GUIDANCE AND NAVIGATION CONTROL PROTEINS AND METHOD OF MAKING AND USING THEREOF

Information

  • Patent Application
  • 20230002488
  • Publication Number
    20230002488
  • Date Filed
    November 05, 2020
    4 years ago
  • Date Published
    January 05, 2023
    2 years ago
Abstract
The application provides a multi-specific antibody-like protein having a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, a first binding domain (D1) at the N-terminal, a second binding domain (D2) comprising a light chain moiety, a Fc region, a third binding domain (D3), and a fourth binding domain (D4) at the C-terminal, wherein the light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal, a sixth binding domain (D6) covalently attached to the N-terminal, or both, and wherein the D1, D2, D3, D4, D5 and D6 each has a binding specificity against a tumor antigen, an immune signaling antigen, or a combination thereof.
Description
TECHNICAL FIELD

The present application relates to the technical field of multi-specific antibody for immunotherapy and more particularly relates to making and using Guidance and Navigation Control (GNC) antibodies with multiple binding activities against surface molecules of immune cells and tumor cells.


BACKGROUND

Cancer develop by gaining mutations that enable the cancer cells to transform, proliferate, and metastasize while escaping from the immune surveillance and response. Antibody therapy for treating cancer recruits multiple distinct mechanisms. For example, monoclonal antibodies targeting growth receptors (EGFR, HER2, etc.) that are overexpressed on tumor cells can be used to block tumor cell proliferation. Using antibodies to block inhibitory T cell checkpoint signals (anti-PDL1, anti-PD1, anti-CTLA4) is a strategy to prevent tumor cells from weakening the immune response that would otherwise seek to control their growth. Another therapeutic strategy is to inhibit angiogenesis (e.g., anti-VEGF), where the reduced access to oxygen and nutrients slows the growth of tumor cells. Monoclonal antibodies and antibody-drug conjugates (ADCs) are initially effective at controlling tumors. However, cancer resistance to antibody therapy often occurs through escape mechanisms, such as ectodomain shedding, receptor downregulation and receptor mutation (Miller et al. Clin Cancer Res. 2017; Reslan et al. Mabs. 2009; Loganzo et al. Mol Cancer Ther. 2016). For example, resistance to anti-HER2 mAb trastuzumab may occur through ectodomain shedding of HER2 or through occlusion of the trastuzumab epitope on HER2 (Fiszman and Jasnis. International Journal of Breast Cancer, 2011).


Combinational therapies combining multiple therapeutic mechanisms including that of chemotherapy, radiation therapy and antibody therapy have become a mainstream therapeutic strategy. In this context, multi-specific antibodies combine different antibody therapies and mechanisms into a single agent (Boumandi and de Sauvage. Nat Rev Drug Discov. 2020).


SUMMARY

The following summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.


In one aspect, the application provides guidance and navigation control (GNC) proteins that can simultaneously bind effector cells and target cells. The GNC protein may be a monomer or a dimer of the monomer. The GNC protein may be an antibody or an antibody-like protein. The GNC protein may have at least 5 or at least 6 binding domains.


In one embodiment, the application provides multi-specific antibody-like proteins having a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, a first binding domain (D1) at the N-terminal, a second binding domain (D2) comprising a light chain moiety, a Fc region, a third binding domain (D3), and a fourth binding domain (D4) at the C-terminal. The light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal, a sixth binding domain (D6) covalently attached to the N-terminal, or both. The D1, D2, D3, D4, D5 and D6 each has a binding specificity to a tumor antigen, an immune signaling antigen, or a combination thereof.


The tumor antigen may be a tissue antigen, a neoantigen, a tumor-specific antigen (TSA), a tumor-associated antigen (TAA), or a combination there.


The D2 may include CH1. In one embodiment, the light chain moiety in the D2 may include CL. In one embodiment, the light chain moiety may include Cκ/Cλ.


The D2 may include a dimer.


In on embodiment, the D2 may include a Fab region. In one embodiment, the Fab region may have a disulfide bond between VL and VH. In one embodiment, the D2 may include a VL and a VH.


In one embodiment, the D2 may include a receptor. In one embodiment, the receptor may be NKG2D. In one embodiment, the D2 may include NKG2D connected to CH1 and CL. In one embodiment, the D2 may have an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 155 and 116.


The D2 may be connected to the Fc region through a hinge.


The Fc region may include null mutation, which may have the effect to reduce or eliminate effector functions. In one embodiment, the Fc region may be wild-type Fc. In one embodiment, the Fc region may include LALAKA mutations for null Fc. In one embodiment, the LALAKA mutations for null Fc may include L234A/L235A/K322A (Eu numbering) mutations. In one embodiment, the Fc region may include G237A (Eu numbering) mutation. In one embodiment, the Fc region may include N297A (Eu numbering) mutation. In one embodiment, the Fc region may include a glycosylated Fc. In one embodiment, the Fc region may be an aglycosylated Fc to reduce effector function.


In one embodiment, the application may provide a multi-specific antibody-like protein having a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, a first binding domain (D1) at the N-terminal, a second binding domain (D2) comprising a dimer connected to CL and CH1, a Fc region comprising CH2 and CH3, wherein the CH2 is connected to the CH1 through a hinge, a third binding domain (D3), and a fourth binding domain (D4) at the C-terminal. The light chain moiety may have a fifth binding domain (D5) covalently attached to the C-terminal, a sixth binding domain (D6) covalently attached to the N-terminal, or both. The D1, D2, D3, D4, D5 and D6 each may have a binding specificity to a tumor antigen, an immune signaling antigen, or a combination thereof.


The dimer in the D2 may include VL and VH pair connected to CL and CH respectively, in which case the D2 domain may be a Fab region, and the GNC protein may be a multi-specific antibody monomer or a multi-specific antibody.


In one embodiment, the multi-specific antibody-like protein may be either penta-specific or hexa-specific.


In one embodiment, the light chain moiety in the D2 may have a fifth binding domain (D5) covalently attached to the C-terminal, and the multi-specific antibody-like protein is penta-specific. In one embodiment, the light chain moiety may have a sixth binding domain (D6) covalently attached to the N-terminal, and the multi-specific antibody-like protein is penta-specific. In one embodiment, the light chain moiety may have a fifth binding domain (D5) covalently attached to the C-terminal and a sixth binding domain (D6) covalently attached to the N-terminal simultaneously, which makes the multi-specific antibody-like protein to be hexa-specific.


The D1, D2, D3, D4, D5, and D6 may be independently a scFv domain, a receptor, or a ligand.


The scFv domain may have the configuration of VLVH or VHVL from the N terminal to the C terminal. In one embodiment, the scFv domain may include R19S (Kabat) mutation. In one embodiment, the scFv domain may include a disulphide bond between VL and VH. In one embodiment, the disulfide bond may be between vL100 and vH44 (Kabat) of the scFv domain. In one embodiment, the scFv domain may have an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 72-112.


In one embodiment, the D1, D2, D3, D4, D5, and D6 may all be scFv domains.


In one embodiment, the D1, D2, D3, D4, D5 and D6 each may be independently a receptor or a ligand. In one embodiment, at least one, two, three, four, or five of the D1, D2, D3, D4, D5, and D6 may be a receptor or a ligand. In one embodiment, the D1, D2 D3, D4, D5, and D6 may all be receptors or ligands. In one embodiment, the D4, D5 or D6 may be a receptor or a ligand. In one embodiment, the receptor or a ligand may have an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 113-116.


In one embodiment, the D2 has a binding specificity to CD3 or a tumor associated antigen (TAA).


In one embodiment, the D1, D2, D3, D4, D5, and D6 independently has a binding specificity to an antigen selected from a receptor on a T cell, an immune checkpoint receptor, a co-stimulation receptor, a receptor of a lymphocyte or a myeloid cell, a tumor associated antigen (TAA), a tissue antigen, a neoantigen, a tumor-specific antigen (TSA), a glycoprotein, or a combination thereof.


In one embodiment, the binding domain for the receptor on the T cell may be adjacent to the binding domain for the tumor associated antigen (TAA). In one embodiment, the binding domain for the receptor on the T cell is adjacent to the binding domain for the receptor of a lymphocyte or a myeloid cell.


In one embodiment, the receptor on the T cell may be CD3, T cell receptor, or a complex thereof. In one embodiment, the immune checkpoint receptor may be PD-L1, PD-1, TIGIT, TIM-3, LAG-3, CTLA4, BTLA, VISTA, PDL2, CD160, LOX-1, siglec-15, CD47, SIRPα, or a combination thereof. In one embodiment, the co-stimulating receptor may be 4-1BB, CD28, OX40, GITR, CD40, ICOS, CD27, CD30, CD226, or a combination thereof. In one embodiment, the tumor associated antigen (TAA) may be EGFR, HER2, HER3, HER4, EGRFVIII, CD19, claudin 18.2, BCMA, CD20, CD33, CD123, CD22, CD30, ROR1, CEA, cMET, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TACI, TROP2, NKG2D ligands, PD-L1, or a combination thereof.


In one embodiment, the D1, D2, D3, D4, D5 and D6 each independently may have a binding specificity to an antigen selected from EGFR, HER2, HER3, EGFRvIII, ROR1, CD3, CD28, CEA, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, NKG2D ligands, BCMA, CD19, CD20, CD33, CD123, CD22, CD30, PD-L1, PD1, OX40, 4-1BB, GITR, TIGIT, TIM-3, LAG-3, CTLA4, CD40, VISTA, ICOS, BTLA, LIGHT, HVEM, CSF1R, CD73, and CD39, CLDN18.2, CSF1R, and wherein the Fc region comprises a human IgG Fc region.


In one embodiment, the D2 and D5 each independently has a binding specificity to a tumor associated antigen, a neoantigen, or a tumor-specific antigen (TSA).


In one embodiment, the D1 has a binding specificity to CD3, CD20, EGFR, or their derivative thereof. In one embodiment, the D2 has the binding specificity to EGFR, CD3, HER2, MSLN, NKG2D ligands, or their derivative thereof. In one embodiment, the D3 has a binding specificity to PD-L1. In one embodiment, the D4 may include a 4-1BBL trimer or has a binding specificity to 4-1BB or its derivative thereof. In one embodiment, the D5 has a binding specificity to HER3, CD19, NKG2D ligands, or their derivative thereof. In one embodiment, the D6 has a binding specificity to CD19.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 has a binding specificity to EGFR, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D5 has a binding specificity to HER3. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 1-8.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD20, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 9-12.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD20, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D5 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 13-16.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 has a binding specificity to MSLN, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D5 has a binding specificity to NKG2D ligands. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 17-20.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 has a binding specificity to HER2, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D5 has a binding specificity to NKG2D ligands. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 21-24.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 25-28.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 comprises 4-1BB ligand trimer, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 29-32.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 33-36.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 comprises 4-1BB ligand trimer, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 37-40.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 has a binding specificity to EGFR, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 41-44.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 45-48.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 comprises 4-1BB ligand trimer, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 49-52.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 comprises NKG2D, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, D6 has the binding specificity to EGFR. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 117-120.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 comprises NKG2D, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, D6 has the binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 123-126.


In one embodiment, the multi-specific antibody-like protein is penta-specific, and wherein the D1 has a binding specificity to CD3, D2 comprises NKG2D, D3 has a binding specificity to PD-L1, D4 comprises 4-1BB ligand trimer, D6 has the binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 127-130.


In one embodiment, the multi-specific antibody-like protein is hexa-specific, and wherein the D1 has a binding specificity to EGFR, D2 has a binding specificity to CD3, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, D5 has the binding specificity to HER3, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 53-60.


In one embodiment, the multi-specific antibody-like protein is hexa-specific, and wherein the D1 has a binding specificity to CD3, D2 has a binding specificity to EGFR, D3 has a binding specificity to PD-L1, D4 has a binding specificity to 4-1BB, D5 has the binding specificity to HER3, and D6 has a binding specificity to CD19. In one embodiment, the multi-specific antibody-like protein has an amino acid sequence having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of sequence identity to SEQ ID NO. 61-68.


In one embodiment, the D1, D3, D4, D5 or D6 may include a (GxSy)n linker. n may be an integer from 1 to 10. x may be an integer from 1 to 10. y may be an integer from 1 to 10.


In one embodiment, the application may provide a guidance navigation control (GNC) protein that include the multi-specific antibody-like protein as described thereof. In one embodiment, such GNC protein may be a dimer of the multi-specific antibody-like protein as described herein.


In one aspect, the application provides isolated nucleic acid sequences encoding an amino acid sequence of the multi-specific antibody-like protein or its fragments or derivatives as disclosed herein.


In one aspect, the application provides expression vector including the isolated nucleic acid sequence as described herein.


In one aspect, the application provides host cells comprising the isolated nucleic acid sequence as disclosed thereof. In one embodiment, the host cell may be a prokaryotic cell or a eukaryotic cell.


In one aspect, the application provides methods for producing GNC proteins as disclosed herein. In one embodiment, the method for producing a multi-specific antibody or monomer as disclosed herein may include the steps of culturing a host cell comprising an isolated nucleic acid sequence such that the DNA sequence encoding the multi-specific antibody or monomer is expressed, and purifying said multi-specific antibody, wherein the isolated nucleic acid sequence encodes an amino acid of the multi-specific antibody-like protein as disclosed herein.


In one aspect, the application provides immuno-conjugate comprising a cytotoxic agent or an imaging agent linked to the GNC protein such as a multi-specific antibody-like protein or a multi-specific antibody disclosed herein through a linker. The linker may include a covalent bond such as an ester bond, an ether bond, an amid bond, a disulphide bond, an imide bond, a sulfone bond, a phosphate bond, a phosphorus ester bond, a peptide bond, a hydrophobic poly(ethylene glycol) linker, or a combination thereof.


In one embodiment, the cytotoxic agent or the imaging agent may be a chemotherapeutic agent, a growth inhibitory agent, a cytotoxic agent from class of calicheamicin, an antimitotic agent, a toxin, a radioactive isotope, a toxin, a therapeutic agent, or a combination thereof.


In one aspect, the application provides pharmaceutical composition for treating, preventing or controlling conditions such as cancer, autoimmune diseases, or infectious diseases. In one embodiment, the composition may include a pharmaceutically acceptable carrier and a GNC protein such as a multi-specific antibody or a multi-specific antibody-like protein, their immuno-conjugate or their fragment thereof.


In one embodiment, the pharmaceutical composition may further include a therapeutic agent selected from a radioisotope, radionuclide, a toxin, a chemotherapeutic agent or a combination thereof.


In one aspect, the application provides methods for treating, preventing or controlling conditions such as cancer, autoimmune diseases, or an infectious disease. In one embodiment, the method includes the steps of administering a pharmaceutical composition comprising a purified multi-specific antibody, the multi-specific antibody-like protein or its fragments, as disclosed herein.


In one aspect, the application provides methods for treating a human subject with a cancer, an autoimmune disease, or an infection. In one embodiment, the method includes the step of administering to the subject an effective amount of the GNC protein such as the purified multi-specific antibody or the multi-specific antibody-like protein or their fragments as disclosed herein.


In one embodiment, the method may further include the step of co-administering an effective amount of a therapeutic agent, wherein the therapeutic agent comprises an antibody, a chemotherapy agent, an enzyme, an anti-estrogen agent, a receptor tyrosine kinase inhibitor, a kinase inhibitor, a cell cycle inhibitor, a check point inhibitor, a DNA, RNA or protein synthesis inhibitor, a RAS inhibitor, an inhibitor of PD1, PD-L1, CTLA4, 4-1BB, OX40, GITR, ICOS, LIGHT, TIM3, LAG3, TIGIT, CD40, CD27, HVEM, BTLA, VISTA, B7H4, CSF1R, NKG2D, CD73, or a combination thereof.


In one aspect, the application provides a solution comprising an effective concentration of the GNC protein such as the multi-specific antibody or the multi-specific antibody-like protein or their fragments thereof. In one embodiment, the solution may be blood plasma in a human subject.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments arranged in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:



FIG. 1 shows a schematic configuration of antigen binding domains in (A) a penta-GNC antibody and (B) a hexa-GNC antibody: the variable regions (replaceable by a receptor or ligand) of Fab in black (D2); both the constant region of Fab and the Fc region in white; additional scFv antigen binding domains in shaded boxes (each replaceable by a receptor-ligand binding); a heavy chain monomer linking D1 to its N-terminus and D3 and D4 tandemly to its C-terminus through D4; and a light chain moiety monomer linking D5 and/or D6 to its N- and C-terminus;



FIG. 2 shows that the penta-GNC antibody (SI-1P1) exerts maximized T-cell activation in the presence of human pancreatic cancer cells (BxPC3) that express high levels of EGFR and low levels of HER3, with similar potency to that of tetra-GNC antibodies targeting either HER3 (Tetra) or no tumor antigen (Tetra, FITC), as well as the bispecific antibody only targeting tumor antigens (BI);



FIG. 3 shows the high potency of SI-1P1 in TDCC assay by using cancer cell lines expressing high levels of EGFR and low levels of HER3 in (A) human breast cancer cells (MDA-MB-231) and (B) human cervical cancer cells (HeLa), and control antibodies including a comparable tetra-GNC antibody lacking the binding to HER3, a tetra-GNC control antibody lacking the binding to both tumor antigens, and a bispecific antibody targeting tumor antigens only;



FIG. 4 shows the effect of having NKG2D receptor as a binding domain for the GNC antibodies: (A) the potency of SI-49P3 mediated T cell activation using human pancreatic cancer cells (BxPC3); and (B) high potency of SI-49P1 in TDCC assay using human breast cancer cells (MDA-MB-231) that express tumor antigens (MICA and mesothelin) other than EGFR and HER3, and two control antibodies: a tetra-GNC antibody lacking NKG2D and a tri-GNC antibody lacking binding specificities to both PD-L1 and 4-1BB;



FIG. 5 shows that the 4-1BBL-trimer-Fc fusion protein mediates robust activation of 4-1BB signaling as measured by a reporter bioassay using Jurkat cells, when compared to other molecules containing monomeric 4-1BB ligand, monomeric Fc, or an anti-4-1BB scFv;



FIG. 6 shows the Octet binding analysis of penta-GNC antibodies comprising humanized anti-huEGFR domains, indicating that variants of humanized EGFR binding domains (H1, H4, or H7) retain tight binding to human EGFR with little positional effect as either a scFv domain in SI-55P3, SI-79P2, SI55P9, and SI-79P3 or Fab in SI-77P1;



FIG. 7 shows the potency of penta-GNC antibodies in TDCC assay using human pancreatic cancer cells (BxPC3) as targeted cells and the EC50 values: (A) SI-1P1, 0.2814 pM; (B) SI-55P9, 0.4871 pM; and (C) SI-55P10, 0.7358 pM;



FIG. 8 shows the potency of penta-GNC proteins containing NKG2D at position D2 in TDCC assay using human breast cancer cells (MDA-MB-231, with MICA expression) as targeted cells, with the resulting the EC50 values: SI-49P6, 0.7366 pM and SI-49P7, 0.1094 pM;



FIG. 9 shows that a tetra-GNC antibody, SI-35E20, induces RTCC to NucRed-transduced lung cancer cells A549 and suppresses the growth of lung adenocarcinoma cells in the presence of PBMC;



FIG. 10 shows that a tetra-GNC antibody, SI-38E17, induces RTCC to Nuc-GFP Nalm-6 leukemic cells, in the presence and absence of and donor PBMC;



FIG. 11 shows that a tetra-GNC antibody, SI-39E18, induces RTCC to kill NucRed+UMUC3viii cells derived from human bladder cancer, in the presence of donor PBMC versus a vehicle control;



FIG. 12 shows that a tetra-GNC antibody, SI-38E17, is effective in suppressing the growth of human B cell leukemia cells in a human tumor xenograft model by administrating JVM-3 cells and donor PBMC (5×106 and 2×107, respectively) into NCG mice;



FIG. 13 shows that a tetra-GNC antibody, SI-39E18 is effective in suppressing the growth of human bladder cancer cells in a human tumor xenograft model by administrating UM-UC-3-EGFR VIII cells and human PBMC (5×106 and 5×106, respectively) into NCG mice;



FIG. 14 shows the necessity of simultaneously targeting immunomodulatory proteins, such as PD-L1 immune checkpoint and 4-1BB activation as a hexa-GNC antibody (SI-55H11) mediates more complete elimination of human cervical cancer cells (Hela) than a comparable tri-specific antibody did in a TDCC assay; and



FIG. 15 shows that the improved potency of a hexa-GNC antibody (SI-55H11) due to an additional binding to HER3 as compared to that of its parental penta-GNC antibody (SI-55H9) in TDCC assay using human pancreatic cancer cells (BxPC3) that express low levels of HER3.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.


The present application relates to guidance and navigation control (GNC) proteins and methods of making and using thereof. In some embodiments, the GNC proteins may be multi-specific antibody-like proteins. In some embodiments, the GNC proteins may be multi-specific antibodies, in which cases the GNC proteins may also be referred to as GNC antibodies. In some embodiments, the application provides penta-specific antibody-like proteins and hexa-specific antibody-like proteins. In some embodiments, the application provides penta-specific antibodies and hexa-specific antibodies.


The GNC proteins include the proteins linking multiple functionally independent binding moieties into a single entity that is capable of bringing both effector cells and target cells together (see Applicant's application WO/2019/005642, incorporated herein in its entirety). In one embodiment, these multi-specific binding molecules targeting tumor antigens and immune-activating receptors can utilize similar mechanisms of immune effector cell-mediated killing of tumors at a fraction of the cost. Rather than genetically modifying individual patient T cells, such multi-specific binding molecules can be efficiently manufactured large-scale and administered in a more general off-the-shelf manner. Of the GNC proteins, multi-specific antibodies, such as tetra-specific antibodies, have been shown be able to exert desirable multi-facet GNC effects with structurally and functionally diverse but relatively independent binding domains (see Applicant's application WO/2019/191120, incorporated herein in its entirety).


In one embodiment, the GNC protein may include a multi-specific antibody-like protein comprising a heavy chain and a light chain moiety. The antibody's Fab region is composed of one constant and one variable domain from the heavy and the light chain moiety. The heavy chain may further include three additional antigen-specific binding domains attached to the N-terminal, the C-terminal, or both terminals. The light chain moiety may include one or two additional binding domains attached to the N-terminal, C-terminal, or both terminals.


In some embodiments, the GNC antibodies may be penta-GNC antibodies or hexa-GNC antibodies, as shown in FIG. 1. The GNC antibodies may have the ability of directing immune cells (or other effector cells) to tumor cells (or other target cells) through the binding of multiple surface molecules on an immune cell and a tumor cell. The immune cells may be the cells of human immune system, including without limitation, leukocytes, peripheral blood mononuclear cells (PBMC), T cells, and natural killer cells (NK cells). Other target cells may include, without limitations, autoimmune cells (normal B cells), tissue target cells, non-tumor cells, infected cells, inflammatory cells, and damaged cells. In some embodiments, T cells comprises human T cells, including without limitation, naïve T cells, activated T cells, helper T cells, regulatory T cells, memory T cells, and exhausted T cells. In one embodiment, the tumor cells express tumor antigens, including without limitation, tumor-specific antigens (TSA), neoantigens, and tumor-associated antigens (TAA).


In one embodiment, the GNC antibodies may include at least one binding domain capable of binding to one surface molecule on a T cell and at least one binding domain capable of binding to one surface antigen on a tumor cell (Table 1). In some embodiments, the surface molecules on a T cell comprise signaling proteins, including without limitation, CD3, NKG2D, and 4-1BB; the surface molecules on a NK cell comprise signaling proteins, including without limitation, NKG2D and 4-1BB; and the surface antigens on a tumor cell comprise tumor antigens, including without limitation, EGFR, HER2, HER3, MSLN, CD19, and PD-L1. In one embodiment, the tumor cells constitute a tumor or a cancer, including without limitation, a solid tumor, a sarcoma, a hematopoietic malignancy, a lung cancer, a pancreatic cancer, a bladder cancer, a cervical cancer, a breast cancer, a leukemia, and a lymphoma.


The GNC antibodies having at least four additional binding domains in addition to the D2 may require structural stability to maintain independent function of binding specificity and affinity of each binding domain. Each additional binding domain may include a (GxSy)n peptide linker, wherein n is an integer from 1 to 10, x is an integer from 1 to 10, and y is an integer from 1 to 10.


In one embodiment, the binding domain such as D1, D2, D3, D4, D5, or D6 may be a single chain variable fragment (scFv), a receptor, or a ligand (Table 1). A scFv domain may be configured to have a fusion of the variable regions of the heavy (VH) and light chain (VL) in either the VH-VL (HL) or VL-VH (LH) orientation. In one embodiment, the scFv domain may be a stapled structure by introducing a disulfide bond between VH44 and VL100 (Kabat). In one embodiment, the VH region for VH3-containing scFv on any light chain moiety has a R19S mutation (Kabat numbering).


The binding domain may be configured to bind to at least one epitope of an antigen, including without limitation, CD3, 4-1BB, EGFR, HER2, HER3, MSLN, CD19, and PD-L1. The amino acid sequences selected to encode the anti-EGFR binding domain may be humanized sequences. In other embodiments, the amino acid sequences selected to encode the anti-CD19 binding domain are humanized sequences.


In one embodiment, the binding domain may be receptors. In one embodiment, the receptor may be NKG2D. In one embodiment, the D2 may include NKG2D.


The binding domain may be ligands for a receptor such as 4-1BBL (a 4-1BB receptor ligand) and 4-1BBL trimer for 4-1BB, a receptor.


The terms “a”, “an” and “the” as used herein are defined to mean “one or more” and include the plural unless the context is inappropriate.


The term “antibody” is used in the broadest sense and specifically covers single monoclonal antibodies (including agonist and antagonist antibodies), antibody compositions with polyepitopic specificity, as well as antibody fragments, such as Fab, F(ab′)2, and Fv, so long as they exhibit the desired biological activity. In some embodiments, the antibody may be monoclonal, chimeric, single chain, multi-specific, multi-effective, human and humanized antibodies. Examples of active antibody fragments that bind to known antigens include Fab, F(ab′)2, scFv, and Fv fragments, as well as the products of a Fab immunoglobulin expression library and epitope-binding fragments of any of the antibodies and fragments mentioned above. In some embodiments, antibody may include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e. molecules that contain a binding site that immunospecifically bind to an antigen. The immunoglobulin can be of any type (IgG, IgM, IgD, IgE, IgA and IgY) or class (IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclasses of immunoglobulin molecule. In one embodiment, the antibody may be whole antibodies and any antigen-binding fragment derived from the whole antibodies. A typical antibody refers to heterotetrameric protein comprising typically of two heavy (H) chains and two light (L) chains. Each heavy chain is comprised of a heavy chain variable domain (abbreviated as VH) and a heavy chain constant domain. Each light chain moiety is comprised of a light chain moiety variable domain (abbreviated as VL) and a light chain moiety constant domain. The VH and VL regions can be further subdivided into domains of hypervariable complementarity determining regions (CDR), and more conserved regions called framework regions (FR). Each variable domain (either VH or VL) is typically composed of three CDRs and four FRs, arranged in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 from amino-terminus to carboxy-terminus. Within the variable regions of the heavy and light chain there are binding regions that interacts with the antigen.


The term of “monoclonal” antibody as used herein include “monoclonal mono-specific”, “chimeric”, and “multi-specific” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain moiety is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., PNAS USA, 1984). Monoclonal antibodies can be produced using various methods, including without limitation, mouse hybridoma, phage display, recombinant DNA, molecular cloning of antibodies directly from primary B cells, and antibody discovery methods (see Siegel. Transfus. Clin. Biol. 2002; Tiller. New Biotechnol. 2011; Seeber et al. PLOS One. 2014).


The term “multi-specific” antibody as used herein denotes an antibody that has at least two binding sites each having a binding affinity to an epitope of an antigen. The term “bi-specific, tri-specific, tetra-specific, penta-specific, or hexa-specific” antibody as used herein denotes an antibody that has two, three, four, five, or six antigen-binding sites. For example, the antibodies disclosed herein with five binding sites are penta-specific, with six binding sites are hexa-specific.


The term “guidance and navigation control (GNC)” protein refers to a multi-specific protein capable of binding to at least one effector cell (such as immune cell) antigen and at least one target cell (such as tumor cell, immune cell, or microbial cell) antigen. The GNC protein may adopt an antibody-core structure including a Fab region and Fc region with various binding domains attached to the antibody-core, in which case the GNC protein is also termed GNC antibody. The GNC protein may adopt an antibody-like structure, in which case the Fv fragment may be replaced with a non-antibody based binding domain such as NKG2D, 4-1BBL (a 4-1BB receptor ligand), 4-1BBL trimer for 4-1BB, or a receptor.


The term “GNC antibody” refers to a GNC protein had an antibody structure that is capable of binding to at least one effector cell (such as immune cell) and at least one target cell (such as tumor cell, immune cell, or microbial cell) simultaneously. The term “bi-GNC, tri-GNC, tetra-GNC, penta-GNC, or hexa-GNC” antibody as used herein denotes a GNC antibody that has two, three, four, five, or six antigen-binding sites, of which at least one antigen-binding site has the binding affinity to an immune cell and at least one antigen-binding site has the binding affinity to a tumor cell. In one embodiment, the GNC antibodies disclosed herein have five to six binding sites (or binding domain) and are penta-GNC and hexa-GNC antibodies, respectively. In some embodiments, the GNC antibodies include antibody binding domains (such as Fab and scFv) without the requirement for additional protein engineering in the Fc region. In one embodiment, the GNC antibody may include a Fc region that is engineered to eliminate effector cell function such as ADCC, ADCP, CDC. Mutations include, but are not limited to L234A/L235A/G237A/K322A and L234A/L235A/K322A (Eu numbering). In one embodiment, mutation of the Fc glycosylation site, e.g, N297A (Eu), may be used to prevent glycosylation and disrupt Fc effector functions. In one embodiment, the GNC antibody as used herein comprises symmetric antibodies that do not require Fc engineering to drive proper assembly of the full protein. In contrast, many existing bi-specific and multi-specific antibody formats require a heterodimerizing Fc in order to combine different specificities into asymmetric molecules. In one embodiment, the GNC antibodies additionally have the advantage of retaining bivalency for each targeted antigen. Further in one embodiment, the GNC antibodies have the advantage of avidity effects that result in higher affinity for antigens and slower dissociation rates. This bivalency for each antigen is in contrast to many multi-specific platforms that are monovalent for each targeted antigen, and thus often lose the beneficial avidity effects that make antibody binding so strong.


The term “humanized antibody” antibody refers to a type of engineered antibody having its CDRs derived from a non-human donor immunoglobulin, the remaining immunoglobulin-derived parts of the molecule being derived from one (or more) human immunoglobulin(s). In addition, framework support residues may be altered to preserve binding affinity. Methods to obtain “humanized antibodies” are well known to those skilled in the art (see Queen et al., Proc. Natl Acad Sci USA, 1989; Hodgson et al., Bio/Technology, 1991). In one embodiment, the “humanized antibody” may be obtained by genetic engineering approach that enables production of affinity-matured humanlike polyclonal antibodies in large animals such as, for example, rabbits (see U.S. Pat. No. 7,129,084).


The term “antigen” refers to an entity or fragment thereof which can induce an immune response in an organism, particularly an animal, more particularly a mammal including a human. The term includes immunogens and regions thereof responsible for antigenicity or antigenic determinants.


The term “epitope”, also known as “antigenic determinant”, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells, and is the specific piece of the antigen to which an antibody binds.


The term “immunogenic” refers to substances which elicit or enhance the production of antibodies, T-cells, or other reactive immune cells directed against an immunogenic agent and contribute to an immune response in humans or animals. An immune response occurs when an individual produces sufficient antibodies, T-cells, and other reactive immune cells against administered immunogenic compositions of the present application to moderate or alleviate the disorder to be treated.


The term “tumor antigen” as used herein means an antigenic molecule produced in tumor cells. A tumor antigen may trigger an immune response in the host. In one embodiment, the tumor cells express tumor antigens, including without limitation, tumor-specific antigens (TSA), neoantigens, and tumor-associated antigens (TAA).


The term “specific binding to” or “specifically binds to” or “specific for” a particular antigen or an epitope as used herein means the binding that is measurably different from a non-specific interaction. Specific binding can be measured by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. Specific binding can be determined by competition with a control molecule that is similar to the target. Specific binding for a particular antigen or an epitope can be exhibited by an antibody having a KD for an antigen or epitope of at least about 10−4 M, at least about 10−5 M, at least about 10−6 M, at least about 10−7 M, at least about 10−8 M, at least about 10−9, alternatively at least about 10−10 M, at least about 10−11 M, at least about 10−12 M, or greater, where KD refers to a dissociation rate of a particular antibody-antigen interaction. In some embodiments, a multi-specific antibody that specifically binds to an antigen will have a KD that is 20-, 50-, 100-, 500-, 1000-, 5,000-, 10,000- or more times greater for a control molecule relative to the antigen or epitope. Also, specific binding for a particular antigen or an epitope can be exhibited by an antibody having a KA or Ka for an antigen or epitope of at least 20-, 50-, 100-, 500-, 1000-, 5,000-, 10,000- or more times greater for the epitope relative to a control, where KA or Ka refers to an association rate of a particular antibody-antigen interaction.


The term “stapled” means two domains are covalently linked. In one embodiment, the two domains may be covalently linked through at least one disulfide bond. For example, a scFv domain that has at least one disulfide bond linking VH and VL is called a stapled scFv; and a Fab region that has at least one disulfide bond linking the light chain moiety and the heavy chain is called a stapled Fab.


EXAMPLES

While the following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of non-critical parameters that could be changed or modified to yield essentially the same or similar results.


Example 1. Stapled Binding Domains and Stability of Penta- and Hexa-GNC Antibody

In multi-specific GNC antibodies such as tetra-GNC antibodies, the heavy chain may comprise up to three scFv domains plus the Fab region to constitute four binding specificities, whereas the light chain remains unmodified. In penta-GNC antibodies, one scFv domain is added to either N-terminus or C-terminus of the light chain to gain the fifth binding specificity, as shown in FIG. 1 and Table 1. When an scFv domain is attached to each of the N- and C-terminus of the light chain, the antibody gains the fifth and sixth binding specificity and is classified as a hexa-GNC antibody. The modifications to both heavy chain and light chain posed uncertainty to the stability of the antibody. To maintain the stability and independence of all individual binding domains in either a penta- or a hexa-GNC antibody, one option is to introduce, i.e. staple, a disulfide bond at VL100 and VH44 (Kabat) to each Fv fragment and scFv domain. A disulfide bond between VL and VH may be used for all scFv domains to stabilize the overall structure. Alternatively, a disulphide bond may be introduced into at least one selected scFv domain at any position.


A pair of penta-GNC antibodies (SI-1P1 and SI-1P2) (SEQ ID NO. 1-4 and 5-8, respectively) with identical binding specificities were created for analysing the effect of stapled scFv domains. The heavy chain of the two antibodies comprises αCD3 scFv at D1, αEGFR VH at D2 (in the Fv-CH1-Fc configuration), αPD-L1 at D3, and α4-1BB at D4, and the light chain comprises αEGFR VL and αHER3 scFv at D5 according to the naming system in FIG. 1. SI-1P2, but not SI-1P1, comprises “stapled” scFv domains at D1, D3, D4, and D4, namely, αCD3 scFv[VH44 G->C VL100 G->C] at D1, αPD-L1 scFv[VH44 G->C VL100 G->C] at D3, α4-1BB scFv[VH44 G->C VL100 G->C] at D4 on its heavy chain, and αHER3 scFv[VH44 G->C VL100 G->C] on its light chain (Kabat numbering) as listed Table 1.


Both SI-1P1 and SI-1P2 were cloned into vector pTT5 following a modular cloning strategy using restriction sites HindIII/SalI/NheI/BamHI/BspEI/PacI. These penta-GNC antibody constructs were expressed with acceptable titers using both HEK and ExpiCHO expression systems for 5 and 9 days, respectively, and purified with 5 mL MabSelect protein A columns followed by Size Exclusion using a hiload 16/600 200 pg preparative SEC column on either an Akta Avant or Purifier system. SEC aggregates were analyzed using a waters HPLC linked to multi angle light scattering (MALS, Wyatt systems) to identify correct molecular weight by do/dc calculated methods. Dynamic light scattering (Wyatt systems) was used in the further analysis to determine the melting temperature of the produced protein. With all of the analyses conducted as shown in Table 2, the disulfide bonded, i.e. “stapled”, penta-GNC antibodies displayed more stable characteristics.


Antibody-based proteins are most often purified via protein A affinity chromatography, where the protein A resin captures the antibody at a binding site at the CH2-CH3 interface in the Fc domain. However, protein A also binds to the VH domain of VH3 family Fvs. For most antibody-based platforms this is not a problem, since VH domains are generally on the heavy chain. However, when scFvs containing VH3 are attached to the light chain, the VH domain can bind to protein A resin during purification, causing light chain monomers and dimers to contaminate the desired heavy-light chain heterotetramer. Thus, a potential hurdle when producing multi-specific antibodies containing any VH3 domain on the light chain is the presence of additional contaminants in the protein A elution. This is especially problematic when the light chain expresses more efficiently than the heavy chain, causing an abundance of light chain contaminants to be purified along with the desired protein assembly.


In order to rationally disrupt protein A binding of VH3 family members, a structural approach was taken to interrupt the binding interface. Crystal structure 1DEE (Graille M. et al. Proc. Nat. Acad. Sci. 2000.) showed that residue R19 in VH3 (Kabat numbering) is in direct contact with two side chains of protein A domain D. In particular, contact with Q32 and D36 could be eliminated to significantly weaken the interaction. Thus, R19 was mutated to serine, which does not form these interactions due to its shorter side-chain. Additionally, S19 exists naturally in other VH family members, suggesting that it may be less immunogenic than other substitutions.


The mutation R19S (Kabat numbering) was incorporated into the FR1 region of the VH domain for VH3-containing scFvs on the GNC light chain. Specifically, the penta-GNC antibody, SI-77P1 (SEQ ID NO. 41-44), harbored R19S mutation in its light chain sequence encoding the anti-CD19 scFv at domain 6, and the hexa-GNC antibodies, SI-55-H11 (SEQ ID NO. 53-56), SI-55H12 (SEQ ID NO. 57-60), SI-77H4 (SEQ ID NO. 61-64), and SI-77H5 (SEQ ID NO. 65-68) harbored R19S mutation in their light chain sequences encoding the anti-HER3 scFv domain at D5 and the anti-CD19 scFv at domain 6. The residue of interest is at the protein A binding interface (4), and therefore mutation of R to S disrupts the interaction with protein A. Elimination of protein A binding in light chain scFvs prevents light chain monomers and dimers from binding to protein A during purification. As a result, a more homogeneous product without light chain contaminants can be obtained. For hexa-GNC, which may contain up to two VH3 scFvs per light chain, this mutation is especially important in allowing efficient purification of the desired product.


Wild-type IgG1 antibodies contain an active Fc domain which binds to Fc gamma receptors on immune cells, as well as C1q, the first component of the complement cascade. These binding capabilities allow antibodies with active Fc to elicit effector functions including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent dependent cytotoxicity toward antigen-bearing cells. However, in the context of T cell redirection, an active Fc domain can exacerbate cytokine release syndrome and cause off-target cytotoxicity (Strohl & Naso, Antibodies, 2019). Therefore, null Fc domains incorporating silencing mutations that weaken binding to Fc gamma receptors and complement can decrease cytokine release syndrome, and even increase efficacy of T cell redirecting antibodies by increasing infiltration into the tumor (Wang et al., Cancer Immunol. Res. 2019). Many point mutations have been introduced to weaken interaction with Fc gamma receptors or C1q, and to lessen Fc effector functions (Saunders, Frontiers Immunol. 2019). Among these, the L234A, L235A, and G237A mutations have been shown to decrease ADCC and ADCP through decreased binding to Fc gamma receptors. The mutation K322A has been shown to decrease binding to C1q, and therefore ablate CDC. Furthermore, mutation of N297A removes the Fc glycosylation site, generating aglycosylated Fc domain that does not interact as strongly with its receptors.


Fc silencing mutations were incorporated into the GNC platform in order to generate therapeutics with mitigated risk of cytokine storm and improved tumor penetration qualities due to less binding of Fc gamma receptors in the periphery. Example molecules contained different null Fc versions to demonstrate that an array of Fc archetypes could be used in the GNC platform. Thus, mutations used to modulate effector function of monoclonal and multi-specific antibodies can also be efficiently incorporated into the GNC platform.


Example 2. Optimizing Binding Domains

While selecting binding specificities dictates the utility of a multi-specific GNC antibody, optimizing commonly used binding domains may improve the efficacy of the antibody. The penta-GNC and hexa-GNC antibodies (collectively known as GNC antibodies as listed in Table 1) were cloned, expressed, and produced following the similar materials and methods as described for producing SI-1P1 and SI-1P2 antibodies in Example 1.


The anti-CD3 variable domain sequences, 284A10 (Applicant's application No. PCT/US2018/039143, incorporated herein in its entirety), were used as unmodified, stapled (284A10 stapled, SEQ ID NO. 89-92), humanized (284A10 H1, SEQ ID NO. 93-96), or humanized and stapled (284A10 H1 stapled, SEQ ID NO. 97-100) sequences to encode either a scFv (in either VH-VL or VL-VH orientation) or a Fab of the heavy chain monomer. The other anti-CD3 variable domain sequences, 283E3, were identified, cloned, and humanized as 283E3 H1 (SEQ ID NO. 101-104), which were used to encode the Fab region at D2 of the heavy chain monomer for each of seven penta-GNC antibodies as indicated in Table 1.


The anti-PD-L1 variable domain sequences, PL221G5 (Applicant's application No. PCT/US2018/039144, incorporated herein in its entirety), were humanized and used to encode either a “unstapled” or a “stapled” (SEQ ID NO. 105-108) scFv domain at D3 of the heavy chain monomer.


The anti-4-1BB variable domain sequences, 466F6 (Applicant's application No. PCT/US2018/039155 incorporated herein in its entirety), were humanized and used to encode either a “unstapled” or a “stapled” (SEQ ID NO. 109-112) scFv domain at D4 of the heavy chain monomer.


Example 3. Octet Analysis of Binding Affinity

To assess the functionality of the GNC antibodies, the binding affinity of each individual domain of penta-GNC antibodies was carried out by Biolayer Interferometry (Octet 384 system). The penta-GNC antibodies were captures onto the probe using anti-human Fc (AHC tips), and individual epitopes (CD3ε/δ and EGFR were produced, 4-1BB and PD-L1 (Acro Biosystems) were used as analyte to determine the disassociation constant (KD) by kinetic methods (Koff/Kon). As shown in Table 3, all of the binding constants of the individual domains in either SI-1P1 or SI-1P2 were within the reported ranges and the previously determined individual affinities of either monoclonal antibodies or scFv molecules alone.


Octet analysis was used to ensure that GNC antibodies retain their binding to all of their cognate antigens. GNC antibodies were loaded onto AHC sensors for 180 seconds at 10 ug/ml, followed by a 60-second baseline step, a 180-second association step with 100 nM of commercially purchased human antigen, and a 360-second dissociation step. Samples for all steps were in Octet buffer (PBS containing 0.1% Tween 20 and 1% BSA). Fits were performed using a 1:1 binding model to extract affinity KD values, reported in Table 4. The data implies that each binding domain retains its binding affinity when placed at different positions of the GNC antibodies.


Example 4. T-Cell Activation

To validate the functionality of the GNC antibodies, penta-GNC antibodies were assessed for T cell activation. The T cell activation assay was performed to compare the potency of SI-1P1, which binds to both EGFR and HER3, with that of an EGFR-tetra-GNC antibody (which binds to EGFR but not HER3), a FITC-tetra-specific antibody (which does not bind to either EGFR or HER3), and a bispecific antibody (which only binds to EGFR and HER3). Human pancreatic cancer cells (BxPC3) were used as target cells, which express high levels of EGFR and low levels of HER3 (Table 5). BxPC3 cells were plated in quadruplicate using a BioTek EL406 in 384 well plates at a density of 1500 cells/well after lifting with disassociation reagent (TrypLE Express) and allowed to adhere for 24 hours. Following this, Jurkat CD3 NFAT Effector cells were added at a cellular ratio of 5:1 (Jurkat Lucia Cells, Invivogen) and the GNC antibody was added in a 10-point 10-fold serial dilution from 50 nM to 0.5 fM and incubated for 4 Hours. Readout was performed by the addition of Promega Bright-Glo reagent and luminescence was measured on a Clariostar Plus microplate reader (BMG-Labtech). Data was plotted in log scale with Graphpad prism and fit to a nonlinear variable slope equation (FIG. 2). The data indicates that the penta-GNC antibody (SI-1P1) exerts similar potency (SI-1P1=1.456 pM, EGFR-tetra-GNC=1.028 pM, FITC-tetra-GNC=13.41 pM) and higher maximum T-cell activation (SI-1P1=6464, EGFR-tetra-GNC=5161, FITC-tetra-GNC=2835) as compared to control antibodies (EGFR-tetra-GNC antibody, FITC-tetra-GNC antibody, and a control bispecific antibody (Table 6).


Example 5. T-Cell Dependent Cellular Cytotoxicity (TDCC)

TDCC is a standard feature of antibody therapy for treating cancer other diseases. To assess the TDCC mediated by the GNC antibodies, SI-1P1 (a penta-GNC antibody capable of binding to tumor antigens EGFR and HER3) was used to compare with control antibodies, including a EGFR-tetra-GNC antibody that only binds to EGFR, a FITC-tetra-specific antibody that does not bind either EGFR or HER3, and a control bispecific antibody that only binds to tumor antigens EGFR and HER3 (Table 6). Serial dilutions (0 to 30 nM; 1 to 5 dilution factor) of antibodies were added to a white 384-well plate containing luciferized MDA-MB-231 or HeLa cells (both have high EGFR and low HER3, see Table 5 and plated 24 hours prior and grown at 37° C.) and activated T cells (plated immediately before drug; effector:target=5:1) in a total volume of 50 ul. After an additional 72 hours, 20 ul of Bright-Glo (Promega) was added to wells, and luminescence corresponding to viability of luciferized tumor cells was determined using a CLARIOstar plate reader. Data were fit to a sigmoidal function to calculate EC50 values (FIG. 3). For MDA-MB-231 cells as shown in FIG. 3A, the EC50 was 0.01575 pM (SI-1P1), 0.01646 pM (an EGFR-tetra-GNC control antibody), and 1.882 pM (FITC-tetra-specific control antibody), and for HeLa cells as shown in FIG. 3B, the EC50 was 1.161 pM (SI-1P1), 1.635 pM (EGFR-tetra-GNC control antibody), 3736200 pM (FITC-tetra-specific antibody), and 4500 pM (bispecific control antibody). The data demonstrate that, with an increased number of binding specificities, the penta-GNC antibody exerts higher TDCC potency as compared to control antibodies with fewer binding specificities.


Example 6. NKG2D Receptor as a Binding Domain

An increase number of binding specificities allows the GNC antibodies to bind not only T cells but also subsets of T cells, natural killer cells, and other types of immune cells. On the hand, an added binding specificity may replace the cellular response to or recognition of targeted cells. For example, NKG2D is a major recognition receptor for the detection and elimination of transformed and infected cells as its ligands are induced during cellular stress, either as a result of viral infection or genomic stress such as in cancer. In humans, NKG2D is expressed by NK cells, γδ T cells, and CD8+ αβ T cells. In NK cells, NKG2D serves as an activating receptor, which itself is able to trigger cytotoxicity, whereas on CD8+ T cells the function of NKG2D is to send co-stimulatory signals to activate them. The addition of NKG2D as a binding specificity for the GNC antibodies may improve the cytotoxicity and efficacy of the antibody as a single multi-functional therapeutic agent. In this context, penta-GNC antibodies, SI-49P1 and SI-49P3 (SEQ ID NO. 17-20 and SEQ ID NO. 21-24, respectively), were created by adding NKG2D receptor as a binding domain at D5 (Table 1). The affinity of NKG2D of SI-49P3 (Table 4) for human MICA was founded to be within the expected range, indicating that NKG2D can act as a receptor for the penta-GNC antibody to bind its ligand.


Both SI-49P3 and SI-49P1 are capable of recognizing one tumor antigen via the Fab region while extending multiple binding specificities to CD3, PD-L1, 4-1BB, and NKG2D. To demonstrate that SI-49P3 retains its ability in T cell activation, BxPC3 target cells were plated in quadruplicate using a BioTek EL406 in 384 well plates at a density of 1500 cells/well after lifting with disassociation reagent (TrypLE Express) and allowed to adhere for 24 hours. Following this, Jurkat CD3 NFAT Effector cells were added at a cellular ratio of 5:1 (Jurkat Lucia Cells, Invivogen) and GNC reagent was added in a 10-point 10-fold serial dilution from 50 nM to 0.5 fM and incubated for 4 Hours. Readout was performed by the addition of Promega Bright-Glo reagent and luminescence was measured on a Clariostar Plus microplate reader (BMG-Labtech). Data was plotted in log scale with Graphpad prism and fit to a nonlinear variable slope equation as shown in FIG. 4A. The data demonstrate that the addition of NKG2D receptor does not affect T cell activation and the penta-GNC antibody is capable of eliciting potent T cell activation (EC50=88.1 pM) while simultaneous engaging T cell antigens and targeting tumor cells.


To assess TDCC of the NKG2D class of penta-GNC antibodies, SI-49P1 was used. The control antibodies included a tri-GNC antibody lacking the binding specificities to both PD-L1 and 4-1BB, and a tetra-GNC antibody lacking NKG2D receptor. Serial dilutions (0 to 30 nM; 1 to 5 dilution factor) of GNC protein were added to a white 384-well plate containing luciferized MDA-MB-231 cells (MICA and mesothelin expression; plated 24 hours prior and grown at 37° C.) and activated T cells (plated immediately before drug; effector:target=5:1) in a total volume of 50 ul. After an additional 72 hours, 20 ul of Bright-Glo (Promega) was added to wells, and luminescence corresponding to viability of luciferized tumor cells was determined using a CLARIOstar plate reader. Data were fit to a sigmoidal function to calculate EC50 values of 0.1865 pM (SI-49P1), 0.3433 pM (tri-GNC control antibody), and 5.356 pM (tetra-GNC control antibody) (FIG. 4B). The data indicates that the addition of NKG2D receptor to the tetra-GNC antibody improves the potency of TDCC, and that the addition of both αPD-L1 and α4-1BB domains to a tri-GNC antibody with its binding specificity to NKG2D significantly improves the potency of TDCC. In other words, the GNC antibodies can accommodate multiple binding specificities to modulate, cooperate, and direct an optimized immune response to targeted cells, such as cancer.


Example 7: NKG2D Receptor at D2 of the Antibody-Like GNC Protein

To test the utility of antibody-like GNC proteins with natural receptors at position D2, the sequence for human NKG2D (residues F78 through V216) was cloned in place of VH and VL domains at position D2 in the context of expression plasmids encoding SI-49P10 (αCD3×NKG2D×αPD-L1×α4-1BB×αEGFR, SEQ ID NO. 117-200). SI-49P10 was expressed following the materials and methods above, and had exceptionally low aggregation (95.64% peak of interest by analytical SEC) after protein A purification, indicating that the antibody-like GNC proteins containing a non-antibody binding moiety, such as NKG2D receptor, in the D2 position of the heavy chain have the potential to be highly stable. Penta GNC proteins SI-49P6 (αCD3×NKG2D×αPD-L1×α4-1BB×αCD19, SEQ ID 123-126) and SI-49P7 (αCD3×NKG2D×αPD-L1×41BBL trimer×αCD19, SEQ ID 127-130) were similarly cloned, expressed, and purified.


To ensure that the NKG2D dimer retained full functionality, Octet binding to human MICA was assessed. SI-49P10 was loaded onto AHC tips and bound to His-tagged MICA. The extracted KD values confirmed that NKG2D retains binding activity when present in the D2 position (Table 4). SI-49P10 had a KD value of 1.84 nM. As a comparison, SI-49P3 (NKG2D dimer in D5) had a similar KD value of 1.39 nM. The other domains of SI-49P10 also retained high binding affinity to their cognate antigens (Table 4). Similarly, binding of SI-49P6 and SI-49P7 for MICA was determined by loading biotinylated human MICA onto SA tips and observing binding to serial dilution of GNC proteins (0 to 100 nM) as analytes. The KD resulting KD values were 7.763 nM (SI-49P6) and 10.67 nM (SI-49P7), again confirming the retention of target binding by receptor proteins in the D2 position (Table 4). These KD values with antigen as the loaded ligand were slightly lower affinity compared to the experiment in which GNC protein was loaded, possibly due to inactive conformation or incompletely exposed epitope of the MICA protein when it is loaded as ligand. Nevertheless, the potent femtomolar (<1 pM) TDCC elicited by these proteins with NKG2D in D2 position toward MICA-bearing MDA-MB-231 cells (FIG. 8), suggests that the NKG2D receptor retains active binding in the D2 position. Thus, the GNC platform is highly adaptable with regard to where each domain is placed.


Example 8. 4-1BB Ligand as a Binding Domain

4-1BB is a co-stimulatory immune checkpoint TNFR receptor expressed by activated T cells and NK cells. Its activation by 4-1BB ligand or by an agonist antibody on CD8+ T cells results in increased proliferation, cytokine production, and survival. To optimize the 4-1BB mediated immune response, 4-1BB activation reporter bioassay was performed to assess the functionality of different domains. The 4-1BB activation assay is based on the methods followed by Promega 4-1BB Bioassay kit (SKU: JA2351). The assay consists of a genetically engineered Jurkat T cell line that expresses human 4-1BB and a luciferase reporter driven by a response element that can respond to 4-1BB ligand/agonist antibody stimulation, called 4-1BB Effector Cells. 4-1BB effector cells are cultured in RPMI-1640 with 10% FBS. Before the assay, the cells are counted and re-plated into 384 well (Corning 3570) at 500 cell/well. Test article experiments are conducted in quadruplicate as the 96 well dilution block is stamped into 384 well quadrants robotically (Opentrons OT-2 liquid handling robot). The 4-1BB assay plate was incubated for 6 hours. Readout of the 4-1BB activation curve was accomplished by the use of the Promega Bright-Glo luciferase assay kit. Briefly, 20 uL were added to the 4-1BB assay plate and incubated for ˜15 min before measuring the resultant luminescence on a BMG Clariostar plate reader. Activation curves were analyzed and plotted in GraphPad Software by 4PL curve (FIG. 5). The results show that the 4-1BB ligand trimer (4-1BBL trimer, SEQ ID NO. 113-114) elicits robust activation of 4-1BB signaling when compared to monomeric 4-1BB ligand, monomeric Fc, and an anti-4-1BB scFv. The penta-GNC antibodies, SI-55P4, SI-55P10, and SI-79P3 (SEQ ID NO. 29-32; 37-40; 49-52, respectively) were created to have 4-1BBL trimer as a binding domain all at D4 (see Table 1, and FIG. 7 below).


Biological activity of the GNC proteins with NKG2D in D2 position was determined using TDCC assay with MICA-bearing MDA-MB-231 target cells (FIG. 8). The ratio of target to effector cells was 1:5 and the assay was conducted for 72 hours after adding drug dilutions and T cells to the tumor cells. The resulting EC50 values were quite potent (SI-49P6, 0.7366 pM and SI-49P7, 0.1094), confirming the ability of NKG2D to target T cells to kill tumor cells. Thus, placing the receptor NKG2D as binding domains in the GNC D2 position results in stable GNC proteins that elicit potent TDCC.


Example 9. Humanized EGFR Binding Domain

Cetuximab is a chimeric mouse/human monoclonal antibody for treating EGFR-expressing metastatic colorectal cancer, non-small cell lung cancer, and head and neck cancer. Humanized antibody is obtained. In this example, humanized sequences encoding anti-EGFR binding (H1, H4, H7, and H7-stapled) (SEQ ID NO. 69-72; 73-76; 77-80, and 81-84, respectively), were cloned into an expression cassette for producing anti-EGFR (D2) penta-GNC antibody (51-77P1) and anti-EGFR (D1) penta-GNC antibodies (SI-55P3, SI-55P4, SI-79P2, SI-79P3, and SI-55P9)(SEQ ID NO. 25-28; 29-32; 45-48; 49-52; 33-36, respectively) as listed in Table 7. Each expression cassette was transfected into 25 mL of ExpiCHO and expressed for 8 days followed by protein-A affinity chromatography for harvesting and purifying each penta-GNC antibody. The antibodies were produced with good titer (Table 7). Analytical SEC data after protein-A purification demonstrates that the penta-GNC antibody containing a humanized anti-EGFR domain can be expressed with low aggregation (Table 7). Octet was used to verify that the penta-GNC antibodies containing humanized anti-EGFR domains, H1, H4, or H7, can bind to human EGFR, respectively (FIG. 6 and Table 7). Each penta-GNC antibody was loaded via AHC sensors at 10 μg/ml and bound to a serial dilution (highest 200 nM, 1:2.5 dilutions) or a single 100-nM concentration of His-tagged human EGFR. The resulting global fit to a 1:1 binding model demonstrated that the penta-GNC antibodies bind to EGFR with affinities in the low nanomolar range (Table 7).


To produce hexa-GNC antibodies, the humanized anti-EGFR domain, H7 (SEQ ID NO. 77-80), was cloned into an expression cassette for producing anti-EGFR hexa-GNC antibodies. The humanized binding domain was placed at either Fab or as scFv at D1 in hexa-GNC antibodies, SI-77H4 (SEQ ID NO. 61-64) and SI-55H11 (SEQ ID NO. 53-56), respectively. The control antibody, SI-77H5 (SEQ ID NO. 65-68), comprises the anti-EGFR binding Fab region encoded by the Cetuximab mouse sequences. The expression cassette was transfected into 25 mL of ExpiCHO and expressed for 8 days followed by protein A affinity chromatography for harvesting and purifying each hexa-GNC antibody. The hexa-GNC antibodies were produced with good titer (Table 8). Analytical SEC data after protein A purification demonstrates that each hexa-GNC antibody containing a humanized anti-EGFR domain can be expressed with low aggregation (Table 8). Octet was used to verify that each of these hexa-GNC antibodies containing a humanized anti-EGFR domain can bind to human EGFR (Table 4 and 8). The hexa-GNC antibodies were loaded via AHC sensors at 10 μg/ml and bound to a serial dilution (highest 200 nM, 1:2.5 dilutions) or a single 100-nM concentration of His-tagged human EGFR. The resulting global fit to a 1:1 binding model demonstrated that the affinity of each hexa-GNC antibody binding to EGFR was in the low nanomolar range (Table 8).


Example 10. Humanized CD19 Binding Domain

CD19 is a biomarker for B lymphocyte development and lymphoma diagnosis. CD19-targeted therapies based on T cells that express CD19-specific chimeric antigen receptors (CAR-T) have been utilized for their antitumor abilities in patients with CD19+ lymphoma and leukemia, such as non-Hodgkin's lymphoma, chronic lymphocytic leukemia, and acute lymphocytic leukemia. In this context, a humanized CD19 binding domain is desirable.


All computational steps were performed in the Discovery Studio package (Dassault Systemes). First a structural model was generated using the mouse BU12 sequence. Antibody framework regions in the input sequence were identified and aligned to a database of antibody variable domains using Hidden Markov Models (HMM), and this alignment was used to build and score models using the MODELLER software. CDR loop modelling was performed by a structural mapping of the CDRL1 CDRL2 CDRL3 CDRH1 and CDRH2 regions to known canonical classes and loop models were built similarly to the framework. The framework regions from the mouse BU12 antibody were aligned and matched to the closest human germline sequence and CDRs regions were copied into the human sequence with the exception of important structural residues (Vernier residues [Almagro and Fransson, 2008]). Mutations predicted to stabilize the previously build structural model were evaluated computationally by 1000 steps of Steepest Descent with a RMS gradient tolerance of 3, followed by Conjugate Gradient minimization and stabilizing mutations matching frequent human residues were chosen on the basis of individual and combined −ΔΔG versus the initial model. The resulting final sequences were tested for humanness using the Abysis webserver based on the method of Abhinandan and Martin (2007).


To equip penta- or hexa-GNC antibodies with the binding specificity to CD19 for targeting B cell malignancies, the sequences encoding anti-CD19 VL and VH domains were selected from SEQ ID NO. 87, 88, 121, 122, 131, 132 carrying modified VL; and SEQ ID NO. 85, 86, 87, 88 also carrying modified VL along with VH containing R19S mutation (Table 1, also see Example 1 for R19S mutation) and connected with a (G4S)x4 linker to form the anti-CD19 scFv domain. The corresponding gene sequence was cloned into different positions of penta- or hexa-GNC antibodies using restriction digest into the pTT5 expression plasmid for the appropriate heavy or light chain moiety. The anti-CD19 penta-GNC and hexa-GNA antibodies as listed in Table 1 were produced and characterized as described above. Octet analysis of CD19 binding affinity indicated that each GNC antibody retains CD19 binding affinity in an expected range. when placed on the light chain moiety monomer of the GNC antibodies (Table 4).


Example 11. Penta-GNC Antibodies with Optimized Binding Domains

With the optimized specific binding for EGFR, CD19, and 4-1BB receptor, the penta-GNC antibodies were assessed in TDCC assay. SI-55P9 and SI-55P10 (SEQ ID NO. 33-36 and 37-40, respectively) are a pair of penta-GNC antibodies with identical binding specificities, except SI-55P9 has a humanized anti-EGFR binding domain and SI-55P10 uses 4-1BBL trimer, as to anti-4-1BB binding domain in SI-55P9, to activate 4-1BB signaling. To assess the effect of these differences in TDCC assay, serial dilutions (0 to 30 nM; 1 to 5 dilution factor) of Penta GNC protein SI-1P1, SI-55P9, and SI-55P10 were added to a white 384-well plate containing luciferized BxPC3 (high EGFR expression) cells (plated 24 hours prior and grown at 37° C.) and activated T cells (plated immediately before drug; effector:target=5:1 for SI-1P1 and 7:1 for SI-55P9 and SI-55P10) in a total volume of 50 ul. After an additional 72 hours, 20 ul of Bright-Glo (Promega) was added to wells, and luminescence corresponding to viability of luciferized tumor cells was determined using a CLARIOstar plate reader. As shown in FIG. 7, the potency of SI-55P9 and SI-55P10 were similar to each other, when compared to that of SI-1P1. Data were fit to a sigmoidal function to calculate EC50 values of 0.2814 pM (SI-1P1), 0.4871 pM (SI-55P9), and 0.7358 pM (SI-55P10), all in the picomolar ranger. The finding implies that the composition of binding specificities dictates the potency of penta-GNC antibodies in the TDCC assay and that other in vitro and in vivo analyses may be used to better evaluate the optimization of each binding domain.


Example 12. Redirected T Cell Cytotoxicity

Any antibody-based binding domain may be converted to Fab or scFv format and plugged directly into a GNC antibody. For example, the GNC antibodies are characterized by adding the fifth and/or sixth binding domains to the light chain moiety. If the binding specificities on the heavy chain can be dedicated to frequently used targets, such as CD3, PD-L1, and 4-1BB, the utilities of GNC platform may become flexible in terms of selecting targeted tumor antigens and paring the less flexible heavy chain with a desirable light chain moiety. In this context, three tetra-GNC antibodies were selected (from Applicant's application No. PCT/US2019/024105, incorporated herein in its entirety) and evaluated using the in vitro redirected T cell cytotoxicity (RTCC) assay and in vivo human tumor xenograft models.


SI-35E20 is a tetra-GNC antibody capable of binding to 4-1BB (D1), PD-L1 (D2), ROR1 (D3), and CD3 (D4) (Table 1). The ability of SI-35E20 to induce RTCC was determined using live cell imaging of cultures containing PBMC (single donor) and red fluorescence-labeled tumor cells over a 4-day period. PBMC (50,000 cells/mL) were used against NucRed-transduced A549 lung adenocarcinoma cells at a ratio of 4:1 for PBMC and A549. The assay wells were set up in triplicate with 1 nM of SI-35E20 or no GNC (buffer alone) as negative control, and proliferation of target cells was monitored over time for 94 hours. The data shows that SI-35E20 is capable of suppressing the growth of targeted cancer cells over time (FIG. 9).


SI-38E17 is a tetra-GNC antibody capable of binding to CD3 (D1), CD19 (D2), PD-L1 (D3), and 4-1BB (D4) (Table 1). To evaluate the effect of SI-38E17-mediated RTCC on cancer cells, Nalm-6 Nuc-GFP (a human leukemic cell line) was used as target cells and PBMC from one donor was used as effector cells. RTCC assay was conducted at E:T ratio=1. At 100 pM, the SI-38E17-mediated RTCC was traced by IncuCyte to detect the proliferation of target cells for 48 hours. SI-38E17 mediated strong RTCC functional activity against Nalm-6 (FIG. 10). The data supports the notion that the tetra-GNC antibody, such as SI-38E17, is capable of suppressing the growth of targeted cancer cells over time.


SI-39E18 is a tetra-GNC antibody capable of binding to CD3, EGFRvIII, PD-L1, and 4-1BB. The RTCC assay confirms that SI-39E18 elicits more cell killing than vehicle control as shown in FIG. 11, where the measurement of red fluorescence intensity over time averaged for the three different PBMC donors. In the presence of both SI-39E18 or buffer control, target cells increased in number as measured by fluorescence intensity for the first 24 hours of culture, where the effector cells were preincubated for 3 days with SI-39E18 or control prior to target cell addition. Between 24-48 hours after addition of targets to the culture, the number of target cells began to decline in the presence of SI-39E18 stimulation, but not in the wells containing the buffer control. The more modest loss of target cells in the buffer control sample in both conditions after 48 hours was most likely attributable to depletion of nutrients or an allogeneic T cell response toward the MHC mismatched target cells. The data supports the notion that the tetra-GNC antibody, such as SI-39E18, can prevent the growth of targeted cells over time.


Example 13. Human Tumor Xenograft Models

SI-38E17 was tested in a mouse xenograft model to examine its ability to slow tumor growth in vivo (FIG. 12). Human B-cell leukemia cells (JVM-3) were subcutaneously transplanted on the right flank of NCG mice at 5×106 per mice, and donor PBMC was injected intraperitoneally at 2×107 per mouse when tumor volume reached 50-80 mm3. Each group consisted of 5 animals, which were dosed intravenously at the labeled dose once per day. Tumor volume after SI-38E17 administration is shown in the figure. At day 16, vehicle group tumor volume was 1298 mm3. All three doses of SI-38E17 had a significant tumor inhibition effect, with intermediate dose 0.005 mg (drug:TCR=12.5:1) having the best tumor inhibition (TGI=84%). Note that while all mice in the vehicle control group had died by day 22, tumor had been eliminated in 1 mouse (low dose), 3 mice (intermediate dose), and 1 mouse (high dose) by day 40. Thus, the tetra-GNC antibody, such as SI-38E17, shows strong tumor inhibition in vivo at multiple doses.


SI-39E18 was tested in a mouse xenograft model to examine its ability to slow tumor growth in vivo (FIG. 13). NCG mice were subcutaneously inoculated with 5×106 human bladder cancer-derived UM-UC-3-EGFR VIII cells on the right flank. When the tumor grew to an average volume of 50-80 mm3, 5×106 per mouse (100 ul) of human PBMC was injected in the abdominal cavity and different doses of SI-39E18 were given intravenously. Each group consisted of 5 animals, which were dosed intravenously at the labeled dose once per day for 18 total doses. The first day of dosing is defined as D1. The tumor growth after SI-39E18 administration is shown in the figure, which demonstrates that SI-39E18 elicits strong inhibition of tumor growth across multiple doses. As of the day of discontinuation (D18), the tumor volume of all dose groups (low dose group 0.001 mg, medium dose group 0.01 mg, and high dose group 0.1 mg) was 0 for three consecutive days, while that of the vehicle had increased significantly in size. Thus, the tetra-GNC antibody, such as SI-39E18, shows strong biological activity in vivo at multiple doses.


Example 14. Exerting More Complete Cytotoxicity

Hexa-GNC antibodies were created to explore multi-functionality as a single antibody therapeutics. SI-55H11 (SEQ ID NO. 53-56) is a hexa-GNC antibody having its binding specificities to CD3 (D1), EGFR (D2), PD-L1 (D3), 4-1BB (D4) on the heavy chain monomer, and HER3 (D5) and CD19 (D6) on its light chain moiety monomer (Table 1). The TDCC assay was used to determine the effect of the presence and absence of targeting PD-L1 and 4-1BB on T cell-mediated killing of tumor cells by comparing with a tri-specific antibody targeting CD3 (D1) on T cells and both EGFR (D2) and HER3 (D5) on tumor cells (Table 4). Serial dilutions (0 to 30 nM; 1 to 5 dilution factor) of Tri or Hexa GNC were added to a white 384-well plate containing luciferized BxPC3 (high EGFR expression) cells (plated 24 hours prior and grown at 37° C.) and activated T cells (plated immediately before drug; effector:target=5:1) in a total volume of 50 ul. After an additional 72 hours, 20 ul of Bright-Glo (Promega) was added to wells, and luminescence corresponding to viability of luciferized tumor cells was determined using a CLARIOstar plate reader. Data were fit to a sigmoidal function to calculate EC50 values and maximum killing (FIG. 14). The data shows that the hexa-GNC antibody exerts more complete killing than the tri-specific antibody (bottom plateau=46.92% viability; SI-55H11 bottom plateau=2.992% viability). The data implies that together with CD3 for T cell activation, simultaneously targeting immunomodulatory proteins, such as PD-L1 immune checkpoint and 4-1BB activation, is an effective combinational strategy for directing GNC response of immune system towards targeted cells and leading to more complete tumor depletion.


Example 15. Targeting Multiple Tumor Antigens

While the attempt to fix the immune targets on the heavy chain may be carried out as shown by Example 12 and 13, the binding domains on the light chain moiety may be dedicated to tumor-specific antigens (TSA), tumor-associated antigens (TAA), as well as neoantigens. In this context, several hexa-GNC antibodies were created and subjected to TDCC assay. The GNC antibodies were assessed to determine if additional tumor-targeting specificity can increase T cell-mediated killing of tumor cells (FIG. 15). Herein, SI-55P9 (SEQ ID NO. 33-36), a penta-GNC antibody capable of binding to EGFR, CD3, PD-L1, and 4-1BB via its heavy chain monomer, and CD19 via light chain moiety monomer, was compared to SI-55H11 (SEQ ID NO. 53-56), a hexa-GNC antibody with the same binding specificities plus the sixth specificity to HER3 via the light chain moiety monomer. Serial dilutions (0 to 30 nM; 1 to 5 dilution factor) of each GNC antibody were added to a white 384-well plate containing 500 luciferized BxPC3 (high EGFR; low HER3) cells (plated 24 hours prior and grown at 37° C.) and 2500 activated T cells (plated immediately before drug; effector:target=5:1) in a total volume of 50 ul. After an additional 72 hours, 20 ul of Bright-Glo (Promega) was added to wells, and luminescence corresponding to viability of luciferized tumor cells was determined using a CLARIOstar plate reader. Data were fit to a sigmoidal function to calculate EC50 values. The data shows that the hexa-GNC antibody displays higher potency in TDCC assay (SI-55P9 EC50=0.5727 pM; SI-55H11 EC50=0.09387 pM) when compared to the parental penta-GNC antibody lacking one of the tumor-targeting domains. Thus, an additional anti-tumor antigen binding domain can increase biological function of the GNC antibodies even against cells that express low levels of the TAA (in this case, HER3).


The above specification and examples provide a complete description of the structure and use of exemplary embodiments. Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. For example, while the above examples may include binding domains at certain positions, they are provided by way of comparison only and not by way of limitation. It is specifically contemplated by this application that the configuration of binding domains and their positions on the GNC proteins could be in any combination. As such, the illustrative embodiments of the present invention are not intended to be limited to the particular embodiments disclosed. Rather, they include all modifications and alternatives falling within the scope of the disclosure. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments.


TABLES









TABLE 1







Configurations of example GNC antibodies and each binding domain in the structural


form of scFv (either VL − VH or VH − VL orientation, stapled or not), receptor, and ligand on heavy


chain (D1, D3, D4) and light chain moiety (D5, D6) (as described in FIG 1).














GNC
Antibody
D1
D2
D3
D4
D5
D6





Penta-
SI-1P1
αCD3a (LH)
αEGFR
αPD-L1 (HL)
α4-1BB (HL)
αHER3 (LH)




SI-1P2
αCD3a
αEGFR
αPD-L1
α4-1BB
αHER3





(LH Stapled)

(HL Stapled)
(HL Stapled)
(LH Stapled)




SI-38P12
αCD20 (LH)
αCD3a
αPD-L1 (HL)
α4-1BB (HL)

αCD19d (LH)



SI-38P13
αCD20 (LH)
αCD3c
αPD-L1 (HL)
α4-1BB (HL)
αCD19d (HL)




SI-49P1
αCD3b
αMSLN
αPD-L1 (HL)
α4-1BB (HL)
NKG2D





(LH Stapled)








SI-49P3
αCD3b
αHER2
αPD-L1
α4-1BB
NKG2D





(LH Stapled)

(HL Stapled)
(HL Stapled)





SI-55P3
Hu-αEGFR (LH)
αCD3c
αPD-L1 (HL)
α4-1BB (HL)

αCD19d (LH)



SI-55P4
Hu-αEGFR (LH)
αCD3c
αPD-L1 (HL)
4-1BBL trimer

αCD19d (LH)



SI-55P9
Hu-αEGFR (LH)
αCD3a
αPD-L1 (HL)
α4-1BB (HL)

αCD19d (LH)



SI-55P10
Hu-αEGFR (LH)
αCD3a
αPD-L1 (HL)
4-1BBL trimer

αCD19d (LH)



SI-77P1
αCD3b (LH)
Hu-αEGFR
αPD-L1 (HL)
α4-1BB (HL)

αCD19e (LH)



SI-79P2
Hu-αEGFR (LH)
αCD3c
αPD-L1 (HL)
α4-1BB (HL)

αCD19d (LH)



SI-79P3
Hu-αEGFR (LH)
αCD3c
αPD-L1 (HL)
4-1BBL trimer

αCD19d (LH)



SI-49P6
αCD3b
NKG2D
αPD-L1
α4-1BB

αCD19f (LH)




(LH Stapled)

(HL Stapled)
(HL Stapled)





SI-49P7
αCD3b
NKG2D
αPD-L1
4-1BBL trimer

αCD19f (LH)




(LH Stapled)

(HL Stapled)






SI-49P10
αCD3b
NKG2D
αPD-L1
α4-1BB

αEGFR (LH)




(LH Stapled)

(HL Stapled)
(HL Stapled)




Hexa-
SI-55H11
Hu-αEGFR (LH)
αCD3a
αPD-L1 (HL)
α4-1BB (HL)
αHER3 (LH)
αCD19e (LH)





(Stapled)







SI-55H12
Hu-αEGFR (LH)
αCD3a
αPD-L1 (HL)
α4-1BB (HL)
αHER3 (LH)
αCD19e (LH)



SI-77H4
αCD3b (LH)
Hu-αEGFR
αPD-L1 (HL)
α4-1BB (HL)
αHER3 (LH)
αCD19e (LH)





(Stapled)







SI-77H5
αCD3b (LH)
αEGFR
αPD-L1 (HL)
α4-1BB (HL)
αHER3 (LH)
αCD19e (LH)





(Stapled)






a284A10, see Applicant's application No. PCT/US2018/039143;




b284A10 H1 (SEQ ID NO. 93-100), humanized anti-CD3 variable domain sequences encoding either a scFv domain or the Fab region, in either a “unstapled” or a “stapled” form (SEQ ID NO. 155-108); and




c283E3 H1 (SEQ ID NO. 101-104), humanized anti-CD3 variable domain sequences encoding the Fab region.




dSI-huBU12 VH (SEQ ID NO. 121, 122) and SI-huBU12 H1 VL (SEQ ID NO. 87, 88), humanized anti-CD19 variable domain sequences carrying R19S mutation.




eSI-huBU12 H1 VH (SEQ ID NO. 85, 86) and SI-huBU12 H1 VL (SEQ ID NO. 87, 88), humanized anti-CD19 variable domain sequences.




fSI-huBU12 VH (SEQ ID NO. 121, 122) and SI-huBU12 VL (SEQ ID NO. 131, 132), humanized anti-CD19 variable domain sequences carrying R19S mutation.














TABLE 2







The example penta-GNC antibodies.










Protein
SI-1P1
SI-1P2
Tetra control





Format
Penta-GNC
Penta-GNC
Tetra-GNC


Specificity
EGFR × CD3 ×
EGFR × CD3 ×
EGFR × CD3 ×



PDL1 × 41BB ×
PDL1 × 41BB ×
PDL1 × 41BB



HER3
HER3



scFvs with
No
Yes
No


VH-VL





disulfide bond





HMW %
2.27
3.48
2.38


(time 0)





HMW %
2.56
2.81
2.75


(2 weeks)





HMW %
2.35
nd
2.8


(4 weeks)





ΔHMW % after
0.08
−0.67
0.42


2 (or 4) weeks





Melting
67.84
69.35
59.89


Temp (° C.)









HMW % was measured using preparative SEC; melting temperature was measuring using dynamic light scattering









TABLE 3







The kinetic parameters of example penta-


GNC antibody SI-1P1 versus SI-1P2,


where SI-1P2 contains disulfide bonds in


all four scFv domains (see Table 1).












penta-
Human


Kon
Kdis


GNC
Ag
Response
KD (M)
(1/Ms)
(1/s)















SI-1P1
CD3
0.1315
1.89E−08
3.41E+05
6.43E−03



ε/δ_His







4-1BB
0.1768
9.97E−09
2.34E+05
2.33E−03



PD-L1
0.2332
3.44E−10
2.15E+05
7.37E−05



EGFR
0.3544
4.61E−09
2.98E+05
1.37E−03



HER3
0.1927
1.77E−07
4.97E+04
8.79E−03


SI-1P2
CD3
0.1204
2.34E−08
2.81E+05
6.59E−03



ε/δ_His







4-1BB
0.199
6.06E−09
3.68E+05
2.23E−03



PD-L1
0.2269
7.49E−10
3.51E+05
2.63E−04



EGFR
0.4006
4.07E−09
3.56E+05
1.45E−03



HER3
0.1822
3.77E−07
7.71E+04
2.91E−02
















TABLE 4







The affinity of each binding domain in example GNC antibodies














GNC Format
Antibody
D1 KD (nM)
D2 KD (nM)
D3 KD (nM)
D4 KD (nM)
D5 KD (nM)
D6 KD (nM)





Tri-GNC
Control
CD3 (37.2)
EGFR (6.6)


HER3 (13.7)





Stapled







Tetra-GNC
SI-35E20
4-1BB (4.03)
PD-L1 (0.379)
ROR1 (0.861)
CD3 (0.480)





SI-38E17
CD3 (23.5)
CD19 (1.48)
PD-L1 (0.524)
4-1BB (8.19)





SI-39E18
CD3 (30.2)
EGFRvIII (16.4)
PD-L1 (0.421)
4-1BB (18.1)




Penta-GNC
SI-1P1
18.9
4.61
0.344
9.97
177




SI-1P2
23.4
4.07
0.749
6.06
377




SI-38P12
744
12.5
0.195
4.85

1.11



SI-38P13
644
15.1
0.731
8.54
0.181




SI-49P3
4.42
0.029
nq*
2.75
1.39




SI-49P6
nd**
7.763***
nd**
nd**

nd**



SI-49P7
nd**
10.67***
nd**
nd**

nd**



SI-49P10
2.23
1.84
nq*
2.79

nq*



SI-55P9
7.41
20.8
0.407
7.55

nq*



SI-55P10
7.48
19.6
0.521
65.5

nq*


Hexa-GNC
SI-55H11
4.65
15.2
0.737
4.91
9.23
6.80



SI-55H12
7.87
1.58
0.25
7.87
9.11
nq*





*Not quantified (strong binding was observed relative to reference sensor, but dissociation was too slow to quantify KD).


**KD not determined.


***GNC protein as analyte, antigen as ligand.













TABLE 5







The levels of EGFR and HER3 expression


in the example cancer cell lines.












Tumor cell Line
Description
EGFR
HER3







BxPC3
human pancreatic
High
Low




cancer cells





MDA-MB-231
human breast
High
Low




cancer cells





Hela
human cervical
High
Low




cancer cells

















TABLE 6







The example penta-GNC antibody targeting two tumor antigens in EGFR and HER3


displays higher potency in T cell activation and similar cytotoxicity as compared to its parental


control antibodies (see FIG. 2 and 3).









GNC Antibody
NFAT
TDCC
















Tumor
BxPC3
MDA-MB-231
Hela


Name
GNC Format
Binding Specificity
Antigen
EC50 (nM)
EC50 (nM)
EC50 (nM)





SI-1P1
penta-
CD3, EGFR, PD-L1, 4-1BB, HER3
2
1.46E−03
2.85E−05
1.03E−03


Control
EGF-tetra-
CD3, EGFR, PD-L1, 4-1BB
1
1.03E−03
3.13E−05
1.71E−03


Control
FITC-tetra-
CD3, FITC, PD-L1, 4-1BB
None
1.34E−02
1.23E−03
n/a


Control
bispecific
EGFR, HER3
Only
n/a
n/a
n/a
















TABLE 7







Characterization of example penta-GNC antibodies comprising a humanized anti-


EGFR scFv domain or Fab domain.














GNC
αEGFR
Anti-EGFR
Specificities of Other
Titer
aSEC
huEGFR KD
TDCC


Antibody
Variant
Domain
Binding Domains
(μg/ml)
% POI
(nM)
EC50 (pM)

















SI-55P3
H1
scFv (D1)
αCD3 (2), αPD-L1 (3),
175.9
86.13
18.1
nd





α4-1BB (4), αCD19 (6)






SI-55P4
H1
scFv (D1)
αCD3 (2), αPD-L1 (3),
59.6
93.22
nd
nd





41BBLT (4), αCD19 (6)






SI-79P2
H4
scFv (D1)
αCD3 (2), αPD-L1 (3),
68.9
87.74
4.3
nd





α4-1BB (4), αCD19 (6)






SI-79P3
H4
scFv (D1)
αCD3 (2), αPD-L1 (3),
70.3
92.8
5.21
nd





41BBLT (4), αCD19 (6)






SI-55P9
H7
scFv (D1)
αCD3 (2), αPD-L1 (3),
118
85.96
7.41
0.5727





α4-1BB (4), αCD19 (6)






SI-77P1
H7
Fab (D2)
αCD3 (1), αPD-L1 (3),
98.1
77.94
2.17
0.0826





α4-1BB (4), αCD19 (6)




















TABLE 8







Characterization of example hexa-GNC antibodies comprising a humanized anti-


EGFR scFv domain or Fab region














GNC
αEGFR
Anti-EGFR
Specificities of Other
Titer
aSEC
huEGFR
TDCC


Antibody
Variant
Domain
Binding domains
(μg/ml)
% POI
KD (nM)
EC50 (pM)

















SI-77H5
C*
Fab (D2)
αCD3 (1), αPD-L1 (3),
35
72.02
3.39
nd





α4-1BB (4), αHER3 (5),









αCD19 (6)






SI-77H4
H7
Fab (D2)
αCD3 (1), αPD-L1 (3),
61.1
77.25
3.29
nd





α4-1BB (4), αHER3 (5),









αCD19 (6)






SI-55H11
H7
scFv (D1)
αCD3 (2), αPD-L1 (3),
30
84.42
4.65
0.09387





α4-1BB (4), αHER3 (5),









αCD19 (6)





*Mouse sequences derived from Cetuximab.
















SEQUENCE LISTING













SEQ ID NO.











GNC

Chain/
Amino
Nucleo-


Protein
Name
Monomer
acid
tide














Penta-
SI-1P1
H
1
2




L
3
4



SI-1P2
H
5
6




L
7
8



SI-38P12
H
9
10




L
11
12



SI-38P13
H
13
14




L
15
16



SI-49P1
H
17
18




L
19
20



SI-49P3
H
21
22




L
23
24



SI-55P3
H
25
26




L
27
28



SI-55P4
H
29
30




L
31
32



SI-55P9
H
33
34




L
35
36



SI-55P10
H
37
38




L
39
40



SI-77P1
H
41
42




L
43
44



SI-79P2
H
45
46




L
47
48



SI-79P3
H
49
50




L
51
52



SI-49P10
H
117
118




L
119
120



SI-49P6
H
123
124




L
125
126



SI-49P7
H
127
128




L
129
130


Hexa-
SI-55H11
H
53
54




L
55
56



SI-55H12
H
57
58




L
59
60



SI-77H4
H
61
62




L
63
64



SI-77H5
H
65
66




L
67
68


Binding
αEGFR H1
VH
69
70


Domain

VL
71
72



αEGFR H4
VH
73
74




VL
75
76



αEGFR H7
VH
77
78




VL
79
80



αEGFR H7
VH
81
82



stapled
VL
83
84



αCD19
VH
121
122



SI-huBU12
VL
131
132



αCD19 SI-
VH
85
86



huBU12 H1
VL
87
88



αCD3 284A10
VH
89
90



stapled
VL
91
92



αCD3
VH
93
94



284A10 H1
VL
95
96



αCD3
VH
97
98



284A10 H1
VL
99
100



stapled






αCD3
VH
101
102



283E3 H1
VL
103
104



αPD-L1
VH
105
106



PL221G5
VL
107
108



stapled






α41BB 466F6
VH
109
110



stapled
VL
111
112



4-1BB

113
114



ligand trimer






NKG2D

115
116



dimer

















>Sequence ID 1: SI-1P1 heavy chain amino acid sequence



DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYA





SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG





SGGGGSQVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTD





YNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDYEFAYWGQGTLVTVSSAST





KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD





WLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEW





IACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSEDYAMDLW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLN





WYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVD





NVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG





KGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS





WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV





GGAFGGGTKVEIK





>Sequence ID 2: SI-1P1 heavy chain nucleotide sequence


GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC





CAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC





GGTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCC





TGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCA





GGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCG





AGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAA





TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGC





TATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACAGGCGGTGGAGGG





TCCGGCGGTGGTGGATCACAGGTGCAGCTGAAGCAGTCAGGACCTGGCCTAGTGCAGCCCTCAC





AGAGCCTGTCCATCACCTGCACAGTCTCTGGTTTCTCATTAACTAACTATGGTGTACACTGGGT





TCGCCAGTCTCCAGGAAAGGGTCTGGAGTGGCTGGGAGTGATATGGAGTGGTGGAAACACAGAC





TATAATACACCTTTCACATCCAGACTGAGCATCAACAAGGACAATTCCAAGAGCCAAGTTTTCT





TTAAAATGAACAGTCTGCAATCTAATGACACAGCCATATATTACTGTGCCAGAGCCCTCACCTA





CTATGATTACGAGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTAGCGCTAGCACC





AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC





TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT





GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC





GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC





CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC





ACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG





GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG





ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC





GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC





TGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA





AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG





GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC





TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA





GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGG





AGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT





CTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGG





ATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGT





TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA





GGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGG





GGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCG





GTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAAC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAG





CCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGAT





AATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCT





CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC





CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGG





AAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA





GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT





GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGG





GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG





GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA





CCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT





GGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 3: SI-1P1 light chain moiety amino acid sequence


DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSG





SGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY





ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGTSSDVGGY





NFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCSSYGSS





STHVIFGGGTKVTVLGGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLRLSCAASGFTF





SSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGRFTISRDDAKNSLYLQMNSLRAEDTAV





YYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 4: SI-1P1 light chain moiety nucleotide sequence


GACATCTTGCTGACTCAGTCTCCAGTCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCT





CCTGCAGGGCCAGTCAGAGTATTGGCACAAACATACACTGGTATCAGCAAAGAACAAATGGTTC





TCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATTCCTTCCAGGTTTAGTGGC





AGTGGATCAGGGACAGATTTTACTCTTAGCATCAACAGTGTGGAGTCTGAAGATATTGCAGATT





ATTACTGTCAACAAAATAATAACTGGCCAACCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAA





ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA





ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG





TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG





CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC





GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT





GTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTC





TGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTAT





AACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATCTATGATGTCA





GTGATCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGGCAACACGGCCTCCCT





GATCATCTCTGGCCTCCAGGCTGACGACGAGGCTGATTATTACTGCAGCTCATATGGGAGCAGC





AGCACTCATGTGATTTTCGGCGGAGGGACCAAGGTGACCGTCCTAGGTGGAGGCGGTTCAGGCG





GAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCAATTGCAGGAGTCGGG





GGGAGGCCTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTT





AGTAGTTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACA





TAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAG





AGACGACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTG





TATTACTGTGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCA





CCGTCTCGAGCTGA





>Sequence ID 5: SI-1P2 heavy chain amino acid sequence


DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKVEIKGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKCLEWIGVITGRDITYYA





SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG





SGGGGSQVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTD





YNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDYEFAYWGQGTLVTVSSAST





KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQD





WLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTOKS





LSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKCLEW





IACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLN





WYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVD





NVFGCGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG





KCLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS





WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV





GGAFGCGTKVEIK





>Sequence ID 6: SI-1P2 heavy chain nucleotide sequence


GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCTGTGGGAC





CAAGGTGGAGATCAAAGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTGGTGGCGGCTCTGGA





GGCGGCGGATCTGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCC





TGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCA





GGCTCCAGGGAAGTGCCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCG





AGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAA





TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGC





TATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACAGGCGGTGGAGGG





TCCGGCGGTGGTGGATCACAGGTGCAGCTGAAGCAGTCAGGACCTGGCCTAGTGCAGCCCTCAC





AGAGCCTGTCCATCACCTGCACAGTCTCTGGTTTCTCATTAACTAACTATGGTGTACACTGGGT





TCGCCAGTCTCCAGGAAAGGGTCTGGAGTGGCTGGGAGTGATATGGAGTGGTGGAAACACAGAC





TATAATACACCTTTCACATCCAGACTGAGCATCAACAAGGACAATTCCAAGAGCCAAGTTTTCT





TTAAAATGAACAGTCTGCAATCTAATGACACAGCCATATATTACTGTGCCAGAGCCCTCACCTA





CTATGATTACGAGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTAGCGCTAGCACC





AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC





TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT





GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC





GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC





CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC





ACCGTGCCCAGCACCTGAAGCCGCGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG





GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG





ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC





GCGGGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC





TGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA





AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG





GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC





TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA





GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGG





AGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT





CTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAGTGG





ATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGT





TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA





GGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGG





GGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTG





GTGGCGGCTCTGGAGGCGGCGGATCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAAC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAG





CCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGAT





AATGTTTTCGGCTGCGGGACCAAGGTGGAGATCAAAGGTGGTGGCGGCTCTGGAGGAGGAGGGT





CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC





CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGGCAGGCACCTGGG





AAGTGCCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA





GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT





GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGG





GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG





GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA





CTTGGAACCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT





GGCGGTGCTTTCGGCTGTGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 7: SI-1P2 light chain moiety amino acid sequence


DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSG





SGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY





ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGTSSDVGGY





NFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCSSYGSS





STHVIFGCGTKVTVLGGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLRLSCAASGFTF





SSYWMSWVRQAPGKCLEWVANINRDGSASYYVDSVKGRFTISRDDAKNSLYLQMNSLRAEDTAV





YYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 8: SI-1P2 light chain moiety nucleotide sequence


GACATCTTGCTGACTCAGTCTCCAGTCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCT





CCTGCAGGGCCAGTCAGAGTATTGGCACAAACATACACTGGTATCAGCAAAGAACAAATGGTTC





TCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATTCCTTCCAGGTTTAGTGGC





AGTGGATCAGGGACAGATTTTACTCTTAGCATCAACAGTGTGGAGTCTGAAGATATTGCAGATT





ATTACTGTCAACAAAATAATAACTGGCCAACCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAA





ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA





ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG





TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG





CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC





GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT





GTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTC





TGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTAT





AACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATCTATGATGTCA





GTGATCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGGCAACACGGCCTCCCT





GATCATCTCTGGCCTCCAGGCTGACGACGAGGCTGATTATTACTGCAGCTCATATGGGAGCAGC





AGCACTCATGTGATTTTCGGCTGCGGGACCAAGGTGACCGTCCTAGGTGGAGGCGGTTCAGGCG





GAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCAATTGCAGGAGTCGGG





GGGAGGCCTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTT





AGTAGTTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAGTGGGTGGCCAACA





TAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAG





AGACGACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTG





TATTACTGTGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCA





CCGTCTCGAGCTGA





>Sequence ID 9: SI-38P12 heavy chain amino acid sequence


QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRFSGS





GSGTSYSLTISRVEAEDAATYYCQQWTSNPPTFGGGTKLTVLGGGGSGGGGSGGGGSGGGGSQV





QLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKFKG





KATLTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSSGGGGSGGGG





SEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWA





KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGPS





VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV





PSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLM





ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG





KEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS





PGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACI





AAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGT





LVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQ





KPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFG





GGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLE





YIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGT





LVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQ





KPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAF





GGGTKVEIK





>Sequence ID 10: SI-38P12 heavy chain nucleotide sequence


CAGATCGTGCTGAGCCAGAGCCCCGCCATCCTGAGCGCCAGCCCCGGCGAGAAGGTGACCATGA





CCTGCCGGGCCAGCAGCAGCGTGAGCTACATCCACTGGTTCCAGCAGAAGCCCGGCAGCAGCCC





CAAGCCCTGGATCTACGCCACCAGCAACCTGGCCAGCGGCGTGCCCGTGCGGTTCAGCGGCAGC





GGCAGCGGCACCAGCTACAGCCTGACCATCAGCCGGGTGGAGGCCGAGGACGCCGCCACCTACT





ACTGCCAGCAGTGGACCAGCAACCCCCCCACCTTCGGCGGCGGCACCAAGCTGACCGTGCTGGG





TGGTGGTGGCTCTGGAGGAGGCGGGAGCGGGGGTGGTGGCTCAGGTGGTGGAGGTTCCCAGGTG





CAGCTGCAGCAGCCCGGCGCCGAGCTGGTGAAGCCCGGCGCCAGCGTGAAGATGAGCTGCAAGG





CCAGCGGCTACACCTTCACCAGCTACAACATGCACTGGGTGAAGCAGACCCCCGGCCGGGGCCT





GGAGTGGATCGGCGCCATCTACCCCGGCAACGGCGACACCAGCTACAACCAGAAGTTCAAGGGC





AAGGCCACCCTGACCGCCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCA





GCGAGGACAGCGCCGTGTACTACTGCGCCCGGAGCACCTACTACGGCGGCGACTGGTACTTCAA





CGTGTGGGGCGCCGGCACCACCGTGACCGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGA





TCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCT





CCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGG





GAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCG





AAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCC





TGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGCTATTACTAG





TAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCCTCAGCTAGCACCAAGGGCCCATCG





GTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGG





TCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGT





GCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTG





CCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA





AGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGC





ACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATG





ATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA





AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA





GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC





AAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA





AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGAC





CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG





TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG





GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT





CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCT





CCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAG





GCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAG





CGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATT





GCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCA





GAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGT





ATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACC





CTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCG





GTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGA





CAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAG





AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCAT





CAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGA





TGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGC





GGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGGTCGC





TGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTC





TGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAG





TACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCA





CCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGA





CACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACC





CTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCG





GCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGA





CAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAG





AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCAT





CAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGG





CGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTC





GGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 11: SI-38P12 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 12: SI-38P12 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC





CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG





CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA





AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA





GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG





AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT





TCAACAGGGGAGAGTGTTGA





>Sequence ID 13: SI-38P13 heavy chain amino acid sequence


QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRFSGS





GSGTSYSLTISRVEAEDAATYYCQQWTSNPPTFGGGTKLTVLGGGGSGGGGSGGGGSGGGGSQV





QLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKFKG





KATLTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSSGGGGSGGGG





SQVQLQESGGRLVQPGEPLSLTCKTSGIDLSSNAIGWVRQAPGKGLEWIGVIFGSGNTYYASWA





KGRFTISRSTSTVYLKMNSLRSEDTAIYYCARGGYSSDIWGQGTLVTVSSASTKGPSVFPLAPS





SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGT





QTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAV





SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTOKSLSLSPGGGGGS





GGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGI





TYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSG





GGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPK





LLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTKVEI





KGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISS





GGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSG





GGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPK





LLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAFGGGTKVE





IK





>Sequence ID 14: SI-38P13 heavy chain nucleotide sequence


CAGATCGTGCTGAGCCAGAGCCCCGCCATCCTGAGCGCCAGCCCCGGCGAGAAGGTGACCATGA





CCTGCCGGGCCAGCAGCAGCGTGAGCTACATCCACTGGTTCCAGCAGAAGCCCGGCAGCAGCCC





CAAGCCCTGGATCTACGCCACCAGCAACCTGGCCAGCGGCGTGCCCGTGCGGTTCAGCGGCAGC





GGCAGCGGCACCAGCTACAGCCTGACCATCAGCCGGGTGGAGGCCGAGGACGCCGCCACCTACT





ACTGCCAGCAGTGGACCAGCAACCCCCCCACCTTCGGCGGCGGCACCAAGCTGACCGTGCTGGG





TGGTGGTGGCTCTGGAGGAGGCGGGAGCGGGGGTGGTGGCTCAGGTGGTGGAGGTTCCCAGGTG





CAGCTGCAGCAGCCCGGCGCCGAGCTGGTGAAGCCCGGCGCCAGCGTGAAGATGAGCTGCAAGG





CCAGCGGCTACACCTTCACCAGCTACAACATGCACTGGGTGAAGCAGACCCCCGGCCGGGGCCT





GGAGTGGATCGGCGCCATCTACCCCGGCAACGGCGACACCAGCTACAACCAGAAGTTCAAGGGC





AAGGCCACCCTGACCGCCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCA





GCGAGGACAGCGCCGTGTACTACTGCGCCCGGAGCACCTACTACGGCGGCGACTGGTACTTCAA





CGTGTGGGGCGCCGGCACCACCGTGACCGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGA





TCACAAGTGCAGTTGCAAGAAAGTGGTGGTAGACTGGTTCAGCCTGGTGAACCCTTGTCACTGA





CGTGTAAAACAAGCGGCATTGATCTGTCCTCTAACGCCATCGGATGGGTCCGACAGGCCCCAGG





AAAAGGTCTGGAGTGGATCGGAGTTATCTTCGGGAGCGGCAATACATACTACGCAAGCTGGGCA





AAAGGGCGATTTACGATATCACGGAGCACCTCTACAGTTTATTTGAAAATGAACTCCCTCCGGT





CCGAGGATACCGCGATATATTACTGTGCCAGAGGGGGGTACTCCTCTGATATCTGGGGGCAGGG





TACACTGGTTACAGTTTCATCCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCC





TCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAAC





CGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCT





ACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC





CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGC





CCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACC





GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC





ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG





GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT





GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTC





TCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAG





AACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAC





CTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG





GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCA





AGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGA





GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCC





GGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGT





CCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGT





CCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATC





ACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGC





TGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGC





GTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGT





GGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCC





AGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCA





GGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAG





CTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT





CTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTG





CCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATC





AAAGGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCT





TGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTA





CCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGT





GGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCA





AGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGC





GAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGC





GGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTG





TGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCA





GGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAG





CTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT





CTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTG





TCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAG





ATCAAATGA





>Sequence ID 15: SI-38P13 light chain moiety amino acid sequence


DPVLTQSPSSLSASVGDRVTISCQSSQSVAKNNNLAWFQQKPGQAPKLLIYSASTLAAGVPSRF





SGSGSGTDFTLTISSVQPEDFATYYCSARDSGNIQSFGGGTKVEIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAF





SGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLD





AEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSENVLTQSPASLS





ASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISS





MEPEDFATYYCFQGSVYPFTFGQGTKVTVL





>Sequence ID 16: SI-38P13 light chain moiety nucleotide sequence


GATCCAGTTCTGACACAAAGTCCATCCAGCCTGTCTGCCTCAGTCGGCGACAGAGTGACCATCA





GTTGCCAGAGCTCACAGTCTGTGGCTAAGAACAACAACTTGGCGTGGTTCCAACAGAAACCTGG





ACAGGCTCCGAAATTGCTGATCTATTCTGCTTCCACGCTTGCTGCTGGTGTTCCTTCCCGCTTT





TCAGGTAGTGGTAGCGGGACAGACTTCACTTTGACTATAAGCAGCGTGCAGCCTGAAGATTTTG





CGACCTACTATTGTTCTGCTAGAGACAGTGGAAATATTCAGTCCTTTGGGGGGGGAACGAAGGT





CGAAATAAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG





AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC





AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG





CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC





AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA





GGGGAGAGTGTGGTGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCCAGGTCAC





ATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTC





AGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAG





GTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAG





TCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGAC





GCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATT





GGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGTGGAGGCGGTTCAGGCGGAGGTGGTTCCGG





CGGTGGCGGCTCCGGTGGAGGCGGCTCTGAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGT





GCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGTCTCATACATGCATT





GGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTC





CGGCGTACCTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGT





ATGGAACCCGAAGATTTTGCAACTTATTATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCG





GGCAGGGGACAAAAGTGACGGTACTGTGA





>Sequence ID 17: SI-49P1 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKLTVLGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCTASGFTISTNAMSWVRQAPGKCLEWVGVITGRDITYYA





SWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG





SGGGGSQVQLQQSGPELEKPGASVKISCKASGYSFTGYTMNWVKQSHGKSLEWIGLITPYNGAS





SYNQKFRGKATLTVDKSSSTAYMDLLSLTSEDSAVYFCARGGYDGRGFDYWGSGTPVTVSSAST





KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQD





WLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKCLEW





IACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLN





WYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVD





NVFGCGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG





KCLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS





WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV





GGAFGCGTKVEIK





>Sequence ID 18: SI-49P1 heavy chain nucleotide sequence


GAGATCGTGATGACCCAGAGCCCCAGCACCCTGAGCGCCAGCGTGGGCGACAGGGTGATCATCA





CCTGCCAGGCCAGCGAGAGCATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGC





CCCCAAGCTGCTGATCTACGAGGCCAGCAAGCTGGCCAGCGGCGTGCCCAGCAGGTTCAGCGGC





AGCGGCAGCGGCGCCGAGTTCACCCTGACCATCAGCAGCCTGCAGCCCGACGACTTCGCCACCT





ACTACTGCCAGGGCTACTTCTACTTCATCAGCAGGACCTACGTGAACAGCTTCGGCTGCGGCAC





CAAGCTGACCGTGCTGGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC





GGTGGAGGATCAGAGGTGCAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCC





TGAGGCTGAGCTGCACCGCCAGCGGCTTCACCATCAGCACCAACGCCATGAGCTGGGTGAGGCA





GGCCCCCGGCAAGTGCCTGGAGTGGGTGGGCGTGATCACCGGCAGGGACATCACCTACTACGCC





AGCTGGGCCAAGGGCAGGTTCACCATCAGCAGGGACACCAGCAAGAACACCGTGTACCTGCAGA





TGAACAGCCTGAGGGCCGAGGACACCGCCGTGTACTACTGCGCCAGGGACGGCGGCAGCAGCGC





CATCACCAGCAACAACATCTGGGGCCAGGGCACCCTGGTGACCGTGTCGACAGGCGGTGGAGGG





TCCGGCGGTGGTGGATCACAGGTACAACTGCAGCAGTCTGGGCCTGAGCTGGAGAAGCCTGGCG





CTTCAGTGAAGATATCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACACCATGAACTGGGT





GAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGACTTATTACTCCTTACAATGGTGCTTCT





AGCTACAACCAGAAGTTCAGGGGCAAGGCCACATTAACTGTAGACAAGTCATCCAGCACAGCCT





ACATGGACCTCCTCAGTCTGACATCTGAAGACTCTGCAGTCTATTTCTGTGCAAGGGGGGGTTA





CGACGGGAGGGGTTTTGACTACTGGGGATCCGGGACCCCGGTCACCGTCTCCTCAGCTAGCACC





AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC





TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT





GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC





GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC





CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC





ACCGTGCCCAGCACCTGAAGCCGCGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG





GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG





ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC





GCGGGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC





TGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA





AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG





GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC





TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA





GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGG





AGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT





CTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAGTGG





ATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGT





TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA





GGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGG





GGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTG





GTGGCGGCTCTGGAGGCGGCGGATCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAAC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAG





CCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGAT





AATGTTTTCGGCTGCGGGACCAAGGTGGAGATCAAAGGTGGTGGCGGCTCTGGAGGAGGAGGGT





CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC





CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGGCAGGCACCTGGG





AAGTGCCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA





GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT





GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGG





GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG





GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA





CTTGGAACCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT





GGCGGTGCTTTCGGCTGTGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 19: SI-49P1 light chain moiety amino acid sequence


DIELTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSGTSPKRWIYDTSKLASGVPGRFSGS





GSGNSYSLTISSVEAEDDATYYCQQWSKHPLTFGSGTKVEIKRTVAAPSVFIFPPSDEQLKSGT





ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA





CEVTHQGLSSPVTKSFNRGECGGGGSGGGGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNC





YQFFDESKNWYESQASCMSQNASLLKVYSKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSIL





SPNLLTIIEMQKGDCALYASSFKGYIENCSTPNTYICMQRTVGGGGSGGGGSGGGGSGGGGSFL





NSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKVYSKEDQ





DLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIENCSTPN





TYICMQRTV





>Sequence ID 20: SI-49P1 light chain moiety nucleotide sequence


GACATCGAGCTCACTCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGA





CCTGCAGTGCCAGCTCAAGTGTAAGTTACATGCACTGGTACCAGCAGAAGTCAGGCACCTCCCC





CAAAAGATGGATTTATGACACATCCAAACTGGCTTCTGGAGTCCCAGGTCGCTTCAGTGGCAGT





GGGTCTGGAAACTCTTACTCTCTCACAATCAGCAGCGTGGAGGCTGAAGATGATGCAACTTATT





ACTGCCAGCAGTGGAGTAAGCACCCTCTCACGTTCGGATCCGGGACCAAGGTGGAAATCAAACG





TACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT





GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG





ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC





CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCC





TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTG





GCGGTGGAGGGTCCGGCGGTGGTGGATCCTTTCTTAATTCCCTTTTCAACCAAGAGGTTCAGAT





CCCCTTGACTGAAAGCTATTGCGGCCCTTGTCCGAAAAACTGGATATGTTACAAGAATAATTGT





TAGCAATTCTTCGAGGAAAGCAAGAACTGGTATGAGAGTGAGGCGTCTTGTATGAGTCAGAATG





CCAGCCTGCTTAAGGTTTATTCAAAAGAAGACCAGGATCTGCTTAAGTTGGTAAAGAGCTACCA





CTGGATGGGGCTGGTACATATCCCAACGAATGGGTCATGGCAGTGGGAGGACGGTTCTATTCTG





AGTCCAAATCTCCTGACGATCATCGAAATGCAGAAAGGGGACTGTGCCCTGTATGCATCATCCT





TCAAGGGGTACATCGAGAACTGCAGTACCCCAAATACCTACATTTGTATGCAAAGAACGGTTGG





AGGCGGTGGCTCAGGCGGAGGCGGCTCAGGAGGTGGCGGTTCAGGAGGCGGCGGATCTTTCCTA





AACTCATTATTCAACCAAGAAGTTCAAATTCCCTTGACCGAAAGTTACTGTGGCCCATGTCCTA





AAAACTGGATATGTTACAAAAATAACTGCTACCAATTTTTTGATGAGAGTAAAAACTGGTATGA





GAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATACAGCAAAGAGGACCAG





GATTTAGTTAAACTGGTGAAGTCATATCATTGGATGGGACTAGTACACATTCCAACAAATGGAT





CTTGGCAGTGGGAAGATGGCTCCATTCTCTCACCCAACCTACTAACAATAATTGAAATGCAGAA





GGGAGACTGTGCACTCTATGCCTCGAGCTTTAAAGGCTATATAGAAAACTGTTCAACTCCAAAT





ACGTAGATCTGCATGCAAAGGACTGTGTAG





>Sequence ID 21: SI-49P3 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKLTVLGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCTASGFTISTNAMSWVRQAPGKCLEWVGVITGRDITYYA





SWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG





SGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYT





RYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSAS





TKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS





SVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKP





KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQ





DWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS





DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK





SLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKCLE





WIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDL





WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHL





NWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNV





DNVFGCGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAP





GKCLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPM





WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYL





SWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDY





VGGAFGCGTKVEIK





>Sequence ID 22: SI-49P3 heavy chain nucleotide sequence


GAGATCGTGATGACCCAGAGCCCCAGCACCCTGAGCGCCAGCGTGGGCGACAGGGTGATCATCA





CCTGCCAGGCCAGCGAGAGCATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGC





CCCCAAGCTGCTGATCTACGAGGCCAGCAAGCTGGCCAGCGGCGTGCCCAGCAGGTTCAGCGGC





AGCGGCAGCGGCGCCGAGTTCACCCTGACCATCAGCAGCCTGCAGCCCGACGACTTCGCCACCT





ACTACTGCCAGGGCTACTTCTACTTCATCAGCAGGACCTACGTGAACAGCTTCGGCTGCGGCAC





CAAGCTGACCGTGCTGGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC





GGTGGAGGATCAGAGGTGCAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCC





TGAGGCTGAGCTGCACCGCCAGCGGCTTCACCATCAGCACCAACGCCATGAGCTGGGTGAGGCA





GGCCCCCGGCAAGTGCCTGGAGTGGGTGGGCGTGATCACCGGCAGGGACATCACCTACTACGCC





AGCTGGGCCAAGGGCAGGTTCACCATCAGCAGGGACACCAGCAAGAACACCGTGTACCTGCAGA





TGAACAGCCTGAGGGCCGAGGACACCGCCGTGTACTACTGCGCCAGGGACGGCGGCAGCAGCGC





CATCACCAGCAACAACATCTGGGGCCAGGGCACCCTGGTGACCGTGTCGACAGGCGGTGGAGGG





TCCGGCGGTGGTGGATCAGAGGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGGTGCAGCCAGGGG





GCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTTCAACATTAAAGACACCTATATACACTGGGT





GCGTCAGGCCCCGGGTAAGGGCCTGGAATGGGTTGCAAGGATTTATCCTACGAATGGTTATACT





AGATATGCCGATAGCGTCAAGGGCCGTTTCACTATAAGCGCAGACACATCCAAAAACACAGCCT





ACCTGCAGATGAACAGCCTGCGTGCTGAGGACACTGCCGTCTATTATTGTTCTAGATGGGGAGG





GGACGGCTTCTATGCTATGGACTACTGGGGTCAAGGAACCCTGGTCACCGTCTCCTCGGCTAGC





ACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG





CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC





CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGC





AGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACA





AGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATG





CCCACCGTGCCCAGCACCTGAAGCCGCGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCC





AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACG





AAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA





GCCGCGGGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAG





GACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG





AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATC





CCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGC





GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG





TGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCA





GCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG





AGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGT





TGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGG





ATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAG





TGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCC





GGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGC





CGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTC





TGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTG





GTGGTGGCGGCTCTGGAGGCGGCGGATCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTC





TGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTA





AACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGG





CATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAG





CAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTT





GATAATGTTTTCGGCTGCGGGACCAAGGTGGAGATCAAAGGTGGTGGCGGCTCTGGAGGAGGAG





GGTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACT





CTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGGCAGGCACCT





GGGAAGTGCCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCG





CTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAG





CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATG





TGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTG





GCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTC





TGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTA





TCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGG





CATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG





CGACTTGGAACCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTAT





GTTGGCGGTGCTTTCGGCTGTGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 23: SI-49P3 light chain moiety amino acid sequence


DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSG





SRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY





ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNN





CYQFFDESKNWYESQASCMSQNASLLKVYSKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSI





LSPNLLTIIEMQKGDCALYASSFKGYIENCSTPNTYICMQRTVGGGGSGGGGSGGGGSGGGGSF





LNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKVYSKED





QDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIENCSTP





NTYICMQRTV





>Sequence ID 24: SI-49P3 light chain moiety nucleotide sequence


GATATCCAGATGACCCAGTCCCCGAGCTCCCTGTCCGCCTCTGTGGGCGATAGGGTCACCATCA





CCTGCCGTGCCAGTCAGGATGTGAATACTGCTGTAGCCTGGTATCAACAGAAACCAGGAAAAGC





TCCGAAACTACTGATTTACTCGGCATCCTTCCTCTACTCTGGAGTCCCTTCTCGCTTCTCTGGC





TCCAGATCTGGGACGGATTTCACTCTGACCATCAGCAGTCTGCAGCCGGAAGACTTCGCAACTT





ATTACTGTCAGCAACATTATACTACTCCTCCCACGTTCGGACAGGGTACCAAGGTGGAGATCAA





ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA





ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG





TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG





CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC





GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT





GTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCTTTCTTAATTCCCTTTTCAACCAAGAGGTTCA





GATCCCCTTGACTGAAAGCTATTGCGGCCCTTGTCCGAAAAACTGGATATGTTACAAGAATAAT





TGTTACCAATTCTTCGAGGAAAGCAAGAACTGGTATGAGAGTGAGGCGTCTTGTATGAGTGAGA





ATGCCAGCCTGCTTAAGGTTTATTCAAAAGAAGACCAGGATCTGCTTAAGTTGGTAAAGAGCTA





CCACTGGATGGGGCTGGTACATATCCCAACGAATGGGTCATGGCAGTGGGAGGACGGTTCTATT





CTGAGTCCAAATCTCCTGACGATCATCGAAATGCAGAAAGGGGACTGTGCCCTGTATGCATCAT





CCTTCAAGGGGTACATCGAGAACTGCAGTACCCCAAATACCTACATTTGTATGCAAAGAACGGT





TGGAGGCGGTGGCTCAGGCGGAGGCGGCTCAGGAGGTGGCGGTTCAGGAGGCGGCGGATCTTTC





CTAAACTCATTATTCAACCAAGAAGTTCAAATTCCCTTGACCGAAAGTTACTGTGGCCCATGTC





CTAAAAACTGGATATGTTACAAAAATAACTGCTACCAATTTTTTGATGAGAGTAAAAACTGGTA





TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATACAGCAAAGAGGAC





CAGGATTTAGTTAAACTGGTGAAGTCATATCATTGGATGGGACTAGTACACATTCCAACAAATG





GATCTTGGCAGTGGGAAGATGGCTCCATTCTCTCACCCAACCTACTAACAATAATTGAAATGCA





GAAGGGAGACTGTGCACTCTATGCCTCGAGCTTTAAAGGCTATATAGAAAACTGTTCAACTCCA





AATACGTAGATCTGCATGCAAAGGACTGTGTAG





>Sequence ID 25: SI-55P3 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCRASQSIGTNIHWYQQKPGKAPKLLIYYASESISGIPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQQNNNWPTTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSE





VQLVESGGGLVQPGGSLRLSCSVSGFSLTNYGVHWVRQAPGKGLEWVGVIWSGGNTDYNTPFTS





RFTISRDTSKNTVYLQMNSLRAEDTAVYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





QVQLQESGGRLVQPGEPLSLTCKTSGIDLSSNAIGWVRQAPGKGLEWIGVIFGSGNTYYASWAK





GRFTISRSTSTVYLKMNSLRSEDTAIYYCARGGYSSDIWGQGTLVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVS





NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSG





GGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGIT





YDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGG





GGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKL





LIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTKVEIK





GGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSG





GNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGG





GGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKL





LIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAFGGGTKVEI





K





>Sequence ID 26: SI-55P3 heavy chain nucleotide sequence


GAAATCGTTATGACACAGTCCCCATCCACTCTTAGCGCTTCTGTAGGGGATCGAGTGATTATCA





CATGCCGGGCCTCCCAATCCATAGGAACCAACATACACTGGTATCAACAAAAACCAGGCAAAGC





GCCAAAACTGCTTATCTACTACGCCTCCGAGAGTATTTCTGGAATCCCGAGTCGCTTCTCAGGT





TCTGGAAGCGGCGCTGAGTTTACCCTCACAATTTCTTCACTCCAACCGGATGACTTCGCTACAT





ATTACTGCCAACAAAACAATAATTGGCCGACGACCTTTGGCCAGGGCACGAAACTTACGGTACT





TGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAA





GTACAGCTTGTCGAGTCCGGTGGGGGGCTTGTTCAGCCAGGGGGTTCCTTGAGGCTTTCCTGCT





CCGTCTCTGGGTTTAGCTTGACGAATTACGGCGTTCACTGGGTTAGACAAGCACCGGGGAAGGG





GCTGGAATGGGTCGGTGTGATATGGTCCGGGGGTAATACGGATTACAATACACCTTTCACGTCA





CGCTTTACGATTAGCAGGGACACGTCAAAAAATACAGTCTACTTGCAGATGAACTCTCTTAGGG





CGGAAGATACTGCAGTTTATTACTGCGCAAGGGCTCTGACATACTACGATTATGAATTTGCATA





TTGGGGCCAGGGGACTTTGGTCACGGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





CAAGTGCAGTTGCAAGAAAGTGGTGGTAGACTGGTTCAGCCTGGTGAACCCTTGTCACTGACGT





GTAAAACAAGCGGCATTGATCTGTCCTCTAACGCCATCGGATGGGTCCGACAGGCCCCAGGAAA





AGGTCTGGAGTGGATCGGAGTTATCTTCGGGAGCGGCAATACATACTACGCAAGCTGGGCAAAA





GGGCGATTTACGATATCACGGAGCACCTCTACAGTTTATTTGAAAATGAACTCCCTCCGGTCCG





AGGATACCGCGATATATTACTGTGCCAGAGGGGGGTACTCCTCTGATATCTGGGGGCAGGGTAC





ACTGGTTACAGTTTCATCCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC





AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG





TGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACA





GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAG





ACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCA





AATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTC





AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG





TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT





CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCC





AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC





CACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTG





CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG





AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGC





TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC





TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGC





GGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCC





TGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACT





TACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT





ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTT





TTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGA





GGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGA





TGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC





CAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC





CTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTG





GGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA





ACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





GGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGG





TCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCA





CATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGT





GGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGA





ACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAG





AGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGT





GGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGA





TGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGC





CAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC





CTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTG





GGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCA





GTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATC





AAATGA





>Sequence ID 27: SI-55P3 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DPVLTQSPSSLSASVGDRVTISCQSSQSVAKNNNLAWFQQKPGQAPKLLIYSASTLAAGVPSRF





SGSGSGTDFTLTISSVQPEDFATYYCSARDSGNIQSFGGGTKVEIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 28: SI-55P3 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCC





GATCCAGTTCTGACACAAAGTCCATCCAGCCTGTCTGCCTCAGTCGGCGACAGAGTGACCATCA





GTTGCCAGAGCTCACAGTCTGTGGCTAAGAACAACAACTTGGCGTGGTTCCAACAGAAACCTGG





ACAGGCTCCGAAATTGCTGATCTATTCTGCTTCCACGCTTGCTGCTGGTGTTCCTTCCCGCTTT





TCAGGTAGTGGTAGCGGGACAGACTTCACTTTGACTATAAGCAGCGTGCAGCCTGAAGATTTTG





CGACCTACTATTGTTCTGCTAGAGACAGTGGAAATATTCAGTCCTTTGGGGGGGGAACGAAGGT





CGAAATAAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG





AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC





AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG





CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC





AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA





GGGGAGAGTGTTGA





>Sequence ID 29: SI-55P4 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCRASQSIGTNIHWYQQKPGKAPKLLIYYASESISGIPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQQNNNWPTTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSE





VQLVESGGGLVQPGGSLRLSCSVSGFSLTNYGVHWVRQAPGKGLEWVGVIWSGGNTDYNTPFTS





RFTISRDTSKNTVYLQMNSLRAEDTAVYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





QVQLQESGGRLVQPGEPLSLTCKTSGIDLSSNAIGWVRQAPGKGLEWIGVIFGSGNTYYASWAK





GRFTISRSTSTVYLKMNSLRSEDTAIYYCARGGYSSDIWGQGTLVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVS





NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSG





GGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGIT





YDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGG





GGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKL





LIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTKVEIK





GGGGSGGGGSGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGG





LSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPP





ASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGLGST





GSGSKPGSGEGSTKGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVS





LTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTV





DLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAG





LGGGGSGGGGSREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGG





LSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPP





ASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGL





>Sequence ID 30: SI-55P4 heavy chain nucleotide sequence


GAAATCGTTATGACACAGTCCCCATCCACTCTTAGCGCTTCTGTAGGGGATCGAGTGATTATCA





CATGCCGGGCCTCCCAATCCATAGGAACCAACATACACTGGTATCAACAAAAACCAGGCAAAGC





GCCAAAACTGCTTATCTACTACGCCTCCGAGAGTATTTCTGGAATCCCGAGTCGCTTCTCAGGT





TCTGGAAGCGGCGCTGAGTTTACCCTCACAATTTCTTCACTCCAACCGGATGACTTCGCTACAT





ATTACTGCCAACAAAACAATAATTGGCCGACGACCTTTGGCCAGGGCACGAAACTTACGGTACT





TGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAA





GTACAGCTTGTCGAGTCCGGTGGGGGGCTTGTTCAGCCAGGGGGTTCCTTGAGGCTTTCCTGCT





CCGTCTCTGGGTTTAGCTTGACGAATTACGGCGTTCACTGGGTTAGACAAGCACCGGGGAAGGG





GCTGGAATGGGTCGGTGTGATATGGTCCGGGGGTAATACGGATTACAATACACCTTTCACGTCA





CGCTTTACGATTAGCAGGGACACGTCAAAAAATACAGTCTACTTGCAGATGAACTCTCTTAGGG





CGGAAGATACTGCAGTTTATTACTGCGCAAGGGCTCTGACATACTACGATTATGAATTTGCATA





TTGGGGCCAGGGGACTTTGGTCACGGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





CAAGTGCAGTTGCAAGAAAGTGGTGGTAGACTGGTTCAGCCTGGTGAACCCTTGTCACTGACGT





GTAAAACAAGCGGCATTGATCTGTCCTCTAACGCCATCGGATGGGTCCGACAGGCCCCAGGAAA





AGGTCTGGAGTGGATCGGAGTTATCTTCGGGAGCGGCAATACATACTACGCAAGCTGGGCAAAA





GGGCGATTTACGATATCACGGAGCACCTCTACAGTTTATTTGAAAATGAACTCCCTCCGGTCCG





AGGATACCGCGATATATTACTGTGCCAGAGGGGGGTACTCCTCTGATATCTGGGGGCAGGGTAC





ACTGGTTACAGTTTCATCCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC





AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG





TGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACA





GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAG





ACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCA





AATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTC





AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG





TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT





CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCC





AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC





CACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTG





CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG





AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGC





TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC





TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGC





GGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCC





TGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACT





TACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT





ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTT





TTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGA





GGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGA





TGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC





CAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC





CTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTG





GGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA





ACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





GGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGAGAGGGCCCCGAGCTGTCTCCTGATGACC





CAGCAGGCCTCTTGGACTTGCGGCAGGGTATGTTCGCTCAACTTGTGGCTCAGAATGTTCTGCT





CATTGATGGACCACTCTCTTGGTATAGTGACCCCGGTCTGGCCGGGGTGAGTCTGACCGGCGGG





CTCTCTTATAAAGAGGATACTAAGGAACTGGTCGTAGCAAAAGCGGGCGTTTATTACGTTTTTT





TTCAGCTGGAGCTCAGGCGCGTGGTGGCCGGCGAGGGCAGTGGCTCTGTGTCCCTGGCCCTGCA





CTTACAGCCCTTGAGAAGCGCTGCAGGTGCTGCCGCACTGGCTTTAACTGTTGACCTCCCTCCG





GCCTCTTCTGAAGCTAGAAACAGCGCTTTCGGCTTCCAAGGGCGCCTGCTGCACCTGAGCGCAG





GCCAGCGCTTAGGTGTGCACCTTCATACAGAGGCCAGGGCCCGACACGCTTGGCAGCTCACACA





GGGTGCCACGGTTCTCGGACTTTTCCGCGTTACTCCCGAGATCCCCGCTGGCCTCGGAAGTACT





GGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTACTAAAGGACGAGAAGGGCCAGAGTTAA





GTCCAGATGACCCTGCTGGGCTTTTGGACCTGCGGCAGGGCATGTTCGCTCAACTGGTGGCTCA





GAACGTGCTGCTGATCGATGGCCCCCTGAGTTGGTACAGCGATCCCGGGCTGGCAGGCGTGTCA





CTTACAGGGGGCCTCTCTTACAAGGAAGACACCAAGGAGTTAGTGGTCGCTAAGGCTGGCGTGT





ATTACGTGTTCTTCCAACTGGAGCTGAGAAGGGTTGTGGCAGGAGAGGGTAGCGGCAGCGTGTC





TTTAGCCCTTCACTTGCAGCCCCTGAGGTCTGCTGCAGGTGCAGCCGCTCTCGCGCTCACCGTG





GATCTCCCCCCAGCCTCATCTGAAGCTAGGAACAGTGCATTTGGCTTTCAGGGACGCTTGCTGC





ACCTCTCCGCTGGACAGAGGCTGGGCGTGCACCTTCACACAGAGGCCCGTGCCAGGCATGCATG





GCAGCTCACTCAGGGGGCAACAGTGCTGGGTCTCTTCCGCGTGACTCCTGAAATACCAGCTGGA





CTTGGCGGTGGAGGCAGCGGCGGAGGAGGATCTCGTGAGGGGCCAGAACTGTCCCCCGATGACC





CAGCCGGACTGCTCGATCTCAGACAGGGCATGTTCGCTCAGCTTGTAGCCCAAAATGTCCTCCT





GATTGACGGCCCTTTGAGCTGGTATAGTGATCCCGGCTTGGCCGGGGTATCTCTGACCGGAGGC





CTCTCCTACAAGGAAGACACCAAAGAGCTGGTGGTGGCAAAAGCGGGGGTGTATTATGTGTTCT





TTCAGCTCGAGCTGCGGAGAGTTGTGGCCGGGGAAGGGTCTGGGAGCGTATCTCTTGCACTTCA





CCTGCAGCCCCTGCGCAGCGCCGCTGGAGCCGCCGCCCTTGCTCTTACTGTGGATCTGCCTCCT





GCTTCCTCAGAAGCACGCAACAGCGCCTTCGGCTTTCAAGGACGTCTCCTGCACTTGTCCGCAG





GACAGAGGTTGGGCGTCCATTTACACACTGAGGCACGGGCACGGCACGCTTGGCAGCTTACCCA





GGGAGCCACCGTGCTGGGACTCTTTAGAGTGACACCCGAGATCCCCGCTGGCTTGTGA





>Sequence ID 31: SI-55P4 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DPVLTQSPSSLSASVGDRVTISCQSSQSVAKNNNLAWFQQKPGQAPKLLIYSASTLAAGVPSRF





SGSGSGTDFTLTISSVQPEDFATYYCSARDSGNIQSFGGGTKVEIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 32: SI-55P4 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCC





GATCCAGTTCTGACACAAAGTCCATCCAGCCTGTCTGCCTCAGTCGGCGACAGAGTGACCATCA





GTTGCCAGAGCTCACAGTCTGTGGCTAAGAACAACAACTTGGCGTGGTTCCAACAGAAACCTGG





ACAGGCTCCGAAATTGCTGATCTATTCTGCTTCCACGCTTGCTGCTGGTGTTCCTTCCCGCTTT





TCAGGTAGTGGTAGCGGGACAGACTTCACTTTGACTATAAGCAGCGTGCAGCCTGAAGATTTTG





CGACCTACTATTGTTCTGCTAGAGACAGTGGAAATATTCAGTCCTTTGGGGGGGGAACGAAGGT





CGAAATAAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG





AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC





AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG





CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC





AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA





GGGGAGAGTGTTGA





>Sequence ID 33: SI-55P9 heavy chain amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLTVLGGGGSGGGGSGGGGSGGGGSQ





VQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFTS





RFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





EVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAK





GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGPSV





FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMI





SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEW





ESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP





GGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIA





AGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTL





VTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQK





PGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGG





GTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEY





IGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTL





VTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQK





PGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAFG





GGTKVEIK





>Sequence ID 34: SI-55P9 heavy chain nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTT





AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAA





GTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTA





CTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGG





TTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGT





CGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCG





CGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTA





TTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCT





GTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAA





GGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAA





GGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGA





GAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGCTATTACTAGTAA





CAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCCTCAGCTAGCACCAAGGGCCCATCGGTC





TTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCA





AGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCA





CACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCC





TCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGG





TGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC





TGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC





TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT





TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA





CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG





GAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG





CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAA





GAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGG





GAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT





CCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTC





ATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG





GGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCT





TGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGG





GTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCT





GCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAG





ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATA





TTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTG





GTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTG





GAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAG





AGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAA





CCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAA





GGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGA





TTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGA





GGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGGTCGCTGG





TGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTGG





ATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTAC





ATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCA





TCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGACAC





GGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTG





GTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCG





GTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAG





AGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAA





CCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAA





GGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGA





TGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGC





GGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 35: SI-55P9 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 36: SI-55P9 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC





CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG





CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA





AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA





GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG





AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT





TCAACAGGGGAGAGTGTTGA





>Sequence ID 37: SI-55P10 heavy chain amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLTVLGGGGSGGGGSGGGGSGGGGSQ





VQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFTS





RFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





EVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAK





GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGPSV





FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMI





SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEW





ESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP





GGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIA





AGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTL





VTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQK





PGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGG





GTKVEIKGGGGSGGGGSGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLA





GVSLTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALA





LTVDLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEI





PAGLGSTGSGSKPGSGEGSTKGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSD





PGLAGVSLTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGA





AALALTVDLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRV





TPEIPAGLGGGGSGGGGSREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLA





GVSLTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALA





LTVDLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEI





PAGL





>Sequence ID 38: SI-55P10 heavy chain nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTT





AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAA





GTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTA





CTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGG





TTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGT





CGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCG





CGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTA





TTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCT





GTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAA





GGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAA





GGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGA





GAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGCTATTACTAGTAA





CAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCCTCAGCTAGCACCAAGGGCCCATCGGTC





TTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCA





AGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCA





CACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCC





TCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGG





TGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC





TGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC





TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT





TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA





CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG





GAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG





CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAA





GAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGG





GAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT





CCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTC





ATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG





GGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCT





TGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGG





GTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCT





GCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAG





ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATA





TTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTG





GTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTG





GAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAG





AGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAA





CCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAA





GGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGA





TTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGA





GGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGAGAGGGCC





CCGAGCTGTCTCCTGATGACCCAGCAGGCCTCTTGGACTTGCGGCAGGGTATGTTCGCTCAACT





TGTGGCTCAGAATGTTCTGCTCATTGATGGACCACTCTCTTGGTATAGTGACCCCGGTCTGGCC





GGGGTGAGTCTGACCGGCGGGCTCTCTTATAAAGAGGATACTAAGGAACTGGTCGTAGCAAAAG





CGGGCGTTTATTACGTTTTTTTTCAGCTGGAGCTCAGGCGCGTGGTGGCCGGCGAGGGCAGTGG





CTCTGTGTCCCTGGCCCTGCACTTACAGCCCTTGAGAAGCGCTGCAGGTGCTGCCGCACTGGCT





TTAACTGTTGACCTCCCTCCGGCCTCTTCTGAAGCTAGAAACAGCGCTTTCGGCTTCCAAGGGC





GCCTGCTGCACCTGAGCGCAGGCCAGCGCTTAGGTGTGCACCTTCATACAGAGGCCAGGGCCCG





ACACGCTTGGCAGCTCACACAGGGTGCCACGGTTCTCGGACTTTTCCGCGTTACTCCCGAGATC





CCCGCTGGCCTCGGAAGTACTGGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTACTAAAG





GACGAGAAGGGCCAGAGTTAAGTCCAGATGACCCTGCTGGGCTTTTGGACCTGCGGCAGGGCAT





GTTCGCTCAACTGGTGGCTCAGAACGTGCTGCTGATCGATGGCCCCCTGAGTTGGTACAGCGAT





CCCGGGCTGGCAGGCGTGTCACTTACAGGGGGCCTCTCTTACAAGGAAGACACCAAGGAGTTAG





TGGTCGCTAAGGCTGGCGTGTATTACGTGTTCTTCCAACTGGAGCTGAGAAGGGTTGTGGCAGG





AGAGGGTAGCGGCAGCGTGTCTTTAGCCCTTCACTTGCAGCCCCTGAGGTCTGCTGCAGGTGCA





GCCGCTCTCGCGCTCACCGTGGATCTCCCCCCAGCCTCATCTGAAGCTAGGAACAGTGCATTTG





GCTTTCAGGGACGCTTGCTGCACCTCTCCGCTGGACAGAGGCTGGGCGTGCACCTTCACACAGA





GGCCCGTGCCAGGCATGCATGGCAGCTCACTCAGGGGGCAACAGTGCTGGGTCTCTTCCGCGTG





ACTCCTGAAATACCAGCTGGACTTGGCGGTGGAGGCAGCGGCGGAGGAGGATCTCGTGAGGGGC





CAGAACTGTCCCCCGATGACCCAGCCGGACTGCTCGATCTCAGACAGGGCATGTTCGCTCAGCT





TGTAGCCCAAAATGTCCTCCTGATTGACGGCCCTTTGAGCTGGTATAGTGATCCCGGCTTGGCC





GGGGTATCTCTGACCGGAGGCCTCTCCTACAAGGAAGACACCAAAGAGCTGGTGGTGGCAAAAG





CGGGGGTGTATTATGTGTTCTTTCAGCTCGAGCTGCGGAGAGTTGTGGCCGGGGAAGGGTCTGG





GAGCGTATCTCTTGCACTTCACCTGCAGCCCCTGCGCAGCGCCGCTGGAGCCGCCGCCCTTGCT





CTTACTGTGGATCTGCCTCCTGCTTCCTCAGAAGCACGCAACAGCGCCTTCGGCTTTCAAGGAC





GTCTCCTGCACTTGTCCGCAGGACAGAGGTTGGGCGTCCATTTACACACTGAGGCACGGGCACG





GCACGCTTGGCAGCTTACCCAGGGAGCCACCGTGCTGGGACTCTTTAGAGTGACACCCGAGATC





CCCGCTGGCTTGTGA





>Sequence ID 39: SI-55P10 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 40: SI-55P10 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC





CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG





CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA





AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA





GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG





AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT





TCAACAGGGGAGAGTGTTGA





>Sequence ID 41: SI-77P1 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGQGTKLTVLGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWVGVITGRDITYYA





SWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGG





SGGGGSQVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTD





YNTPFTSRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSAST





KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD





WLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEW





IACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLN





WYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVD





NVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG





KGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS





WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV





GGAFGGGTKVEIK





>Sequence ID 42: SI-77P1 heavy chain nucleotide sequence


GAAATCGTTATGACGCAGAGTCCCTCCACGCTCTCCGCTAGTGTCGGGGATCGCGTCATTATCA





CATGCCAGGCCTCCGAGTCAATCAGCAGCTGGCTTGCATGGTATCAACAGAAGCCGGGAAAAGC





TCCTAAATTGCTGATCTATGAAGCGTCAAAATTGGCGTCTGGTGTCCCATCTAGGTTCTCCGGC





TCTGGGTCTGGTGCGGAATTTACTTTGACAATCTCCAGTCTTCAACCAGACGATTTCGCTACCT





ACTACTGCCAAGGGTATTTCTATTTTATAAGCCGGACATATGTAAACTCCTTCGGCCAAGGAAC





AAAGTTGACTGTTCTTGGTGGCGGAGGCAGTGGTGGCGGGGGCAGCGGAGGTGGTGGTTCAGGG





GGTGGTGGGAGCGAAGTCCAATTGGTAGAAAGTGGCGGTGGTCTGGTGCAACCTGGTGGATCTC





TTCGCCTCTCATGCGCCGCTAGTGGCTTTACTATTTCAACTAATGCGATGAGCTGGGTTCGCCA





GGCCCCCGGCAAAGGACTTGAGTGGGTCGGCGTCATCACCGGCAGGGACATTACATACTATGCG





AGTTGGGCAAAGGGCAGGTTCACGATTAGCCGCGATACTTCAAAGAATACCGTTTACCTTCAAA





TGAATAGCTTGAGGGCGGAAGACACAGCTGTGTATTACTGCGCGAGGGATGGAGGTAGTTCCGC





CATAACTTCCAACAACATATGGGGACAAGGCACGCTGGTTACTGTCTCGAGTGGCGGTGGAGGG





TCCGGCGGTGGTGGATCACAAGTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTG





AGACGCTTAGTATAACGTGTACTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGAT





TCGGCAGGCACCCGGCAAAGGTTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGAC





TATAACACCCCCTTTACAAGTCGGTTCACAATTAGGAAAGATAATTCCAAAAATCAAGTTTATT





TCAAGTTGAGATCCGTCCGCGCGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTA





CTACGATTACGAATTTGCGTATTGGGGGCAAGGGACTCTTGTAACAGTCTCCAGTGCTAGCACC





AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC





TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT





GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC





GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC





CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC





ACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG





GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG





ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC





GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC





TGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA





AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG





GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC





TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA





GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGG





AGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT





CTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGG





ATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGT





TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA





GGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGG





GGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCG





GTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAAC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAG





CCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGAT





AATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCT





CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC





CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGG





AAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA





GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT





GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGG





GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG





GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA





CCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT





GGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





>Sequence ID 43: SI-77P1 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLTVLRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY





ACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 44: SI-77P1 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGG





CGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGCCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTT





ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA





ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG





TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG





CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC





GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT





GTTAG





>Sequence ID 45: SI-79P2 heavy chain amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLELKGGGGSGGGGSGGGGSGGGGSQ





VQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFTS





RFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





QVQLQESGGRLVQPGEPLSLTCKTSGIDLSSNAIGWVRQAPGKGLEWIGVIFGSGNTYYASWAK





GRFTISRSTSTVYLKMNSLRSEDTAIYYCARGGYSSDIWGQGTLVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVS





NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSG





GGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGIT





YDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGG





GGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKL





LIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTKVEIK





GGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSG





GNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGG





GGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKL





LIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAFGGGTKVEI





K





>Sequence ID 46: SI-79P2 heavy chain nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGTTGGAACTGAA





AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAA





GTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTA





CTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGG





TTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGT





CGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCG





CGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTA





TTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





CAAGTGCAGTTGCAAGAAAGTGGTGGTAGACTGGTTCAGCCTGGTGAACCCTTGTCACTGACGT





GTAAAACAAGCGGCATTGATCTGTCCTCTAACGCCATCGGATGGGTCCGACAGGCCCCAGGAAA





AGGTCTGGAGTGGATCGGAGTTATCTTCGGGAGCGGCAATACATACTACGCAAGCTGGGCAAAA





GGGCGATTTACGATATCACGGAGCACCTCTACAGTTTATTTGAAAATGAACTCCCTCCGGTCCG





AGGATACCGCGATATATTACTGTGCCAGAGGGGGGTACTCCTCTGATATCTGGGGGCAGGGTAC





ACTGGTTACAGTTTCATCCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC





AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG





TGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACA





GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAG





ACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCA





AATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTC





AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG





TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT





CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCC





AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC





CACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTG





CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG





AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGC





TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC





TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGC





GGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCC





TGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACT





TACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT





ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTT





TTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGA





GGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGA





TGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC





CAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC





CTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTG





GGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA





ACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





GGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGG





TCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCA





CATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGT





GGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGA





ACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAG





AGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGT





GGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGA





TGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGC





CAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC





CTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTG





GGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCA





GTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATC





AAATGA





>Sequence ID 47: SI-79P2 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DPVLTQSPSSLSASVGDRVTISCQSSQSVAKNNNLAWFQQKPGQAPKLLIYSASTLAAGVPSRF





SGSGSGTDFTLTISSVQPEDFATYYCSARDSGNIQSFGGGTKVEIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 48: SI-79P2 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCC





GATCCAGTTCTGACACAAAGTCCATCCAGCCTGTCTGCCTCAGTCGGCGACAGAGTGACCATCA





GTTGCCAGAGCTCACAGTCTGTGGCTAAGAACAACAACTTGGCGTGGTTCCAACAGAAACCTGG





ACAGGCTCCGAAATTGCTGATCTATTCTGCTTCCACGCTTGCTGCTGGTGTTCCTTCCCGCTTT





TCAGGTAGTGGTAGCGGGACAGACTTCACTTTGACTATAAGCAGCGTGCAGCCTGAAGATTTTG





CGACCTACTATTGTTCTGCTAGAGACAGTGGAAATATTCAGTCCTTTGGGGGGGGAACGAAGGT





CGAAATAAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG





AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC





AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG





CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC





AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA





GGGGAGAGTGTTGA





>Sequence ID 49: SI-79P3 heavy chain amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLELKGGGGSGGGGSGGGGSGGGGSQ





VQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFTS





RFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





QVQLQESGGRLVQPGEPLSLTCKTSGIDLSSNAIGWVRQAPGKGLEWIGVIFGSGNTYYASWAK





GRFTISRSTSTVYLKMNSLRSEDTAIYYCARGGYSSDIWGQGTLVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVS





NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSG





GGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGIT





YDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGG





GGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKL





LIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTKVEIK





GGGGSGGGGSGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGG





LSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPP





ASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGLGST





GSGSKPGSGEGSTKGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVS





LTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTV





DLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAG





LGGGGSGGGGSREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGG





LSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPP





ASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGL





>Sequence ID 50: SI-79P3 heavy chain nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGTTGGAACTGAA





AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAA





GTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTA





CTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGG





TTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGT





CGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCG





CGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTA





TTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





CAAGTGCAGTTGCAAGAAAGTGGTGGTAGACTGGTTCAGCCTGGTGAACCCTTGTCACTGACGT





GTAAAACAAGCGGCATTGATCTGTCCTCTAACGCCATCGGATGGGTCCGACAGGCCCCAGGAAA





AGGTCTGGAGTGGATCGGAGTTATCTTCGGGAGCGGCAATACATACTACGCAAGCTGGGCAAAA





GGGCGATTTACGATATCACGGAGCACCTCTACAGTTTATTTGAAAATGAACTCCCTCCGGTCCG





AGGATACCGCGATATATTACTGTGCCAGAGGGGGGTACTCCTCTGATATCTGGGGGCAGGGTAC





ACTGGTTACAGTTTCATCCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC





AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG





TGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACA





GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAG





ACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCA





AATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTC





AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG





TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT





CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCC





AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC





CACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTG





CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG





AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGC





TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC





TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGC





GGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCC





TGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACT





TACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT





ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTT





TTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGA





GGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGA





TGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC





CAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC





CTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTG





GGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCA





ACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





GGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGAGAGGGCCCCGAGCTGTCTCCTGATGACC





CAGCAGGCCTCTTGGACTTGCGGCAGGGTATGTTCGCTCAACTTGTGGCTCAGAATGTTCTGCT





CATTGATGGACCACTCTCTTGGTATAGTGACCCCGGTCTGGCCGGGGTGAGTCTGACCGGCGGG





CTCTCTTATAAAGAGGATACTAAGGAACTGGTCGTAGCAAAAGCGGGCGTTTATTACGTTTTTT





TTCAGCTGGAGCTCAGGCGCGTGGTGGCCGGCGAGGGCAGTGGCTCTGTGTCCCTGGCCCTGCA





CTTACAGCCCTTGAGAAGCGCTGCAGGTGCTGCCGCACTGGCTTTAACTGTTGACCTCCCTCCG





GCCTCTTCTGAAGCTAGAAACAGCGCTTTCGGCTTCCAAGGGCGCCTGCTGCACCTGAGCGCAG





GCCAGCGCTTAGGTGTGCACCTTCATACAGAGGCCAGGGCCCGACACGCTTGGCAGCTCACACA





GGGTGCCACGGTTCTCGGACTTTTCCGCGTTACTCCCGAGATCCCCGCTGGCCTCGGAAGTACT





GGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTACTAAAGGACGAGAAGGGCCAGAGTTAA





GTCCAGATGACCCTGCTGGGCTTTTGGACCTGCGGCAGGGCATGTTCGCTCAACTGGTGGCTCA





GAACGTGCTGCTGATCGATGGCCCCCTGAGTTGGTACAGCGATCCCGGGCTGGCAGGCGTGTCA





CTTACAGGGGGCCTCTCTTACAAGGAAGACACCAAGGAGTTAGTGGTCGCTAAGGCTGGCGTGT





ATTACGTGTTCTTCCAACTGGAGCTGAGAAGGGTTGTGGCAGGAGAGGGTAGCGGCAGCGTGTC





TTTAGCCCTTCACTTGCAGCCCCTGAGGTCTGCTGCAGGTGCAGCCGCTCTCGCGCTCACCGTG





GATCTCCCCCCAGCCTCATCTGAAGCTAGGAACAGTGCATTTGGCTTTCAGGGACGCTTGCTGC





ACCTCTCCGCTGGACAGAGGCTGGGCGTGCACCTTCACACAGAGGCCCGTGCCAGGCATGCATG





GCAGCTCACTCAGGGGGCAACAGTGCTGGGTCTCTTCCGCGTGACTCCTGAAATACCAGCTGGA





CTTGGCGGTGGAGGCAGCGGCGGAGGAGGATCTCGTGAGGGGCCAGAACTGTCCCCCGATGACC





CAGCCGGACTGCTCGATCTCAGACAGGGCATGTTCGCTCAGCTTGTAGCCCAAAATGTCCTCCT





GATTGACGGCCCTTTGAGCTGGTATAGTGATCCCGGCTTGGCCGGGGTATCTCTGACCGGAGGC





CTCTCCTACAAGGAAGACACCAAAGAGCTGGTGGTGGCAAAAGCGGGGGTGTATTATGTGTTCT





TTCAGCTCGAGCTGCGGAGAGTTGTGGCCGGGGAAGGGTCTGGGAGCGTATCTCTTGCACTTCA





CCTGCAGCCCCTGCGCAGCGCCGCTGGAGCCGCCGCCCTTGCTCTTACTGTGGATCTGCCTCCT





GCTTCCTCAGAAGCACGCAACAGCGCCTTCGGCTTTCAAGGACGTCTCCTGCACTTGTCCGCAG





GACAGAGGTTGGGCGTCCATTTACACACTGAGGCACGGGCACGGCACGCTTGGCAGCTTACCCA





GGGAGCCACCGTGCTGGGACTCTTTAGAGTGACACCCGAGATCCCCGCTGGCTTGTGA





>Sequence ID 51: SI-79P3 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DPVLTQSPSSLSASVGDRVTISCQSSQSVAKNNNLAWFQQKPGQAPKLLIYSASTLAAGVPSRF





SGSGSGTDFTLTISSVQPEDFATYYCSARDSGNIQSFGGGTKVEIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 52: SI-79P3 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGG





TGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCC





GATCCAGTTCTGACACAAAGTCCATCCAGCCTGTCTGCCTCAGTCGGCGACAGAGTGACCATCA





GTTGCCAGAGCTCACAGTCTGTGGCTAAGAACAACAACTTGGCGTGGTTCCAACAGAAACCTGG





ACAGGCTCCGAAATTGCTGATCTATTCTGCTTCCACGCTTGCTGCTGGTGTTCCTTCCCGCTTT





TCAGGTAGTGGTAGCGGGACAGACTTCACTTTGACTATAAGCAGCGTGCAGCCTGAAGATTTTG





CGACCTACTATTGTTCTGCTAGAGACAGTGGAAATATTCAGTCCTTTGGGGGGGGAACGAAGGT





CGAAATAAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG





AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC





AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG





CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC





AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA





GGGGAGAGTGTTGA





>Sequence ID 53: SI-55H11 heavy chain amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLTVLGGGGSGGGGSGGGGSGGGGSQ





VQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFTS





RFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVREAPGKCLEWIGVITGR






DITYYASWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTV






SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL





YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLF





PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT





VLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG





FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH





YTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPG





KGLEWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDY






AMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSI







SSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYS







WGNVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWV






RQAPGKGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGY






SDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNI







RTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYL







GTDYVGGAFGGGTKVEIK






>Sequence ID 54: SI-55H11 heavy chain nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTT





AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAA





GTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTA





CTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGG





TTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGT





CGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCG





CGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTA





TTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCC





GGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGG





TCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGC





AATGAGCTGGGTCCGCGAGGCTCCAGGGAAGTGTCTGGAGTGGATCGGAGTCATTACTGGTCGT





GATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGA





ACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAG





AGACGGTGGTTCTTCTGCTATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTG





TCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTG





GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTG





GAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTC





TACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCA





ACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA





AACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTC





CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGG





ACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAA





TGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC





GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCC





CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACAC





CCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGC





TTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGA





CCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA





GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC





TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCG





AGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTG





TGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGG





AAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACT





GGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAA





CAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTAC





GCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCG





GAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCC





TTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATT





AGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGG





CATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTAC





TCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGT





TGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGT





CCGGCGGTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGG





GTCCCTGAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTC





CGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACT





ACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCT





TCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTAT





AGTGATCCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGG





GAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCC





ATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATT





AGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG





CAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC





TCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTT





GGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 55: SI-55H11 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK






SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS






DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKVEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISC






TGTSSDVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEA






DYYCSSYGSSSTHVIFGGGTKVTVLGGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLS





LSCAASGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGRFTISRDDAKNSLYLQM





NSLRAEDTAVYYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 56: SI-55H11 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGG





CGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGCCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCTGTGGGAC





CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG





CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA





AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA





GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG





AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT





TCAACAGGGGAGAGTGTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTGGCGGAGGATCCCA





GTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGC





ACTGGAACCAGCAGTGACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCA





AAGCCCCCAAACTCATGATCTATGATGTCAGTGATCGGCCCTCAGGGGTGTCTGATCGCTTCTC





CGGCTCCAAGTCTGGCAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTGACGACGAGGCT





GATTATTACTGCAGCTCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGG





TGACCGTCCTAGGTGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGG





CGGCTCTCAGGTGCAATTGCAGGAGTCGGGGGGAGGCCTGGTCAAGCCTGGAGGGTCCCTGAGT





CTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCCGCCAGGCTC





CAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGA





CTCTGTGAAGGGCCGATTCACCATCTCCAGAGACGACGCCAAGAACTCACTGTATCTGCAAATG





AACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATCGTGGGGTGGGCTACT





TCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCTAGCTGA





>Sequence ID 57: SI-55H12 heavy chain amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLTVLGGGGSGGGGSGGGGSGGGGSQ





VQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFTS





RFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVREAPGKGLEWIGVITGR





DITYYASWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTV





SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL





YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLF





PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT





VLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG





FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH





YTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPG





KGLEWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDY





AMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSI





SSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYS





WGNVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWV





RQAPGKGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGY





SDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNI





RTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYL





GTDYVGGAFGGGTKVEIK





>Sequence ID 58: SI-55H12 heavy chain nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTT





AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAA





GTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTA





CTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGG





TTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGT





CGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCG





CGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTA





TTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCC





GGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGG





TCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGC





AATGAGCTGGGTCCGCGAGGCTCCAGGGAAGGGCCTGGAGTGGATCGGAGTCATTACTGGTCGT





GATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGA





ACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAG





AGACGGTGGTTCTTCTGCTATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTG





TCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTG





GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTG





GAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTC





TACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCA





ACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA





AACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTC





CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGG





ACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAA





TGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC





GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCC





CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACAC





CCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGC





TTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGA





CCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA





GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC





TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCG





AGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTG





TGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGG





AAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACT





GGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAA





CAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTAC





GCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCG





GAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCC





TTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATT





AGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGG





CATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTAC





TCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGT





TGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGT





CCGGCGGTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGG





GTCCCTGAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTC





CGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACT





ACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCT





TCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTAT





AGTGATCCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGG





GAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCC





ATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATT





AGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG





CAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC





TCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTT





GGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 59: SI-55H12 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISC





TGTSSDVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEA





DYYCSSYGSSSTHVIFGGGTKVTVLGGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLS





LSCAASGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGRFTISRDDAKNSLYLQM





NSLRAEDTAVYYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 60: SI-55H12 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGG





CGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGCCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGCGGGAC





CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG





CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA





AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA





GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG





AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT





TCAACAGGGGAGAGTGTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTGGCGGAGGATCCCA





GTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGC





ACTGGAACCAGCAGTGACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCA





AAGCCCCCAAACTCATGATCTATGATGTCAGTGATCGGCCCTCAGGGGTGTCTGATCGCTTCTC





CGGCTCCAAGTCTGGCAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTGACGACGAGGCT





GATTATTACTGCAGCTCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGG





TGACCGTCCTAGGTGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGG





CGGCTCTCAGGTGCAATTGCAGGAGTCGGGGGGAGGCCTGGTCAAGCCTGGAGGGTCCCTGAGT





CTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCCGCCAGGCTC





CAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGA





CTCTGTGAAGGGCCGATTCACCATCTCCAGAGACGACGCCAAGAACTCACTGTATCTGCAAATG





AACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATCGTGGGGTGGGCTACT





TCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCTAGCTGA





>Sequence ID 61: SI-77H4 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGQGTKLTVLGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWVGVITGRDITYYA





SWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGG





SGGGGSQVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKCLEWLGVIWSGGNTD





YNTPFTSRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSAST





KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD





WLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEW





IACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLN





WYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVD





NVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG





KGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS





WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV





GGAFGGGTKVEIK





>Sequence ID 62: SI-77H4 heavy chain nucleotide sequence


GAAATCGTTATGACGCAGAGTCCCTCCACGCTCTCCGCTAGTGTCGGGGATCGCGTCATTATCA





CATGCCAGGCCTCCGAGTCAATCAGCAGCTGGCTTGCATGGTATCAACAGAAGCCGGGAAAAGC





TCCTAAATTGCTGATCTATGAAGCGTCAAAATTGGCGTCTGGTGTCCCATCTAGGTTCTCCGGC





TCTGGGTCTGGTGCGGAATTTACTTTGACAATCTCCAGTCTTCAACCAGACGATTTCGCTACCT





ACTACTGCCAAGGGTATTTCTATTTTATAAGCCGGACATATGTAAACTCCTTCGGCCAAGGAAC





AAAGTTGACTGTTCTTGGTGGCGGAGGCAGTGGTGGCGGGGGCAGCGGAGGTGGTGGTTCAGGG





GGTGGTGGGAGCGAAGTCCAATTGGTAGAAAGTGGCGGTGGTCTGGTGCAACCTGGTGGATCTC





TTCGCCTCTCATGCGCCGCTAGTGGCTTTACTATTTCAACTAATGCGATGAGCTGGGTTCGCCA





GGCCCCCGGCAAAGGACTTGAGTGGGTCGGCGTCATCACCGGCAGGGACATTACATACTATGCG





AGTTGGGCAAAGGGCAGGTTCACGATTAGCCGCGATACTTCAAAGAATACCGTTTACCTTCAAA





TGAATAGCTTGAGGGCGGAAGACACAGCTGTGTATTACTGCGCGAGGGATGGAGGTAGTTCCGC





CATAACTTCCAACAACATATGGGGACAAGGCACGCTGGTTACTGTCTCGAGTGGCGGTGGAGGG





TCCGGCGGTGGTGGATCACAAGTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTG





AGACGCTTAGTATAACGTGTACTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGAT





TCGGCAGGCACCCGGCAAATGTTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGAC





TATAACACCCCCTTTACAAGTCGGTTCACAATTAGGAAAGATAATTCCAAAAATCAAGTTTATT





TCAAGTTGAGATCCGTCCGCGCGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTA





CTACGATTACGAATTTGCGTATTGGGGGCAAGGGACTCTTGTAACAGTCTCCAGTGCTAGCACC





AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC





TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT





GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC





GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC





CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC





ACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG





GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG





ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC





GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC





TGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA





AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG





GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC





TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA





GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGG





AGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT





CTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGG





ATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGT





TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA





GGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGG





GGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCG





GTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAAC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAG





CCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGAT





AATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCT





CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC





CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGG





AAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA





GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT





GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGG





GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG





GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA





CCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT





GGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 63: SI-77H4 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGCGTKLTVLRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY





ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGTSS





DVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCS





SYGSSSTHVIFGGGTKVTVLGGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLSLSCAA





SGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGRFTISRDDAKNSLYLQMNSLRA





EDTAVYYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 64: SI-77H4 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGG





CGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGCCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGATGCGGTACAAAGCTGACCGTTTT





ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA





ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG





TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG





CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC





GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT





GTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTGGCGGAGGATCCCAGTCTGCCCTGACTCA





GCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGT





GACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCA





TGATCTATGATGTCAGTGATCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGG





CAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTGACGACGAGGCTGATTATTACTGCAGC





TCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGGTGACCGTCCTAGGTG





GAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCA





ATTGCAGGAGTCGGGGGGAGGCCTGGTCAAGCCTGGAGGGTCCCTGAGTCTCTCCTGTGCAGCC





TCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGG





AGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGCCG





ATTGAGCATCTCCAGAGACGAGGCCAAGAACTGAGTGTATCTGCAAATGAACAGCCTGAGAGCT





GAGGACACGGCTGTGTATTACTGTGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACCGTCTCTAGCTGA





>Sequence ID 65: SI-77H5 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGQGTKLTVLGGGGSGGGGSGGGGSG





GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWVGVITGRDITYYA





SWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGG





SGGGGSQVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKCLEWLGVIWSGGNTD





YNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDYEFAYWGQGTLVTVSSAST





KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD





WLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEW





IACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLN





WYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVD





NVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG





KGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW





GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS





WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV





GGAFGGGTKVEIK





>Sequence ID 66: SI-77H5 heavy chain nucleotide sequence


GAAATCGTTATGACGCAGAGTCCCTCCACGCTCTCCGCTAGTGTCGGGGATCGCGTCATTATCA





CATGCCAGGCCTCCGAGTCAATCAGCAGCTGGCTTGCATGGTATCAACAGAAGCCGGGAAAAGC





TCCTAAATTGCTGATCTATGAAGCGTCAAAATTGGCGTCTGGTGTCCCATCTAGGTTCTCCGGC





TCTGGGTCTGGTGCGGAATTTACTTTGACAATCTCCAGTCTTCAACCAGACGATTTCGCTACCT





ACTACTGCCAAGGGTATTTCTATTTTATAAGCCGGACATATGTAAACTCCTTCGGCCAAGGAAC





AAAGTTGACTGTTCTTGGTGGCGGAGGCAGTGGTGGCGGGGGCAGCGGAGGTGGTGGTTCAGGG





GGTGGTGGGAGCGAAGTCCAATTGGTAGAAAGTGGCGGTGGTCTGGTGCAACCTGGTGGATCTC





TTCGCCTCTCATGCGCCGCTAGTGGCTTTACTATTTCAACTAATGCGATGAGCTGGGTTCGCCA





GGCCCCCGGCAAAGGACTTGAGTGGGTCGGCGTCATCACCGGCAGGGACATTACATACTATGCG





AGTTGGGCAAAGGGCAGGTTCACGATTAGCCGCGATACTTCAAAGAATACCGTTTACCTTCAAA





TGAATAGCTTGAGGGCGGAAGACACAGCTGTGTATTACTGCGCGAGGGATGGAGGTAGTTCCGC





CATAACTTCCAACAACATATGGGGACAAGGCACGCTGGTTACTGTCTCGAGTGGCGGTGGAGGG





TCCGGCGGTGGTGGATCACAGGTGCAGCTGAAGCAGTCAGGACCTGGCCTAGTGCAGCCCTCAC





AGAGCCTGTCCATCACCTGCACAGTCTCTGGTTTCTCATTAACTAACTATGGTGTACACTGGGT





TCGCCAGTCTCCAGGAAAGTGTCTGGAGTGGCTGGGAGTGATATGGAGTGGTGGAAACACAGAC





TATAATACACCTTTCACATCCAGACTGAGCATCAACAAGGACAATTCCAAGAGCCAAGTTTTCT





TTAAAATGAACAGTCTGCAATCTAATGACACAGCCATATATTACTGTGCCAGAGCCCTCACCTA





CTATGATTACGAGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCGAGTGCTAGCACC





AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC





TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT





GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC





GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC





CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC





ACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG





GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG





ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC





GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC





TGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA





AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG





GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC





TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA





GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGG





AGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT





CTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGG





ATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGT





TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGA





GGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGG





GGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCG





GTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAAC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAG





CCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGAT





AATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCT





CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC





CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGG





AAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA





GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT





GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGG





GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG





GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC





ATCTGTAGGAGACAGAGTCACCATCACCTGTGAGGCGAGTCAGAACATTAGGAGTTACTTATCC





TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT





CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA





CCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT





GGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 67: SI-77H5 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQV





TLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALK





SRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGS





DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSG





SGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGCGTKLELKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY





ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGTSS





DVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCS





SYGSSSTHVIFGGGTKVTVLGGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLSLSCAA





SGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGRFTISRDDAKNSLYLQMNSLRA





EDTAVYYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 68: SI-77H5 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGG





CGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTC





ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGCCTCACCTGTGCCT





TCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAA





AGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAA





AGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTG





ACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTTTGATTA





TTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCA





GACATCTTGCTGACTCAGTCTCCAGTCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCT





CCTGCAGGGCCAGTCAGAGTATTGGCACAAACATACACTGGTATCAGCAAAGAACAAATGGTTC





TCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATTCCTTCCAGGTTTAGTGGC





AGTGGATCAGGGACAGATTTTACTCTTAGCATCAACAGTGTGGAGTCTGAAGATATTGCAGATT





ATTACTGTCAACAAAATAATAACTGGCCAACCACGTTCGGTTGTGGGACCAAGCTGGAGCTGAA





ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA





ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG





TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG





CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC





GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT





GTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTGGCGGAGGATCCCAGTCTGCCCTGACTCA





GCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGT





GACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCA





TGATCTATGATGTCAGTGATCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGG





CAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTGACGACGAGGCTGATTATTACTGCAGC





TCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGGTGACCGTCCTAGGTG





GAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCA





ATTGCAGGAGTCGGGGGGAGGCCTGGTCAAGCCTGGAGGGTCCCTGAGTCTCTCCTGTGCAGCC





TCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGG





AGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGCCG





ATTGAGCATCTCCAGAGACGAGGCCAAGAACTGAGTGTATCTGCAAATGAACAGCCTGAGAGCT





GAGGACACGGCTGTGTATTACTGTGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACCGTCTCTAGCTGA





>Sequence ID 69: αEGFR H1 VH amino acid sequence


EVQLVESGGGLVQPGGSLRLSCKVSGFSLTNYGVHWVRQAPGKGLEWVGVIWSGGNTDYNTPFT





SRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARALTYYDYEFAYWGQGTLVTVSS





>Sequence ID 70: αEGFR H1 VH nucleotide sequence


GAAGTTCAGCTGGTGGAATCCGGCGGAGGATTGGTTCAACCTGGCGGCTCTCTGAGACTGTCCT





GTAAGGTGTCTGGCTTCTCCCTGACCAACTACGGCGTGCACTGGGTCCGACAGGCACCTGGAAA





AGGACTGGAATGGGTCGGAGTGATTTGGAGCGGCGGCAACACCGACTACAACACCCCTTTCACC





AGCCGGTTCACCATCTCTCGGGACACCTCCAAGAACACCGTGTACCTGCAGATGAACTCCCTGA





GAGCCGAGGACACCGCCGTGTACTATTGTGCTAGAGCCCTGACCTACTATGACTACGAGTTCGC





CTATTGGGGCCAGGGAACCCTGGTCACAGTCTCCTCT





>Sequence ID 71: αEGFR H1 VL amino acid sequence


EIVMTQSPSTLSASVGDRVIITCRASQSIGTNIHWYQQKPGKAPKLLIYYASESISGIPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQQNNNWPTTFGQGTKLTVL





>Sequence ID 72: αEGFR H1 VL nucleotide sequence


GAGATCGTGATGACCCAGTCTCCTTCCACACTGTCCGCCTCTGTGGGCGACAGAGTGATCATCA





CCTGTAGAGCCAGCCAGTCCATCGGCACCAACATCCACTGGTATCAGCAGAAGCCTGGCAAGGC





CCCTAAGCTGCTGATCTACTACGCCTCCGAGTCTATCAGCGGCATCCCCTCCAGATTCTCCGGC





TCTGGATCTGGCGCTGAGTTTACCCTGACAATCTCCAGCCTGCAGCCTGACGACTTCGCCACCT





ACTACTGCCAGCAGAACAACAACTGGCCCACCACCTTTGGCCAGGGCACCAAACTGACAGTTCT





T





>Sequence ID 73: αEGFR H4 VH amino acid sequence


QVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFT





SRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSS





>Sequence ID 74: CEGFR H4 VH nucleotide sequence


CAAGTTCAGTTGCAGCAGTCTGGCCCTGGCCTGGTCAAGCCTTCTGAGACACTGTCCATCACCT





GTACCGTGTCCGGCTTCTCCCTGACCAATTACGGCGTGCACTGGATCAGACAGGCCCCTGGCAA





AGGACTGGAATGGCTGGGAGTGATTTGGAGCGGCGGCAACACCGACTACAACACCCCTTTCACC





AGCCGGTTCACCATCACCAAGGACAACTCCAAGAACCAGGTGTACTTCAAGCTGCGGAGCGTGC





GGGCTGATGACACCGCCATCTACTACTGTGCTCGGGCCCTGACCTACTACGACTACGAGTTTGC





TTACTGGGGCCAGGGCACCCTGGTCACAGTTTCTTCT





>Sequence ID 75: αEGFR H4 VL amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLELK





>Sequence ID 76: αEGFR H4 VL nucleotide sequence


GAGATCGTGCTGACCCAGTCTCCTTCCACACTGTCTGTGTCTCCCGGCGAGAGAGCCACCTTCA





GCTGTAGAGCCTCTCAGTCCATCGGCACCAACATCCACTGGTATCAGCAGAAGCCCGGCAAGCC





TCCTCGGCTGCTGATTAAGTACGCCTCCGAGTCCATCAGCGGCATCCCTGACAGATTCTCCGGC





TCTGGCTCTGGCACCGAGTTTACCCTGACCATCTCCTCCGTGCAGTCCGAGGATTTCGCCGTGT





ACTACTGCCAGCAGAACAACAACTGGCCCACCACCTTTGGACCCGGCACCAAGCTGGAATTGAA





A





>Sequence ID 77: αEGFR H7 VH amino acid sequence


QVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGLEWLGVIWSGGNTDYNTPFT





SRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSS





>Sequence ID 78: αEGFR H7 VH nucleotide sequence


CAAGTTCAGTTGCAGCAGTCTGGCCCTGGCCTGGTCAAGCCTTCTGAGACACTGTCCATCACCT





GTACCGTGTCCGGCTTCTCCCTGACCAATTACGGCGTGCACTGGATCAGACAGGCCCCTGGCAA





AGGACTGGAATGGCTGGGAGTGATTTGGAGCGGCGGCAACACCGACTACAACACCCCTTTCACC





AGCCGGTTCACCATCACCAAGGACAACTCCAAGAACCAGGTGTACTTCAAGCTGCGGAGCGTGC





GGGCTGATGACACCGCCATCTACTACTGTGCTCGGGCCCTGACCTACTACGACTACGAGTTTGC





TTACTGGGGCCAGGGCACCCTGGTCACAGTTTCTTCT





>Sequence ID 79: αEGFR H7 VL amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGPGTKLTVL





>Sequence ID 80: αEGFR H7 VL nucleotide sequence


GAGATCGTGCTGACCCAGTCTCCTTCCACACTGTCTGTGTCTCCCGGCGAGAGAGCCACCTTCA





GCTGTAGAGCCTCTCAGTCCATCGGCACCAACATCCACTGGTATCAGCAGAAGCCCGGCAAGCC





TCCTCGGCTGCTGATTAAGTACGCCTCCGAGTCCATCAGCGGCATCCCTGACAGATTCTCCGGC





TCTGGCTCTGGCACCGAGTTTACCCTGACCATCTCCTCCGTGCAGTCCGAGGATTTCGCCGTGT





ACTACTGCCAGCAGAACAACAACTGGCCCACCACCTTTGGACCCGGCACCAAGCTGACAGTTCT





T





>Sequence ID 81: αEGFR H7 VH staple amino acid sequence


QVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKCLEWLGVIWSGGNTDYNTPFT





SRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSS





>Sequence ID 82: αEGFR H7 VH staple nucleotide sequence


CAAGTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGT





GTACTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAA





ATGTTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACA





AGTCGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCC





GCGCGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGC





GTATTGGGGGCAAGGGACTCTTGTAACAGTCTCCAGT





>Sequence ID 83: αEGFR H7 VL staple amino acid sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSG





SGSGTEFTLTISSVQSEDFAVYYCQQNNNWPTTFGCGTKLTVL





>Sequence ID 84: αEGFR H7 VL staple nucleotide sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCT





CTTGCAGGGCAAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACC





ACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTATCCCTGACCGCTTCTCTGGA





TCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGT





ATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGATGCGGTACAAAGCTGACCGTTTT





A





>Sequence ID 85: αCD19 SI-huBU12 H1 VH amino acid sequence


QVTLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPA





LKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 86: αCD19 SI-huBU12 H1 VH nucleotide sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGCCTCACCT





GTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCC





CGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCC





TTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATA





GCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTT





TGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT





>Sequence ID 87: αCD19 SI-huBU12 H1 VL amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKVTVL





>Sequence ID 88: αCD19 SI-huBU12 H1 VL nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTA





>Sequence ID 89: αCD3 284A10 staple VH amino acid sequence


EVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKCLEWIGVITGRDITYYASWAK





GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVST





>Sequence ID 90: αCD3 284A10 staple VH nucleotide sequence


GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCT





GTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAA





GTGCCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAA





GGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGA





GAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGCTATTACTAGTAA





CAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACA





>Sequence ID 91: αCD3 284A10 staple VL amino acid sequence


DNNMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKVEIK





>Sequence ID 92: αCD3 284A10 staple VL nucleotide sequence


GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCTGTGGGAC





CAAGGTGGAGATCAAA





>Sequence ID 93: αCD3 284A10 H1 VH amino acid sequence


EVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWVGVITGRDITYYASWAK





GRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSS





>Sequence ID 94: αCD3 284A10 H1 VH nucleotide sequence


GAAGTCCAATTGGTAGAAAGTGGCGGTGGTCTGGTGCAACCTGGTGGATCTCTTCGCCTCTCAT





GCGCCGCTAGTGGCTTTACTATTTCAACTAATGCGATGAGCTGGGTTCGCCAGGCCCCCGGCAA





AGGACTTGAGTGGGTCGGCGTCATCACCGGCAGGGACATTACATACTATGCGAGTTGGGCAAAG





GGCAGGTTCACGATTAGCCGCGATACTTCAAAGAATACCGTTTACCTTCAAATGAATAGCTTGA





GGGCGGAAGACACAGCTGTGTATTACTGCGCGAGGGATGGAGGTAGTTCCGCCATAACTTCCAA





CAACATATGGGGACAAGGCACGCTGGTTACTGTCTCGAGT





>Sequence ID 95: αCD3 284A10 H1 VL amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGQGTKLTVL





>Sequence ID 96: αCD3 284A10 H1 VL nucleotide sequence


GAAATCGTTATGACGCAGAGTCCCTCCACGCTCTCCGCTAGTGTCGGGGATCGCGTCATTATCA





CATGCCAGGCCTCCGAGTCAATCAGCAGCTGGCTTGCATGGTATCAACAGAAGCCGGGAAAAGC





TCCTAAATTGCTGATCTATGAAGCGTCAAAATTGGCGTCTGGTGTCCCATCTAGGTTCTCCGGC





TCTGGGTCTGGTGCGGAATTTACTTTGACAATCTCCAGTCTTCAACCAGACGATTTCGCTACCT





ACTACTGCCAAGGGTATTTCTATTTTATAAGCCGGACATATGTAAACTCCTTCGGCCAAGGAAC





AAAGTTGACTGTTCTT





>Sequence ID 97: αCD3 284A10 H1 staple VH amino acid sequence


EVQLVESGGGLVQPGGSLRLSCTASGFTISTNAMSWVRQAPGKCLEWVGVITGRDITYYASWAK





GRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVST





>Sequence ID 98: αCD3 284A10 H1 staple VH nucleotide sequence


GAGGTGCAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGAGGCTGAGCT





GCACCGCCAGCGGCTTCACCATCAGCACCAACGCCATGAGCTGGGTGAGGCAGGCCCCCGGCAA





GTGCCTGGAGTGGGTGGGCGTGATCACCGGCAGGGACATCACCTACTACGCCAGCTGGGCCAAG





GGCAGGTTCACCATCAGCAGGGACACCAGCAAGAACACCGTGTACCTGCAGATGAACAGCCTGA





GGGCCGAGGACACCGCCGTGTACTACTGCGCCAGGGACGGCGGCAGCAGCGCCATCACCAGCAA





CAACATCTGGGGCCAGGGCACCCTGGTGACCGTGTCGACA





>Sequence ID 99: αCD3 284A10 H1 staple VL amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKLTVL





>Sequence ID 100: αCD3 284A10 H1 staple VL nucleotide sequence


GAGATCGTGATGACCCAGAGCCCCAGCACCCTGAGCGCCAGCGTGGGCGACAGGGTGATCATCA





CCTGCCAGGCCAGCGAGAGCATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGC





CCCCAAGCTGCTGATCTACGAGGCCAGCAAGCTGGCCAGCGGCGTGCCCAGCAGGTTCAGCGGC





AGCGGCAGCGGCGCCGAGTTCACCCTGACCATCAGCAGCCTGCAGCCCGACGACTTCGCCACCT





ACTACTGCCAGGGCTACTTCTACTTCATCAGCAGGACCTACGTGAACAGCTTCGGCTGCGGCAC





CAAGCTGACCGTGCTG





>Sequence ID 101: αCD3 283E3 H1 VH amino acid sequence


QVQLQESGGRLVQPGEPLSLTCKTSGIDLSSNAIGWVRQAPGKGLEWIGVIFGSGNTYYASWAK





GRFTISRSTSTVYLKMNSLRSEDTAIYYCARGGYSSDIWGQGTLVTVSS





>Sequence ID 102: αCD3 283E3 H1 VH nucleotide sequence


CAAGTGCAGTTGCAAGAAAGTGGTGGTAGACTGGTTCAGCCTGGTGAACCCTTGTCACTGACGT





GTAAAACAAGCGGCATTGATCTGTCCTCTAACGCCATCGGATGGGTCCGACAGGCCCCAGGAAA





AGGTCTGGAGTGGATCGGAGTTATCTTCGGGAGCGGCAATACATACTACGCAAGCTGGGCAAAA





GGGCGATTTACGATATCACGGAGCACCTCTACAGTTTATTTGAAAATGAACTCCCTCCGGTCCG





AGGATACCGCGATATATTACTGTGCCAGAGGGGGGTACTCCTCTGATATCTGGGGGCAGGGTAC





ACTGGTTACAGTTTCATCC





>Sequence ID 103: αCD3 283E3 H1 VL amino acid sequence


DPVLTQSPSSLSASVGDRVTISCQSSQSVAKNNNLAWFQQKPGQAPKLLIYSASTLAAGVPSRF





SGSGSGTDFTLTISSVQPEDFATYYCSARDSGNIQSFGGGTKVEIK





>Sequence ID 104: αCD3 283E3 H1 VL nucleotide sequence


GATCCAGTTCTGACACAAAGTCCATCCAGCCTGTCTGCCTCAGTCGGCGACAGAGTGACCATCA





GTTGCCAGAGCTCACAGTCTGTGGCTAAGAACAACAACTTGGCGTGGTTCCAACAGAAACCTGG





ACAGGCTCCGAAATTGCTGATCTATTCTGCTTCCACGCTTGCTGCTGGTGTTCCTTCCCGCTTT





TCAGGTAGTGGTAGCGGGACAGACTTCACTTTGACTATAAGCAGCGTGCAGCCTGAAGATTTTG





CGACCTACTATTGTTCTGCTAGAGACAGTGGAAATATTCAGTCCTTTGGGGGGGGAACGAAGGT





CGAAATAAAG





>Sequence ID 105: αPDL1 PL221G5 staple VH amino acid sequence


EVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKCLEWIACIAAGSAGITYDAN





WAKGRETISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSS





>Sequence ID 106: αPDL1 PL221G5 staple VH nucleotide sequence


GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCT





GTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGG





GAAGTGCCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAAC





TGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGA





ACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTA





CGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGC





>Sequence ID 107: αPDL1 PL221G5 staple VL amino acid sequence


DIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSG





SGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGCGTKVEIK





>Sequence ID 108: αPDL1 PL221G5 staple VL nucleotide sequence


GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





CTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCTGCGGGACCAAGGT





GGAGATCAAA





>Sequence ID 109: α41BB 466F6 staple VH amino acid sequence


RSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKCLEYIGTISSGGNVYYASSARG





RFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSS





>Sequence ID 110: α41BB 466F6 staple VH nucleotide sequence


CGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTA





CTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGGCAGGCACCTGGGAAGTG





CCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGC





AGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAG





CCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCA





GGGAACCCTGGTCACCGTCTCTTCA





>Sequence ID 111: α41BB 466F6 staple VL amino acid sequence


DVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSG





SGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAFGCGTKVEIK





>Sequence ID 112: α41BB 466F6 staple VL nucleotide sequence


GACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





CCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC





AGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACTTGGAACCTGGCGATGCTGCAACTT





ACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCTGTGGGACCAA





GGTGGAGATCAAATGA





>Sequence ID 113: 4-1BB ligand trimer amino acid sequence


REGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGGLSYKEDTKELV





VAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPPASSEARNSAFG





FQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGLGSTGSGSKPGSGEG





STKGREGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGGLSYKEDT





KELVVAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPPASSEARN





SAFGFQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGLGGGGSGGGGS





REGPELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGGLSYKEDTKELV





VAKAGVYYVFFQLELRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDLPPASSEARNSAFG





FQGRLLHLSAGQRLGVHLHTEARARHAWQLTQGATVLGLFRVTPEIPAGL





>Sequence ID 114: 4-1BB ligand trimer nucleotide sequence


CGAGAGGGCCCCGAGCTGTCTCCTGATGACCCAGCAGGCCTCTTGGACTTGCGGCAGGGTATGT





TCGCTCAACTTGTGGCTCAGAATGTTCTGCTCATTGATGGACCACTCTCTTGGTATAGTGACCC





CGGTCTGGCCGGGGTGAGTCTGACCGGCGGGCTCTCTTATAAAGAGGATACTAAGGAACTGGTC





GTAGCAAAAGCGGGCGTTTATTACGTTTTTTTTCAGCTGGAGCTCAGGCGCGTGGTGGCCGGCG





AGGGCAGTGGCTCTGTGTCCCTGGCCCTGCACTTACAGCCCTTGAGAAGCGCTGCAGGTGCTGC





CGCACTGGCTTTAACTGTTGACCTCCCTCCGGCCTCTTCTGAAGCTAGAAACAGCGCTTTCGGC





TTCCAAGGGCGCCTGCTGCACCTGAGCGCAGGCCAGCGCTTAGGTGTGCACCTTCATACAGAGG





CCAGGGCCCGACACGCTTGGCAGCTCACACAGGGTGCCACGGTTCTCGGACTTTTCCGCGTTAC





TCCCGAGATCCCCGCTGGCCTCGGAAGTACTGGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGT





AGTACTAAAGGACGAGAAGGGCCAGAGTTAAGTCCAGATGACCCTGCTGGGCTTTTGGACCTGC





GGCAGGGCATGTTCGCTCAACTGGTGGCTCAGAACGTGCTGCTGATCGATGGCCCCCTGAGTTG





GTACAGCGATCCCGGGCTGGCAGGCGTGTCACTTACAGGGGGCCTCTCTTACAAGGAAGACACC





AAGGAGTTAGTGGTCGCTAAGGCTGGCGTGTATTACGTGTTCTTCCAACTGGAGCTGAGAAGGG





TTGTGGCAGGAGAGGGTAGCGGCAGCGTGTCTTTAGCCCTTCACTTGCAGCCCCTGAGGTCTGC





TGCAGGTGCAGCCGCTCTCGCGCTCACCGTGGATCTCCCCCCAGCCTCATCTGAAGCTAGGAAC





AGTGCATTTGGCTTTCAGGGACGCTTGCTGCACCTCTCCGCTGGACAGAGGCTGGGCGTGCACC





TTCACACAGAGGCCCGTGCCAGGCATGCATGGCAGCTCACTCAGGGGGCAACAGTGCTGGGTCT





CTTCCGCGTGACTCCTGAAATACCAGCTGGACTTGGCGGTGGAGGCAGCGGCGGAGGAGGATCT





CGTGAGGGGCCAGAACTGTCCCCCGATGACCCAGCCGGACTGCTCGATCTCAGACAGGGCATGT





TCGCTCAGCTTGTAGCCCAAAATGTCCTCCTGATTGACGGCCCTTTGAGCTGGTATAGTGATCC





CGGCTTGGCCGGGGTATCTCTGACCGGAGGCCTCTCCTACAAGGAAGACACCAAAGAGCTGGTG





GTGGCAAAAGCGGGGGTGTATTATGTGTTCTTTCAGCTCGAGCTGCGGAGAGTTGTGGCCGGGG





AAGGGTCTGGGAGCGTATCTCTTGCACTTCACCTGCAGCCCCTGCGCAGCGCCGCTGGAGCCGC





CGCCCTTGCTCTTACTGTGGATCTGCCTCCTGCTTCCTCAGAAGCACGCAACAGCGCCTTCGGC





TTTCAAGGACGTCTCCTGCACTTGTCCGCAGGACAGAGGTTGGGCGTCCATTTACACACTGAGG





CACGGGCACGGCACGCTTGGCAGCTTACCCAGGGAGCCACCGTGCTGGGACTCTTTAGAGTGAC





ACCCGAGATCCCCGCTGGCTTGTGA





>Sequence ID 115: NKG2D dimer amino acid sequence


FLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKVYSKE





DQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIENCST





PNTYICMQRTVGGGGSGGGGSGGGGSGGGGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNC





YQFFDESKNWYESQASCMSQNASLLKVYSKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSIL





SPNLLTIIEMQKGDCALYASSFKGYIENCSTPNTYICMQRTV





>Sequence ID 116: NKG2D dimer nucleotide sequence


TTTCTTAATTCCCTTTTCAACCAAGAGGTTCAGATCCCCTTGACTGAAAGCTATTGCGGCCCTT





GTCCGAAAAACTGGATATGTTACAAGAATAATTGTTACCAATTCTTCGACGAAAGCAAGAACTG





GTATGAGAGTCAGGCGTCTTGTATGAGTCAGAATGCCAGCCTGCTTAAGGTTTATTCAAAAGAA





GACCAGGATCTGCTTAAGTTGGTAAAGAGCTACCACTGGATGGGGCTGGTACATATCCCAACGA





ATGGGTCATGGCAGTGGGAGGACGGTTCTATTCTGAGTCCAAATCTCCTGACGATCATCGAAAT





GCAGAAAGGGGACTGTGCCCTGTATGCATCATCCTTCAAGGGGTACATCGAGAACTGCAGTACC





CCAAATACCTACATTTGTATGCAAAGAACGGTTGGAGGCGGTGGCTCAGGCGGAGGCGGCTCAG





GAGGTGGCGGTTCAGGAGGCGGCGGATCTTTCCTAAACTCATTATTCAACCAAGAAGTTCAAAT





TCCCTTGACCGAAAGTTACTGTGGCCCATGTCCTAAAAACTGGATATGTTACAAAAATAACTGC





TACCAATTTTTTGATGAGAGTAAAAACTGGTATGAGAGCCAGGCTTCTTGTATGTCTCAAAATG





CCAGCCTTCTGAAAGTATACAGCAAAGAGGACCAGGATTTACTTAAACTGGTGAAGTCATATCA





TTGGATGGGACTAGTACACATTCCAACAAATGGATCTTGGCAGTGGGAAGATGGCTCCATTCTC





TCACCCAACCTACTAACAATAATTGAAATGCAGAAGGGAGACTGTGCACTCTATGCCTCGAGCT





TTAAAGGCTATATAGAAAACTGTTCAACTCCAAATACGTACATCTGCATGCAAAGGACTGTGTA





G





>Sequence ID 117: SI-49P10 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKLTVLGSTGSGSKPGSGEGST





KGEVQLVESGGGLVQPGGSLRLSCTASGFTISTNAMSWVRQAPGKCLEWVGVITGRDITYYASW





AKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGGSG





GGGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKV





YSKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIE





NCSTPNTYICMQRTVASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP





APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYASTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDEL





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFS





SGYDMCWVRQAPGKCLEWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVG





DRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQP





DDFATYYCQQGYSWGNVDNVFGCGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTA





SGFTISSYHMQWVRQAPGKCLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAE





DTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVG





DRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEP





GDAATYYCQSTYLGTDYVGGAFGCGTKVEIK





>Sequence ID 118: SI-49P10 heavy chain nucleotide sequence


GAGATCGTGATGACACAATCTCCATCTACGCTCTCCGCCTCAGTGGGCGATAGAGTAATTATTA





CTTGTCAAGCCTCAGAGAGCATTTCATCATGGCTCGCCTGGTATCAGCAAAAGCCTGGGAAGGC





CCCCAAACTTCTCATCTATGAAGCATCAAAGCTGGCCTCTGGGGTTCCGTCTCGCTTCTCCGGG





TCCGGCAGTGGTGCAGAGTTTACGTTGACTATATCTTCTTTGCAACCTGACGATTTCGCAACAT





ATTATTGCCAGGGATACTTTTATTTTATTTCCCGAACATATGTTAACTCTTTTGGGTGCGGGAC





CAAACTCACTGTGCTGGGGTCTACCGGTAGTGGTTCTAAGCCTGGTTCAGGCGAAGGCAGTACG





AAAGGGGAAGTGCAACTGGTCGAAAGCGGTGGAGGGCTTGTTCAACCTGGAGGAAGCCTCCGCT





TGTCCTGCACGGCTAGCGGCTTTACAATAAGTACGAACGCCATGAGCTGGGTCCGGCAGGCTCC





AGGTAAGTGTCTCGAATGGGTGGGGGTCATAACAGGCAGGGACATTACCTACTACGCCAGTTGG





GCCAAGGGTCGATTTACCATTTCTAGAGATACATCCAAGAACACGGTGTACCTCCAGATGAATT





CTCTTAGGGCGGAAGACACAGCAGTATACTACTGCGCGCGAGATGGCGGGAGCAGTGCGATCAC





ATCCAACAACATCTGGGGTCAGGGCACTCTTGTCACGGTGTCGACTGGTGGTGGGGGTAGTGGC





GGCGGAGGTAGCTTTCTTAATTCCCTTTTCAACCAAGAGGTTCAGATCCCCTTGACTGAAAGCT





ATTGCGGCCCTTGTCCGAAAAACTGGATATGTTACAAGAATAATTGTTACCAATTCTTCGACGA





AAGCAAGAACTGGTATGAGAGTCAGGCGTCTTGTATGAGTCAGAATGCCAGCCTGCTTAAGGTT





TATTCAAAAGAAGACCAGGATCTGCTTAAGTTGGTAAAGAGCTACCACTGGATGGGGCTGGTAC





ATATCCCAACGAATGGGTCATGGCAGTGGGAGGACGGTTCTATTCTGAGTCCAAATCTCCTGAC





GATCATCGAAATGCAGAAAGGGGACTGTGCCCTGTATGCATCATCCTTCAAGGGGTACATCGAG





AACTGCAGTACCCCAAATACCTACATTTGTATGCAAAGAACGGTTGCTAGCACCAAGGGCCCAT





CGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCT





GGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC





GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCG





TGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACAC





CAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCA





GCACCTGAAGCCGCGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA





TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT





CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG





CAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG





GCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC





CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTG





ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG





AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA





CGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC





TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT





CTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGG





AGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGT





AGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAGTGGATCGCATGCA





TTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTC





CAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCC





GTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAA





CCCTGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTGGTGGCGGCTC





TGGAGGCGGCGGATCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGC





AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCC





ATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCT





GATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCG





GCTGCGGGACCAAGGTGGAGATCAAAGGTGGTGGCGGCTCTGGAGGAGGAGGGTCCGGACGGTC





GCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCC





TCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGGCAGGCACCTGGGAAGTGCCTGG





AGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATT





CACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAG





GACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAA





CCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTC





CGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGC





AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCC





ATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACTTGGAACCT





GGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTT





TCGGCTGTGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 119: SI-49P10 light chain moiety amino acid


sequence


DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSG





SGSGTDFTFTISSLQPEDIATYFCQHFDHLPLAFGGGTKVEIKGSTGSGSKPGSGEGSTKGQVQ





LQESGPGLVKPSETLSLTCTVSGGSVSSGDYYWTWIRQSPGKGLEWIGHIYYSGNTNYNPSLKS





RLTISIDTSKTQFSLKLSSVTAADTAIYYCVRDRVTGAFDIWGQGTMVTVSSGGGGSGGGGSGG





GGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKVY





SKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIEN





CSTPNTYICMQRTVRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 120: SI-49P10 light chain moiety nucleotide


sequence


GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA





CTTGCCAGGCGAGTCAGGACATCAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGC





CCCTAAACTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGA





AGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACAT





ATTTCTGTCAACACTTTGATCATCTCCCGCTCGCTTTCGGCGGAGGGACCAAGGTGGAAATTAA





AGGAAGTACTGGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTACTAAAGGACAGGTGCAG





CTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCT





CTGGTGGCTCCGTCAGCAGTGGTGATTACTACTGGACCTGGATCCGGCAGTCCCCAGGGAAGGG





ACTGGAGTGGATTGGACACATCTATTACAGTGGGAACACCAATTATAACCCCTCCCTCAAGAGC





CGACTCACCATATCAATTGACACGTCCAAGACTCAGTTCTCCCTGAAGCTGAGTTCTGTGACCG





CTGCGGACACGGCCATTTATTACTGTGTGCGAGATCGAGTGACTGGTGCTTTTGATATCTGGGG





CCAAGGGACAATGGTCACCGTCTCGAGCGGTGGCGGCGGCTCCGGGGGTGGCGGATCAGGTGGT





GGAGGCTCTTTCCTAAACTCATTATTCAACCAAGAAGTTCAAATTCCCTTGACCGAAAGTTACT





GTGGCCCATGTCCTAAAAACTGGATATGTTACAAAAATAACTGCTACCAATTTTTTGATGAGAG





TAAAAACTGGTATGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATAC





AGCAAAGAGGACCAGGATTTACTTAAACTGGTGAAGTCATATCATTGGATGGGACTAGTACACA





TTCCAACAAATGGATCTTGGCAGTGGGAAGATGGCTCCATTCTCTCACCCAACCTACTAACAAT





AATTGAAATGCAGAAGGGAGACTGTGCACTCTATGCCTCGAGCTTTAAAGGCTATATAGAAAAC





TGTTCAACTCCAAATACGTACATCTGCATGCAAAGGACTGTGCGTACGGTGGCTGCACCATCTG





TCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT





GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGT





AACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCC





TGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGG





CCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





>Sequence ID 121: αCD19 SI-huBU12 VH amino acid sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPA





LKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 122: αCD19 SI-huBU12 VH nucleotide sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCT





GTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCC





CGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCC





TTGAAAAGTCGGCTGAGCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATA





GCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTT





TGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGC





>Sequence ID 123: SI-49P6 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKLTVLGSTGSGSKPGSGEGST





KGEVQLVESGGGLVQPGGSLRLSCTASGFTISTNAMSWVRQAPGKCLEWVGVITGRDITYYASW





AKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGGSG





GGGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKV





YSKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIE





NCSTPNTYICMQRTVASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP





APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYASTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDEL





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFS





SGYDMCWVRQAPGKCLEWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVG





DRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQP





DDFATYYCQQGYSWGNVDNVFGCGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTA





SGFTISSYHMQWVRQAPGKCLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAE





DTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVG





DRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEP





GDAATYYCQSTYLGTDYVGGAFGCGTKVEIK





>Sequence ID 124: SI-49P6 heavy chain nucleotide sequence


GAGATCGTGATGACACAATCTCCATCTACGCTCTCCGCCTCAGTGGGCGATAGAGTAATTATTA





CTTGTCAAGCCTCAGAGAGCATTTCATCATGGCTCGCCTGGTATCAGCAAAAGCCTGGGAAGGC





CCCCAAACTTCTCATCTATGAAGCATCAAAGCTGGCCTCTGGGGTTCCGTCTCGCTTCTCCGGG





TCCGGCAGTGGTGCAGAGTTTACGTTGACTATATCTTCTTTGCAACCTGACGATTTCGCAACAT





ATTATTGCCAGGGATACTTTTATTTTATTTCCCGAACATATGTTAACTCTTTTGGGTGCGGGAC





CAAACTCACTGTGCTGGGGTCTACCGGTAGTGGTTCTAAGCCTGGTTCAGGCGAAGGCAGTACG





AAAGGGGAAGTGCAACTGGTCGAAAGCGGTGGAGGGCTTGTTCAACCTGGAGGAAGCCTCCGCT





TGTCCTGCACGGCTAGCGGCTTTACAATAAGTACGAACGCCATGAGCTGGGTCCGGCAGGCTCC





AGGTAAGTGTCTCGAATGGGTGGGGGTCATAACAGGCAGGGACATTACCTACTACGCCAGTTGG





GCCAAGGGTCGATTTACCATTTCTAGAGATACATCCAAGAACACGGTGTACCTCCAGATGAATT





CTCTTAGGGCGGAAGACACAGCAGTATACTACTGCGCGCGAGATGGCGGGAGCAGTGCGATCAC





ATCCAACAACATCTGGGGTCAGGGCACTCTTGTCACGGTGTCGACTGGTGGTGGGGGTAGTGGC





GGCGGAGGTAGCTTTCTTAATTCCCTTTTCAACCAAGAGGTTCAGATCCCCTTGACTGAAAGCT





ATTGCGGCCCTTGTCCGAAAAACTGGATATGTTACAAGAATAATTGTTACCAATTCTTCGACGA





AAGCAAGAACTGGTATGAGAGTCAGGCGTCTTGTATGAGTCAGAATGCCAGCCTGCTTAAGGTT





TATTCAAAAGAAGACCAGGATCTGCTTAAGTTGGTAAAGAGCTACCACTGGATGGGGCTGGTAC





ATATCCCAACGAATGGGTCATGGCAGTGGGAGGACGGTTCTATTCTGAGTCCAAATCTCCTGAC





GATCATCGAAATGCAGAAAGGGGACTGTGCCCTGTATGCATCATCCTTCAAGGGGTACATCGAG





AACTGCAGTACCCCAAATACCTACATTTGTATGCAAAGAACGGTTGCTAGCACCAAGGGCCCAT





CGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCT





GGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC





GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCG





TGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACAC





CAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCA





GCACCTGAAGCCGCGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA





TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT





CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG





CAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG





GCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC





CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTG





ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG





AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA





CGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC





TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT





CTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGG





AGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGT





AGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAGTGGATCGCATGCA





TTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTC





CAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCC





GTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAA





CCCTGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTGGTGGCGGCTC





TGGAGGCGGCGGATCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGC





AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCC





ATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCT





GATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCG





GCTGCGGGACCAAGGTGGAGATCAAAGGTGGTGGCGGCTCTGGAGGAGGAGGGTCCGGACGGTC





GCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCC





TCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGGCAGGCACCTGGGAAGTGCCTGG





AGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATT





CACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAG





GACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAA





CCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTC





CGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGC





AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCC





ATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACTTGGAACCT





GGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTT





TCGGCTGTGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 125: SI-49P6 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKLEIKGSTGSGSKPGSGEGSTKGQVTL





KESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSR





LTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGSGG





GGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKVY





SKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIEN





CSTPNTYICMQRTVRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 126: SI-49P6 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAGGG





AAGTACTGGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTACTAAAGGACAGGTCACATTG





AAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTG





GTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCT





TGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGG





CTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCG





AGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGG





GCAGGGGACTCTCGTCACGGTGTCCTCTGGTGGCGGCGGCTCCGGGGGTGGCGGATCAGGTGGT





GGAGGATCCTTCCTAAACTCATTATTCAACCAAGAAGTTCAAATTCCCTTGACCGAAAGTTAGT





GTGGCCCATGTCCTAAAAACTGGATATGTTACAAAAATAACTGCTACCAATTTTTTGATGAGAG





TAAAAACTGGTATGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATAC





AGCAAAGAGGACCAGGATTTACTTAAACTGGTGAAGTCATATCATTGGATGGGACTAGTACACA





TTCCAACAAATGGATCTTGGCAGTGGGAAGATGGCTCCATTCTCTCACCCAACCTACTAACAAT





AATTGAAATGCAGAAGGGAGACTGTGCACTCTATGCCTCGAGCTTTAAAGGCTATATAGAAAAC





TGTTCAACTCCAAATACGTACATCTGCATGCAAAGGACTGTGCGTACGGTGGCTGCACCATCTG





TCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT





GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGT





AACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCC





TGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGG





CCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





>Sequence ID 127: SI-49P7 heavy chain amino acid sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG





SGSGAEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGCGTKLTVLGSTGSGSKPGSGEGST





KGEVQLVESGGGLVQPGGSLRLSCTASGFTISTNAMSWVRQAPGKCLEWVGVITGRDITYYASW





AKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGGSG





GGGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKV





YSKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIE





NCSTPNTYICMQRTVASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP





APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYASTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDEL





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFS





SGYDMCWVRQAPGKCLEWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVG





DRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQP





DDFATYYCQQGYSWGNVDNVFGCGTKVEIKGGGGSGGGGSGREGPELSPDDPAGLLDLRQGMFA





QLVAQNVLLIDGPLSWYSDPGLAGVSLTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEG





SGSVSLALHLQPLRSAAGAAALALTVDLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEAR





ARHAWQLTQGATVLGLFRVTPEIPAGLGSTGSGSKPGSGEGSTKGREGPELSPDDPAGLLDLRQ





GMFAQLVAQNVLLIDGPLSWYSDPGLAGVSLTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVV





AGEGSGSVSLALHLQPLRSAAGAAALALTVDLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLH





TEARARHAWQLTQGATVLGLFRVTPEIPAGLGGGGSGGGGSREGPELSPDDPAGLLDLRQGMFA





QLVAQNVLLIDGPLSWYSDPGLAGVSLTGGLSYKEDTKELVVAKAGVYYVFFQLELRRVVAGEG





SGSVSLALHLQPLRSAAGAAALALTVDLPPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEAR





ARHAWQLTQGATVLGLFRVTPEIPAGL





>Sequence ID 128: SI-49P7 heavy chain nucleotide sequence


GAGATCGTGATGACACAATCTCCATCTACGCTCTCCGCCTCAGTGGGCGATAGAGTAATTATTA





CTTGTCAAGCCTCAGAGAGCATTTCATCATGGCTCGCCTGGTATCAGCAAAAGCCTGGGAAGGC





CCCCAAACTTCTCATCTATGAAGCATCAAAGCTGGCCTCTGGGGTTCCGTCTCGCTTCTCCGGG





TCCGGCAGTGGTGCAGAGTTTACGTTGACTATATCTTCTTTGCAACCTGACGATTTCGCAACAT





ATTATTGCCAGGGATACTTTTATTTTATTTCCCGAACATATGTTAACTCTTTTGGGTGCGGGAC





CAAACTCACTGTGCTGGGGTCTACCGGTAGTGGTTCTAAGCCTGGTTCAGGCGAAGGCAGTACG





AAAGGGGAAGTGCAACTGGTCGAAAGCGGTGGAGGGCTTGTTCAACCTGGAGGAAGCCTCCGCT





TGTCCTGCACGGCTAGCGGCTTTACAATAAGTACGAACGCCATGAGCTGGGTCCGGCAGGCTCC





AGGTAAGTGTCTCGAATGGGTGGGGGTCATAACAGGCAGGGACATTACCTACTACGCCAGTTGG





GCCAAGGGTCGATTTACCATTTCTAGAGATACATCCAAGAACACGGTGTACCTCCAGATGAATT





CTCTTAGGGCGGAAGACACAGCAGTATACTACTGCGCGCGAGATGGCGGGAGCAGTGCGATCAC





ATCCAACAACATCTGGGGTCAGGGCACTCTTGTCACGGTGTCGACTGGTGGTGGGGGTAGTGGC





GGCGGAGGTAGCTTTCTTAATTCCCTTTTCAACCAAGAGGTTCAGATCCCCTTGACTGAAAGCT





ATTGCGGCCCTTGTCCGAAAAACTGGATATGTTACAAGAATAATTGTTACCAATTCTTCGACGA





AAGCAAGAACTGGTATGAGAGTCAGGCGTCTTGTATGAGTCAGAATGCCAGCCTGCTTAAGGTT





TATTCAAAAGAAGACCAGGATCTGCTTAAGTTGGTAAAGAGCTACCACTGGATGGGGCTGGTAC





ATATCCCAACGAATGGGTCATGGCAGTGGGAGGACGGTTCTATTCTGAGTCCAAATCTCCTGAC





GATCATCGAAATGCAGAAAGGGGACTGTGCCCTGTATGCATCATCCTTCAAGGGGTACATCGAG





AACTGCAGTACCCCAAATACCTACATTTGTATGCAAAGAACGGTTGCTAGCACCAAGGGCCCAT





CGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCT





GGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC





GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCG





TGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACAC





CAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCA





GCACCTGAAGCCGCGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA





TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT





CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG





CAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG





GCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC





CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTG





ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG





AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA





CGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC





TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT





CTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGG





AGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGT





AGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGTGCCTGGAGTGGATCGCATGCA





TTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTC





CAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCC





GTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAA





CCCTGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTGGTGGCGGCTC





TGGAGGCGGCGGATCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGC





AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCC





ATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCT





GATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCG





GCTGCGGGACCAAGGTGGAGATCAAAGGTGGTGGCGGCTCTGGAGGAGGAGGGTCCGGACGAGA





GGGCCCCGAGCTGTCTCCTGATGACCCAGCAGGCCTCTTGGACTTGCGGCAGGGTATGTTCGCT





CAACTTGTGGCTCAGAATGTTCTGCTCATTGATGGACCACTCTCTTGGTATAGTGACCCCGGTC





TGGCCGGGGTGAGTCTGACCGGCGGGCTCTCTTATAAAGAGGATACTAAGGAACTGGTCGTAGC





AAAAGCGGGCGTTTATTACGTTTTTTTTCAGCTGGAGCTCAGGCGCGTGGTGGCCGGCGAGGGC





AGTGGCTCTGTGTCCCTGGCCCTGCACTTACAGCCCTTGAGAAGCGCTGCAGGTGCTGCCGCAC





TGGCTTTAACTGTTGACCTCCCTCCGGCCTCTTCTGAAGCTAGAAACAGCGCTTTCGGCTTCCA





AGGGCGCCTGCTGCACCTGAGCGCAGGCCAGCGCTTAGGTGTGCACCTTCATACAGAGGCCAGG





GCCCGACACGCTTGGCAGCTCACACAGGGTGCCACGGTTCTCGGACTTTTCCGCGTTACTCCCG





AGATCCCCGCTGGCCTCGGAAGTACTGGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTAC





TAAAGGACGAGAAGGGCCAGAGTTAAGTCCAGATGACCCTGCTGGGCTTTTGGACCTGCGGCAG





GGCATGTTCGCTCAACTGGTGGCTCAGAACGTGCTGCTGATCGATGGCCCCCTGAGTTGGTACA





GCGATCCCGGGCTGGCAGGCGTGTCACTTACAGGGGGCCTCTCTTACAAGGAAGACACCAAGGA





GTTAGTGGTCGCTAAGGCTGGCGTGTATTACGTGTTCTTCCAACTGGAGCTGAGAAGGGTTGTG





GCAGGAGAGGGTAGCGGCAGCGTGTCTTTAGCCCTTCACTTGCAGCCCCTGAGGTCTGCTGCAG





GTGCAGCCGCTCTCGCGCTCACCGTGGATCTCCCCCCAGCCTCATCTGAAGCTAGGAACAGTGC





ATTTGGCTTTCAGGGACGCTTGCTGCACCTCTCCGCTGGACAGAGGCTGGGCGTGCACCTTCAC





ACAGAGGCCCGTGCCAGGCATGCATGGCAGCTCACTCAGGGGGCAACAGTGCTGGGTCTCTTCC





GCGTGACTCCTGAAATACCAGCTGGACTTGGCGGTGGAGGCAGCGGCGGAGGAGGATCTCGTGA





GGGGCCAGAACTGTCCCCCGATGACCCAGCCGGACTGCTCGATCTCAGACAGGGCATGTTCGCT





CAGCTTGTAGCCCAAAATGTCCTCCTGATTGACGGCCCTTTGAGCTGGTATAGTGATCCCGGCT





TGGCCGGGGTATCTCTGACCGGAGGCCTCTCCTACAAGGAAGACACCAAAGAGCTGGTGGTGGC





AAAAGCGGGGGTGTATTATGTGTTCTTTCAGCTCGAGCTGCGGAGAGTTGTGGCCGGGGAAGGG





TCTGGGAGCGTATCTCTTGCACTTCACCTGCAGCCCCTGCGCAGCGCCGCTGGAGCCGCCGCCC





TTGCTCTTACTGTGGATCTGCCTCCTGCTTCCTCAGAAGCACGCAACAGCGCCTTCGGCTTTCA





AGGACGTCTCCTGCACTTGTCCGCAGGACAGAGGTTGGGCGTCCATTTACACACTGAGGCACGG





GCACGGCACGCTTGGCAGCTTACCCAGGGAGCCACCGTGCTGGGACTCTTTAGAGTGACACCCG





AGATCCCCGCTGGCTTGTGA





>Sequence ID 129: SI-49P7 light chain moiety amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKLEIKGSTGSGSKPGSGEGSTKGQVTL





KESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSR





LTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGSGG





GGSFLNSLFNQEVQIPLTESYCGPCPKNWICYKNNCYQFFDESKNWYESQASCMSQNASLLKVY





SKEDQDLLKLVKSYHWMGLVHIPTNGSWQWEDGSILSPNLLTIIEMQKGDCALYASSFKGYIEN





CSTPNTYICMQRTVRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 130: SI-49P7 light chain moiety nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAGGG





AAGTACTGGTTCTGGGTCTAAACCCGGTTCCGGCGAAGGTAGTACTAAAGGACAGGTCACATTG





AAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTG





GTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCT





TGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGG





CTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCG





AGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGG





GCAGGGGACTCTCGTCACGGTGTCCTCTGGTGGCGGCGGCTCCGGGGGTGGCGGATCAGGTGGT





GGAGGATCCTTCCTAAACTCATTATTCAACCAAGAAGTTCAAATTCCCTTGACCGAAAGTTACT





GTGGCCCATGTCCTAAAAACTGGATATGTTACAAAAATAACTGCTACCAATTTTTTGATGAGAG





TAAAAACTGGTATGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATAC





AGCAAAGAGGACCAGGATTTACTTAAACTGGTGAAGTCATATCATTGGATGGGACTAGTACACA





TTCCAACAAATGGATCTTGGCAGTGGGAAGATGGCTCCATTCTCTCACCCAACCTACTAACAAT





AATTGAAATGCAGAAGGGAGACTGTGCACTCTATGCCTCGAGCTTTAAAGGCTATATAGAAAAC





TGTTCAACTCCAAATACGTACATCTGCATGCAAAGGACTGTGCGTACGGTGGCTGCACCATCTG





TCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT





GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGT





AACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCC





TGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGG





CCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG





>Sequence ID 131: αCD19 SI-huBU12 VL amino acid sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGS





GSGNDHTLTISSMEPEDFATYYCFQGSVYPFTFGQGTKLEIK





>Sequence ID 132: αCD19 SI-huBU12 VL nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCA





CTTGCTCTGCATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCC





CAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTACCTAGCCGCTTCAGTGGTTCC





GGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATT





ATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAG





Claims
  • 1. A multi-specific antibody-like protein having a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, a first binding domain (D1) at the N-terminal,a second binding domain (D2) comprising a light chain moiety,a Fc region,a third binding domain (D3), anda fourth binding domain (D4) at the C-terminal,wherein the light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal, a sixth binding domain (D6) covalently attached to the N-terminal, or both, andwherein the D1, D2, D3, D4, D5 and D6 each has a binding specificity to a tumor antigen, an immune signaling antigen, or a combination thereof.
  • 2. The multi-specific antibody-like protein of claim 1, wherein the D2 comprises a dimer connected to CL and CH1, a Fab region, or a receptor.
  • 3-4. (canceled)
  • 5. The multi-specific antibody-like protein of claim 1, wherein the D2 comprises NKG2D, or wherein the D2 has a binding specificity to CD3 or a tumor associated antigen (TAA).
  • 6. The multi-specific antibody-like protein of claim 1, wherein the light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal, and wherein the multi-specific antibody-like protein is penta-specific.
  • 7. The multi-specific antibody-like protein of claim 1, wherein the light chain moiety comprises a sixth binding domain (D6) covalently attached to the N-terminal, and wherein the multi-specific antibody-like protein is penta-specific.
  • 8. The multi-specific antibody-like protein of claim 1, wherein the light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal and a sixth binding domain (D6) covalently attached to the N-terminal, and wherein the multi-specific antibody-like protein is hexa-specific.
  • 9-10. (canceled)
  • 11. The multi-specific antibody-like protein of claim 1, wherein the D1, D2, D3, D4, D5, and D6 is independently a scFv domain, a receptor, or a ligand, or wherein the D1, D2, D3, D4, D5, and D6 independently has a binding specificity to an antigen selected from a receptor on a T cell, an immune checkpoint receptor, a co-stimulation receptor, a receptor of a lymphocyte or a myeloid cell, a tumor associated antigen (TAA), a tissue antigen, a neoantigen, a tumor-specific antigen (TSA), a glycoprotein, or a combination thereof.
  • 12. The multi-specific antibody-like protein of claim 11, wherein the binding domain for the receptor on the T cell is adjacent to the binding domain for the tumor associated antigen (TAA).
  • 13. The multi-specific antibody-like protein of claim 11, wherein the binding domain for the receptor on the T cell is adjacent to the binding domain for the receptor of a lymphocyte or a myeloid cell.
  • 14. The multi-specific antibody-like protein of claim 11, wherein the receptor on the T cell comprises CD3, T cell receptor, or a complex thereof, wherein the immune checkpoint receptor comprises PD-L1, PD-1, TIGIT, TIM-3, LAG-3, CTLA4, BTLA, VISTA, PDL2, CD160, LOX-1, siglec-15, CD47, SIRPα, or a combination thereof, wherein the co-stimulating receptor comprises 4-1BB, CD28, OX40, GITR, CD40, ICOS, CD27, CD30, CD226, or a combination thereof, or wherein the tumor associated antigen (TAA) comprises EGFR, HER2, HER3, HER4, EGRFVIII, CD19, claudin 18.2, BCMA, CD20, CD33, CD123, CD22, CD30, ROR1, CEA, cMET, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TACI, TROP2, NKG2D ligands, PD-L1, or a combination thereof.
  • 15-17. (canceled)
  • 18. The multi-specific antibody-like protein of claim 1, wherein the D1 has a binding specificity to CD3, CD20, EGFR, or their derivative thereof.
  • 19. The multi-specific antibody-like protein of claim 1, wherein the D2 has the binding specificity to EGFR, CD3, HER2, MSLN, NKG2D ligands, or their derivative thereof.
  • 20. The multi-specific antibody-like protein of claim 1, wherein the D3 has a binding specificity to PD-L1.
  • 21. The multi-specific antibody-like protein of claim 1, wherein the D4 comprise a 4-1BBL trimer or has a binding specificity to 4-1BB or its derivative thereof.
  • 22. The multi-specific antibody-like protein of claim 1, wherein the D5 has a binding specificity to HER3, CD19, NKG2D ligands, or their derivative thereof.
  • 23. The multi-specific antibody-like protein of claim 1, wherein the D6 has a binding specificity to CD19.
  • 24. (canceled)
  • 25. A guidance and navigation control protein, comprising a dimer of the multi-specific antibody-like protein of claim 1.
  • 26. An isolated nucleic acid sequence, encoding an amino acid sequence of the multi-specific antibody-like protein of claim 1.
  • 27. An expression vector, comprising the isolated nucleic acid sequence of claim 26.
  • 28. A host cell comprising the isolated nucleic acid sequence of claim 26, wherein the host cell is a prokaryotic cell or a eukaryotic cell.
  • 29. A method for producing a multi-specific antibody or monomer, comprising culturing a host cell comprising an isolated nucleic acid sequence such that the DNA sequence encoding the multi-specific antibody-like protein of claim 1 is expressed, and purifying said multi-specific antibody-like protein.
  • 30. A method for treating or preventing a cancer, an autoimmune disease, or an infectious disease, said method comprising administering a pharmaceutical composition comprising a purified multi-specific antibody of claim 29.
  • 31. An immuno-conjugate comprising a cytotoxic agent or an imaging agent linked to the multi-specific antibody of claim 29 through a linker, wherein the linker comprises an ester bond, an ether bond, an amid bond, a disulphide bond, an imide bond, a sulfone bond, a phosphate bond, a phosphorus ester bond, a peptide bond, a hydrophobic poly(ethylene glycol) linker, or a combination thereof.
  • 32. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and one of the multi-specific antibodies of claim 29, the immuno-conjugate of claim 31, or both.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 62/931,307 filed Nov. 6, 2019, U.S. Provisional Application Ser. No. 62/984,731 filed Mar. 3, 2020, and U.S. Provisional Application Ser. No. 62/991,042 filed Mar. 17, 2020 under 35 U.S.C. 119(e), the entire disclosures of which are incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/059230 11/5/2020 WO
Provisional Applications (3)
Number Date Country
62931307 Nov 2019 US
62984731 Mar 2020 US
62991042 Mar 2020 US