | Tang | Jul 2007 | A1 |
20080169374 | Kaplan | Jul 2008 | A1 |
20080185167 | Lee | Aug 2008 | A1 |
20080185168 | Matsukawa | Aug 2008 | A1 |
20080253723 | Stokes | Oct 2008 | A1 |
20080257440 | Ikeda | Oct 2008 | A1 |
20080273845 | Weimann | Nov 2008 | A1 |
20090034918 | Caldwell | Feb 2009 | A1 |
20090034919 | Caldwell | Feb 2009 | A1 |
20090166082 | Liu | Jul 2009 | A1 |
20100072657 | Lind | Mar 2010 | A1 |
20100181438 | Chauzu | Jul 2010 | A1 |
20100215328 | Tatat | Aug 2010 | A1 |
20110021069 | Hu et al. | Jan 2011 | A1 |
20110070769 | Lin | Mar 2011 | A1 |
20110136375 | Hatton | Jun 2011 | A1 |
20110171853 | Holland | Jul 2011 | A1 |
20120048591 | Gareis | Mar 2012 | A1 |
20140187080 | Holland | Jul 2014 | A1 |
20150132992 | Holland | May 2015 | A1 |
20150310964 | Larson | Oct 2015 | A1 |
20180075950 | Goebel | Mar 2018 | A1 |
20200290212 | Fujioka | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
204632368 | Sep 2015 | CN |
105047271 | Nov 2015 | CN |
105761795 | Jul 2016 | CN |
205542057 | Aug 2016 | CN |
106057290 | Oct 2016 | CN |
2646373 | Apr 1978 | DE |
10337508 | Dec 2004 | DE |
0066910 | May 1982 | EP |
1253684 | Oct 2002 | EP |
2270820 | Jan 2011 | EP |
2657993 | Feb 1990 | FR |
881287 | Nov 1961 | GB |
2014216109 | Nov 2014 | JP |
2015109750 | Jun 2015 | JP |
20120118871 | Oct 2012 | KR |
101585900 | Jan 2016 | KR |
WO-2012030365 | Mar 2012 | WO |
WO-2015015674 | Feb 2015 | WO |
WO-2018191123 | Oct 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20210319931 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16799752 | Feb 2020 | US |
Child | 17231576 | US | |
Parent | 15796092 | Oct 2017 | US |
Child | 16799752 | US | |
Parent | 14269105 | May 2014 | US |
Child | 15249446 | US | |
Parent | 13668260 | Nov 2012 | US |
Child | 14269105 | US | |
Parent | 12634293 | Dec 2009 | US |
Child | 13668260 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15249446 | Aug 2016 | US |
Child | 15796092 | US |