Described herein is a guardrail. More specifically, a guardrail is described of a longitudinal beam design that uses an interlocking plate and/or other parts as means to achieve desired guardrail design parameters.
Guardrails are used to prevent errant vehicles from impacting road hazards. Such rails are designed to contain and then redirect any vehicles that impact the guardrail without forming a hazard in its own right, for example, by pushing the vehicle into the path of oncoming traffic. To do this, the guardrail must protect the occupants of the vehicle and also not create a danger to other road users.
W-beam guardrail designs typically utilise a horizontal beam with a W-shape cross-section that is held at a suitable height via a number of vertical posts. The beam is linked to the posts. When a vehicle hits the guardrail, the vehicle forces the posts to hinge backwards. The shape of the W-beam is designed to engage with the bumper of the car. As the posts rotate backwards, the W-beam must maintain a roughly uniform height during deformation to prevent the beam falling below a critical height on the impacting vehicle where the vehicle may over-run the rail or result in an adverse vehicle motion. To do this, the W-beam must eventually separate from the posts at least near the proximity of the vehicle if the force of impact exceeds a pre-determined level. As the vehicle traverses along the barrier, the posts must separate from the rail just in front of the vehicle. Ideally, all posts upstream of the point of impact will remain attached to the rail, to assist in maintaining the height of the rail, but this is not always possible.
An example includes U.S. Pat. No. 2,101,176 that describes a hinging post that absorbs some of the impact energy. This design does not allow for disconnection of the post from the beam.
U.S. Pat. No. 3,493,213 describes placing a blockout between the beam and the posts which ensures the beam height is maintained as the posts rotate backwards. This form of blockout has benefits in providing a softer impact point between the beam and the blockout and prevents the blockout from rotating on the post. The blockout also provides a separation between the beam and the posts and thereby helps prevent snagging of the vehicles wheels on the post. The blockout does not however allow the beam to release from the posts and therefore could result in the beam being dragged down as the post is impacted.
U.S. Pat. No. 8,960,647 describes a system that allows the beam to release from the post under a controlled load via a weakened section. The load is controllable by changing the shape and size of the weakened section. Release can occur by ensuring the bolt and fastener stay attached to the face of the beam while pulling the beam away from the post. This design has the advantage that, by keeping the release mechanism attached to the beam, there should be no (or very little) debris during an impact. However, there are several disadvantages to this design. In order to work correctly, the amount of material left holding the tab in the face of the post is typically very small. This makes the posts prone to being damaged, particularly during installation. One key form of damage is that of the tabs falling out of the posts as the posts are vibrated (or driven) into the soil. Another potential issue is the ability for the guardrail system to be installed around bends. If the holding force (perpendicular to the face of the post) between the beam and the post is too great (i.e. the beam wants to pull off the front face of the post) then the tabs can pull off. This can happen when going around a small bend, as the installer will try and bend the straight beam sections through pressure in the bolt which places a load on the tab. Another issue with this design is the potential for the threaded end of the bolt and nut becoming snagging on the edges of the cut out for the tab thereby preventing the system from releasing. Furthermore, the nut for the system is installed on the inside of the post and this places a limitation on the type of post used as it must accommodate the size of the nut and have an allowance for tools to be used on the nut for tightening of the bolt.
US2012-0003039 describes a system that operates by allowing the slider to move up the posts as the posts are deformed, rotate, or hinge backwards under load. The beam is attached to the slider, which disengages from the posts from the top. For the system to work the posts have to be able to accept a slider and the bolts connecting the beam to the sliders cannot be very long (or they will hit the post on the rear side of the slider). Overall the system works well but it can be difficult to keep the sliders on the post for sufficient time to dissipate enough energy. To help with this, a series of tabs are typically installed on the post which catch onto the beam attachment bolt. These tabs slow down the motion of the slider and dissipate energy in the process. Disadvantages of this design include the fact that the sliders can move up too freely and release prematurely. The sliders also add an extra component in the system. Further, the bolts have to be short in length and installed from the front of the beam. There is very little tolerance on the placement which can make installation difficult. This is even more critical if the posts are installed at an angle to the beam which can make starting the bolt very difficult. The cost of the sliders is relatively high and tolerance issues during manufacture can be a concern. If the top of the posts get damaged during the installation process (hammering them in) then the sliders can be difficult to fit over the posts. Furthermore, if the posts twist too much during an impact (crash) then the sliders can pop off the side of the posts causing premature disengagement and a lack of energy dissipation.
U.S. Pat. No. 8,353,499 describes another sliding mechanism. In this case, the system works by allowing the bolt to slide up the slot on the front face of the post and then burst through the material at the top. The material at the top prevents the beam from prematurely popping off during an impact and allows for good energy dissipation. The slot allows for vertical adjustment of the beam relative to the post height, which makes for ease of installation. Long bolts can be used with the U-shaped posts as the thread can stick through the back. This long bolt simplifies installation. The design can be installed in back to back format (rails on both sides of the post and with blockouts included.) A problem with this design is that the material at the top of the slot has to be relatively thin or else the bolt will not be able to fracture through it. As the material region is relatively thin, it can easily be damaged during installation. Damage is most commonly seen as a vertical fracture line. If too much material is maintained at the top of the system then there is the potential for the system not to release and the posts can drag the beam down when the posts deflect backwards. The posts stand proud of the top of the beam which can cause a significant hazard to other road users, especially motorcyclists who, in an impact tend to slide along the top of the rail. The inclusion of a washer behind the head of the bolt is an annoyance for installation and can be forgotten during the installation process with significant consequences on performance. A further issue is the potential of different performance depending on the level of torque applied to the bolt; too much and they will not slide very well and too little and it will slide too easily. Another similar design is that taught in U.S. Pat. No. 7,878,485.
As should be appreciated from the above, an important aspect is to design the W-beam guardrail in such a manner that the beam is firmly attached to posts during normal (non-impacted use) and, in the event of an impact, the posts move away from the line of movement yet the beam remains at a desired height to catch and re-direct the vehicle. Much of the design work involves how the post and beam are linked and how this linkage is broken in the event of an impact. As noted above, art methods have their drawbacks often to do with difficulties around installation, but also to do with cost of manufacture and installation as well as achieving the desired outcome of vehicle capture and redirection. It would therefore be useful to address at least some of the art drawbacks or at least provide the public with a choice.
Further aspects and advantages of the guardrail will become apparent from the ensuing description that is given by way of example only.
Described herein is a longitudinal beam guardrail that comprises a longitudinal beam and a post linked together indirectly via a mounting plate, the mounting plate is designed in a way that can bend and/or break in the event of an impact on the longitudinal beam thereby allowing separation of the post or posts from the longitudinal beam.
In a first aspect, there is provided a guardrail comprising a post and a longitudinal beam, the post and longitudinal beam being linked via at least one fastener and mounting plate wherein the mounting plate comprises:
In a second aspect there is provided a guardrail post, at least one fastener and at least one mounting plate wherein the mounting plate comprises:
In a third aspect there is provided a mounting plate for use in a guardrail assembly comprising:
In a fourth aspect, there is provided a guardrail comprising a post and a longitudinal beam, the post and longitudinal beam being linked via at least one purlin bolt fastener.
As may be appreciated, the above described guardrail may provide a variety of advantages. Some examples include:
Further aspects of the guardrail will become apparent from the following description that is given by way of example only and with reference to the accompanying drawings in which:
As noted above, a longitudinal beam guardrail is described herein. The guardrail comprises a longitudinal beam and a post linked together indirectly via a mounting plate, the mounting plate designed in a way that can bend and/or break in the event of an impact on the longitudinal beam thereby allowing separation of the post or posts from the longitudinal beam.
For the purposes of this specification, the term ‘about’ or ‘approximately’ and grammatical variations thereof mean a quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1% to a reference quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length.
The term ‘substantially’ or grammatical variations thereof refers to at least about 50%, for example 75%, 85%, 95% or 98%.
The term ‘comprise’ and grammatical variations thereof shall have an inclusive meaning—i.e. that it will be taken to mean an inclusion of not only the listed components it directly references, but also other non-specified components or elements.
The term ‘guardrail’ and grammatical variations thereof as used herein refers to the complete assembly being the longitudinal beam or beams, a post or posts, a fastener or fasteners and a mounting plate or plates.
The term ‘W-beam’ as used herein refers to a W-shape cross-section beam however, unless otherwise noted, reference to a W-beam should not be seen as limiting as other shapes of longitudinal beam may also be used, examples including box beams, U-channel beams and Thrie beams.
In a first aspect, there is provided a guardrail comprising a post and a longitudinal beam, the post and longitudinal beam being linked via at least one fastener and mounting plate wherein the mounting plate comprises:
In a second aspect there is provided a guardrail post, at least one fastener and at least one mounting plate wherein the mounting plate comprises:
In a third aspect there is provided a mounting plate for use in a guardrail assembly comprising:
The link between the post and the longitudinal beam may be indirect.
The longitudinal beam holding load may be transferred from the fastener to the post via the deformable region or regions.
The body of the mounting plate may not directly contact the post. The body of the mounting plate may be held within a post void space, the body linking directly to the fastener or fasteners and to the post via the deformable region or regions.
The term ‘deformable region or regions’ or grammatical variations thereof may refer to a region of the mounting plate that is weaker relative to the mounting plate body. The deformable region or regions may be characterised by having at least one of:
As may be appreciated from the above, the exact timing of bending or breaking of the deformable region or regions may be tailored via many factors. Tailoring (or tuning) of the force needed to cause deformation may be useful for example to ensure all required standards are met in terms of a light vehicle or heavy vehicle.
The mounting plate may link the longitudinal beam to the post with linking forces transferred through the post sides. This differs considerably to most art guardrails where the front of the post is directly connected in some way with the longitudinal beam.
In the event of an impact the mounting plate may bend and/or break about the deformable region or regions and is pulled out of the post thereby releasing the post from the longitudinal beam. The timing at which deformation occurs may be varied by altering the mounting plate thickness and the size of the deformable region or regions to tailor the force needed to bend/break the mounting plate deformable region or regions.
In the event of an impact the at least one fastener may be drawn out of the mounting plate thereby releasing the post from the longitudinal beam. In this scenario, the number of threads engaged in the mounting plate may be a function of the thread pitch and mounting plate thickness, both of which can be altered to suit.
In the event of an impact the post may twist or turn sideways and the deformable region or regions of the mounting plate may bend and/or break allowing the post and longitudinal beam to separate. As noted above, the force at which bending or breaking occurs to the deformable region or regions may be tailored.
In the event of an impact the mounting plate may move upward or downward relative to the post as the post hinges backwards and when the mounting plate reaches predetermined movement limit, the deformable region or regions bend and/or break thereby releasing the post from the longitudinal beam.
As can be seen from the above examples, the forces and respective separation of the longitudinal beam and post may occur in a variety of tuneable methods. In some cases, the way that separation occurs may be a combination of the above described methods.
Deformation about the deformable region or regions may typically be caused by shear stress across the deformable region or regions.
The mounting plate may have a centrally located body and at least one arm extending on either side of the body, wherein at least part of the arm or arms comprise the deformable region or regions. In one embodiment, the mounting plate comprises two opposing arms radiating out from the body of the mounting plate although other configurations may also be used such as one, three or four arms. The deformable region or regions of an arm may be smaller than the overall arm length. The arm or a part thereof, may have at least one face that bears on at least one surface of the post when the at least one fastener is tightened. The, or each, arm may extend to a higher strength portion compared to the deformable region or regions. The higher strength region or regions may have a wider bearing face on the post. As used herein the term arm or grammatical variations thereof may also be referred to as a lug or lugs, each term may be used interchangeably.
In one embodiment, the mounting plate may comprise a single arm extending from one side of the body of the mounting plate. In this embodiment, multiple mounting plates may be used, such as two mounting plates that each have arms extending from opposing sides of the body such that together the two mounting bodies form a structure that has opposing extending arms. The two mounting bodies noted may be fastened together between the post and beam in a similar manner as described using a single mounting plate body with two arms.
In one particular embodiment, the mounting plate may comprise a body and at least one lug, the body and lug or lugs joined by at least one deformable region arm, the body and lug or lugs being stronger than the deformable region or regions. The mounting plate may comprise two lugs and two arms. The mounting plate may have an overall W-shape. By way of illustration, the mounting plate may be 50, or 60, or 70, or 80, or 90, or 100, or 110, or 120, or 130, or 140, or 150, or 160, or 170, or 180, or 190, or 200 mm wide. In one embodiment, the mounting plate may be from 50 to 200 mm wide. Further, the mounting plate may be 30, or 40, or 50, or 60, or 70, or 80, or 90, or 100 mm high. In one embodiment, the mounting plate may be 30-100 mm high. Further, the mounting plate may be 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10 mm thick. In one embodiment, the mounting plate may be 3 to 10 mm thick. In one specific embodiment, the mounting plate may be approximately 100 mm wide, 46 mm high, and 5 mm thick. This specific embodiment size is given purely by way of illustration only and it should be appreciated that the size and material grade may be altered due to a number of factors including post size and shape, force tolerances, cost considerations and may other factors.
The mounting plate may be made from one or more materials having medium strength properties that may provide sufficient structural strength while also enabling the required deformability requirements. For example, a material having a nominal yield strength of at least 250 megapascal (MPa) may be used. In one embodiment, the mounting plate may be made from grade 250 steel. In some embodiments the mounting plate may be formed from a plurality of materials. For example, one or more components of the mounting plate, namely the body, arms or deformable arm regions, may be formed of a different material to one or more of the other components of the mounting body.
The lug or lugs noted above may help to seat the mounting plate and limit the range of movement of the mounting plate once fitted into the post slot or slots. Limiting rotational movement may be useful to avoid the plate spinning when the fastener is tightened thereby ensuring the fastener draws into the plate. The range of movement limited by the lug or lugs may be rotational and/or vertical plane movement of the mounting plate relative to the post.
The mounting plate deformable region or regions (or arms or lugs as noted above) may be sized so that, once a maximum desired rotational and/or vertical movement tolerance is reached, the region or regions abut an edge of a slot in the post and further rotational and/or vertical movement may be prevented.
The post may be U-shaped and comprise at least one elongated slot on or about the post side or sides and the mounting plate deformable region or regions extend horizontally through the slot or slots. The U-shape post may include at least one flange extending from each end of the U-shape cross-section that the deformable region or regions may bear on. U shaped posts are known. They are useful structurally as, for a given material thickness, they have greater strength than a straight post. U-shaped posts also nest together hence can be stacked to a compact size during storage and transportation. U-shaped posts are also relatively easy to shape. Further, due to the greater strength, this style of post may be easier to drive into the ground and therefore avoid post damage during installation. By way of example, the post elongated slots may be 80-100 mm long and 5-10 mm wide. The slot or slots may start from around 50 mm below the top of the post. The slot or slots may be located at any point along the post sides. These dimensions are provided by way of example only and should not be seen as limiting.
The at least one slot in the post may be sized to have some degree of tolerance so that the mounting plate, when disposed in the post slot or slots, may be able to move relative to the post and fastener. The slot or slots may be sufficiently elongated to allow up to 45 degrees of rotational movement of the mounting plate relative to the post about a horizontal axis. The slot or slots may be sufficiently wide to allow up to 30 degrees of rotational movement of the mounting plate relative to the post about a vertical axis. The slot or slots are sufficiently elongated to allow for up to 100 mm of vertical movement in the mounting plate up or down relative to the post. Allowing some tolerance for the mounting plate to move within the slots may be an advantage as, for example, this allows for wrongly aligned posts—the plate can be re-orientated in the post which makes it easier to align the bolt and longitudinal beam.
The slot or slots in the post may have a relief feature such as an indent cut so that when the post steel is bent, localised stresses about the bend do not cause cracks or weaknesses to develop about the slot's upper or lower faces.
The at least one fastener may be releasable. The at least one fastener passes through at least a portion of the longitudinal beam to link with the mounting plate body. In one embodiment, the at least one fastener passes through at least the central portion of the longitudinal beam to link with the mounting plate body. The at least one fastener may be a bolt with a male thread that threads directly into a complementary female thread on the mounting plate. The at least one fastener may be a bolt with a male thread that threads onto a nut and the mounting plate acts as a washer, the shaft of the bolt passing through a hole in the mounting plate before meeting the nut. In one embodiment, the at least one fastener may be a purlin bolt. In the inventor's experience, purlin bolts are not used in guardrails yet offer a large advantage in that they have a large bearing surface under the head hence are strong under tension loading.
The at least one fastener head may be located on the outwards facing side of the longitudinal beam and has a smooth shape. Outwards refers to the side of the longitudinal beam that a vehicle might impact against. A smooth shape may be preferable as this avoids objects and vehicles snagging or catching on the bolts. Ideally the vehicle slides along the longitudinal beam during an impact in order to help redirect and guide the vehicle to safety.
In a fourth aspect, there is provided a guardrail comprising a post and a longitudinal beam, the post and longitudinal beam being linked via at least one purlin bolt fastener.
The purlin bolt above may indirectly link the longitudinal beam and post together. The indirect linkage may be via a mounting plate, the mounting plate transferring the force of the bolt on the longitudinal beam to the post or posts.
The purlin bolt may have a bolt head at least twice the shaft width to increase the bearing face on the longitudinal beam.
The purlin bolt head may have a generally smooth shape.
The purlin bolt head has a generally smooth shape tapering to a hex head, the hex head having a smaller diameter relative to the bolt shank.
The bolt as used above may be an M16 bolt although it should be appreciated that a range of other bolt sizes may be used and the same or similar outcomes achieved.
The post may have generally upright/vertical position once driven into the ground. Posts in the assembled form may be spaced at varying distances such as 1, or 1.5, or 2, or 2.5, or 3 metre intervals, or as necessary to locate with the mounting location on the beam.
The overall guardrail length may be varied to suit the end application. The guardrail as a whole may have terminating ends. The terminating ends may be of varying design to the wider guardrail configuration.
The longitudinal beam may follow a generally horizontal alignment typically following the road contours and having a constant height above the road commensurate with where a vehicle bumper might impact the longitudinal beam.
The top of each post terminates about or below the top of the longitudinal beam. This avoids any danger from the posts hitting an impacting object—for example a motorcyclist sliding along the longitudinal beam.
To assemble the guardrail, the mounting plate may be inserted into the post slots, optionally by pushing the arm/lug through one side and then inserting the other arm/lug through the other side, and the plate by gravity tends to want to seat at the base of the slot but is free to move upwards in the slot to be positioned as may be desired. The mounting plate can also move rotationally up to a point in the slots either about a vertical or horizontal axis. A fastener is inserted through the longitudinal beam (typically about the mid-section) and the fastener is threaded into a complementary female threaded hole into the body of the mounting plate until the parts are all firmly together. As should be appreciated, installation is relatively simple—drive the post separately, drop in the plate and attach the rail. This simple method avoids damage on installation to the connection point as the mounting plate is fitted after post driving.
No or minimal tension exists on the parts prior to tightening of the bolt when assembling and long bolts can be used to help with linking the parts—this can be particularly useful on bends or radii where the longitudinal beam may tend to want to move away from the post location. Further, damage to the top of a post, as may often occur during installation, does not impact on the performance of the guardrail design described herein. Art guardrails often can become compromised when damage occurs to the top of the post.
As may be appreciated, the above described guardrail may provide a variety of advantages. Some examples include:
The embodiments described above may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features.
Further, where specific integers are mentioned herein which have known equivalents in the art to which the embodiments relate, such known equivalents are deemed to be incorporated herein as of individually set forth.
The above described guardrail is now described by reference to specific examples.
Referring to
A unique aspect of the design shown in
In more detail, the mounting plate 4 shown in
The posts 1 as shown in
The lug or lugs 6 noted above help to seat the mounting plate 4 and limit the range of movement of the mounting plate 4 once fitted into the post 1 slot or slots 10. Movement may be rotational, for example in response to torque force on the fastener 3 urging rotation about a horizontal axis or a sideways turning force on the fastener 3 urging rotation about a vertical axis. Movement may be in a vertical up and down direction as well with the plate travelling through the post elongated slots 10. The degree of movement of the mounting plate 4 may be limited by the size of the elongated slots 10 in the post 1. Some degree of movement of the plate in the post slots 10 has been found to be a significant advantage during installation. This tolerance allows for imperfect post 1 positioning and also simplifies the process of mating a fastener 3 between the W-beam 2 and mounting plate 4 since the mounting plate 4 can be moved to suit the angle of the fastener 3.
As shown in
The fastener 3 head is located on the outwards (front) facing side of the W-beam 2 and has a smooth shape. A smooth shape may be preferable as this avoids objects and vehicles snagging or catching on the bolts.
The bolt used may be a purlin bolt. A purlin bolt may be useful since the bolt head has a greater bearing face on the W-beam 2 hence more strength. The purlin bolt head may have a generally smooth shape tapering to a hex head, the hex head having a smaller diameter relative to the bolt shank. This hex head may help to tighten the bolt.
The bolt shown in
The overall guardrail length may be varied to suit the end application. The guardrail as a whole has terminating ends that can have a varying design to the wider guardrail configuration. Detail on the terminating ends has been removed from the Figures for clarity.
As best seen in
As shown at least in
To assemble the guardrail, the mounting plate 4 is inserted arms or lugs 6 down into the post slots 10 by inserting one arm/lug 6 through one post slot 10 and then inserting the other arm/lug 6 through the other post slot 10. The mounting plate 4, by gravity, then tends to want to seat at the base of the slot 10 but is free to move upwards in the slot 10 to be positioned as may be desired. The mounting plate 4 can also move rotationally up to a point in the slots 10 either about a vertical or horizontal axis or vertically up and down also limited by the slot 10 length. A fastener 3 is inserted through the W-beam 2 (typically about the mid-section) and the fastener 3 is threaded into a complementary female threaded hole in the body 5 of the mounting plate 4 until the parts are all firmly tied together. As the fastener 3 is tightened, the bearing faces of the arms/lugs 6 pull the post 1 and W-beam 2 together.
As should be appreciated, installation is relatively simple—drive the post 1 separately, drop in the plate and attach the rail. This simple method avoids damage on installation to the connection point as the mounting plate 4 is fitted after post 1 driving. No or minimal tension exists on the parts prior to tightening of the bolt when assembling and long bolts can be used to help with linking the parts—this can be particularly useful on bends where the W-beam 2 may tend to want to move away from the post 1 location. Further, damage to the top of a post 1, as may often occur during installation, does not impact on the performance of the guardrail design described herein. Art guardrails often can become compromised when damage occurs to the top of the post 1.
In this example, part interaction in the event of a vehicle impact is shown with reference to
The exact timing of bending or breaking of the deformable region or regions and the way this occurs can be tailored via many factors as noted above. Tailoring (or tuning) of the force needed to cause deformation is in the inventor's experience useful to ensure that all required performance is achieved when impacted with a light vehicle as well as a heavy vehicle.
Referring to
The tension force required for failure of the mounting plate 4 deformable regions 7 can be tuned by altering the thickness of the mounting plate 4 and the dimensions of the deformable regions 7 and the arms 6.
An alternative separation scenario can occur under the same impact conditions discussed in Scenario 1 and illustrated in
In this scenario, the number of threads engaged in the mounting plate 4 may be a function of the thread pitch and plate thickness, both of which can be altered to tune the tension force required for failure.
Referring to
As noted above, the dimensions of the mounting plate deformable regions 7 and arms 6 may be altered to tune the force required for separation.
Referring to
As above, the dimensions of the mounting plate 4 deformable regions 7 and arms 6 may be altered to tune the force required for separation.
As can be seen from the above scenarios, the forces and respective separation of the W-beam 2 and post 1 may occur in a variety of tuneable methods. As should be appreciated, the way that separation occurs can be a combination of the above described methods. Further, the timing at which deformation occurs may be varied by altering the plate thickness and the size of the deformable region or regions 7 to tailor the force needed to bend/break the plate deformable region or regions 7.
In this example, a variety of alternative mounting plate 4 and post 1 shapes are shown.
Referring to
Each design has its own positives and negatives, typically around variation in strength, the ease with which the mounting plate 4 mates with the post 1 and the degree of movement still allowed while in the slot 10 to name a few variables.
The ability of the guardrail shown in
The objective of the studies completed was to evaluate the performance of the above described W-beam guardrail to the requirements of Test Level 4 as detailed in the Manual for Assessing Safety Hardware (MASH) 2009. Recommended tests to evaluate performance are defined for three different test levels. Test Level 4 (TL-4) is conducted at 100 km/h and considered representative of the typical maximum allowable speed on high-speed arterial highways.
Three tests were completed as per the MASH Test Level 4 recommended matrix for longitudinal barriers length of need (LON), namely:
[1] Test 4-10 utilising an 1100 kg car impacting the test article at 100 km/h and an impact angle of 25°;
[2] Test 4-11, utilising a 2270 kg pick-up impacting the test article at 25° while traveling at 100 km/h; and
[3] Test 4-12 using a 10,000 kg single unit truck travelling at 90 km/h and impacting the barrier with an approach angle of 15°.
In all tests, the W-beam guardrail successfully contained and redirected each test vehicle. No debris or detached elements penetrated or showed potential to penetrate the occupant compartment. No fragments were distributed outside of the vehicle trajectory and therefore did not present any undue hazard to other traffic, pedestrians or work zone personnel. The vehicle in each test remained upright during and after the impact. Occupant risk factors satisfied the test criteria and the vehicle exit trajectory remained within acceptable limits.
Images of the impact and vehicle path of travel for Test 4-10 are shown in
Aspects of the guardrail have been described by way of example only and it should be appreciated that modifications and additions may be made thereto without departing from the scope of the claims herein.
Number | Date | Country | Kind |
---|---|---|---|
714289 | Nov 2015 | NZ | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NZ2016/050183 | 11/17/2016 | WO | 00 |