Guidance tool and method for use

Information

  • Patent Grant
  • 9149286
  • Patent Number
    9,149,286
  • Date Filed
    Monday, November 14, 2011
    13 years ago
  • Date Issued
    Tuesday, October 6, 2015
    9 years ago
Abstract
Devices and methods for orthopedic support are disclosed. The device can have a first rigid section hingedly attached to a second rigid section. A tunnel through the bone near the implantation target site can be created. The device can be inserted into and pass through and out of the tunnel to the target site.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


A device, such as a flexible spinal fusion cage, which can articulate or bend in such a way that it will be able to be implanted through bone (i.e., in a trans-osseous path, through bone, such as the Ilium and/or sacrum joint approach into L5-S1 is disclosed.


2. Description of the Related Art


Typical lateral approach fusion implants (e.g., Nuvasive XLIF, Medtronic DLIF) are not able to implant into some orthopedic target sites for a variety of reasons.


Boney obstacles can impair access. FIGS. 1a and 1b illustrates the challenge of gaining lateral access to L4-L5 and L5-S1. The lower spine is shown, including the L3, L4, L5 and S1 vertebra (or Sacrum) 10a, 10b, 10c and 10d, and the L4-L5 intervertebral disc space 12a, L5-S1 intervertebral disc space 12b, and the Ilium or Iliac bone 14, the Sacral ala 16, the Sacroiliac joint 18, and the Symphysis pubis 20. Note the position of the Ilium relative to the direct lateral access pathway to the intervertebral disc spaces 12a and 12b. The Ilium 14 obstructs the target site for typical approaches to the respective disc spaces 12a and 12b.


Some doctors create large windows through the Ilium 14 to gain direct line of site access. This is a highly invasive approach removing a significant portion of bone, and requires significant surgical skill. Because of the inflexibility of the typical implants, the windows must be large enough to fit the entire implant cross section.



FIGS. 3 and 4 illustrate that the approach angle of a tissue retractor relative to the location of the fusion site is an issue. FIGS. 3 and 4 illustrate typical L4-L5 and L5-S1 approach paths 22a and 22b, respectively, for delivering the support device to the L4-L5 and L5-S1 intervertebral disc spaces 12a and 12b. The L4-L5 and L5-S1 approach angles 24a and 24b, respectively, can be measured from the transverse plane. The tissue retractor used in lateral fusion surgery provide line of site access to the disc space requiring a fusion cage insertion, the retractor “holds” tissue out of the way. They also create a working channel to pass tools through, they protect neural tissue, and they anchor to the superior and inferior vertebral bodies relative the disk space requiring fusion. Anything below the dashed line is very hard if not impossible to reach with direct lateral approach due to the Ilium. Even if the retractors are tilted as shown by the dotted line, the ability to insert an implant that is the length of the end plates of the VB's L4-L5 would be very difficult.


Furthermore, with the retractor positioned in the plane/direction as shown by the purple arrows above, the angle formed between the arrow tip and the VB's end plates would make inserting a monolithic fusion cage virtually impossible. A close up of this is shown below. A typical lateral fusion cage (gold) is the width of the end plate (a shown by the dotted lines) by the height if the disk (as shown by the parallel horizontal lines). The stiff, monolithic implant can be difficult if not impossible to turn around the corner at the lateral and/or anterior edge of the L5-S1 intervertebral space, as shown (as the bold circular dot) in FIG. 5.


Typical treatments for L5-S1 include anterior approaches, through the belly, TLIF (transforaminal lumbar interbody fusion), and PLIF (Posterior lumbar interbody fusion). Anterior and TLIF approaches are the most used. Both approaches are typically invasive.


SUMMARY OF THE INVENTION

Support or fixation devices and methods for access, controlling (steering) implants, and modifying implants are disclosed.


The device can be an implantable fixation device, such as a flexible fusion cage. The device can articulate and/or bend so the device can be delivered through a channel in one or more bones and into the L5-S1 intervertebral space, as shown in FIG. 6. The implant can articulate and be steered. For example, the implant can have hinges and/or be flexible.


A stand-alone fusion system and method is disclosed that can include deploying the support device with the transosseous delivery approach and optionally deploying screws and using targeting fixtures.





SUMMARY OF THE INVENTION


FIGS. 1
a and 1b are direct anterior and anterior perspective views, respectively, of a variation of the lower lumbar spine.



FIG. 2 is a lateral view of the lower lumbar spine with L5 and S1 shown in phantom views behind the Ilium.



FIG. 3 is the view of the spine shown in FIG. 1 with L5-S1 and L4-L5 implant device delivery paths and approach angles.



FIG. 4 is the view of the spine shown in FIG. 2 with the L5-S1 implant device delivery path and approach angle.



FIG. 5 is the view of the spine shown in FIG. 3 with L5-S1 implant device shown being inserted along a delivery path at an approach angle.



FIGS. 6 and 7 are anterior and lateral views, respectively, of a variation of a delivery path for an implant device through the sacrum.



FIGS. 8
a and 8b illustrate variations of and a delivery method for the implant support device.



FIGS. 9
a through 9c illustrate a variation of the implant support device and variations of delivery methods.



FIG. 10 illustrates a variation of a plug and a method for delivering the plug into the delivery channel through bone.



FIGS. 11
a and 11b are superior views of the sacrum and variations Of methods for deploying multiple implant devices.



FIGS. 12
a and 12b are side and side perspective views of a variation of a deployment tool for deploying support devices in the spine with a reamer wire and an anchor wire.



FIGS. 13
a through 13c are side, side perspective, and rear perspective views of the tool in FIGS. 12a and 12b with an x-ray guidance pin.



FIG. 14 is a close up view of a wire holding fixture of the tool of FIGS. 12a and 12b with a second reamer wire.



FIGS. 15
a and 15b are side perspective and top perspective views, respectively, of the tool of FIGS. 12a and 12b in a partially disassembled configuration.



FIG. 15
c is a close up view, of the tool of FIGS. 12a and 12b in a partially disassembled configuration.



FIGS. 16
a and 16b are a side view and a close-up side view, respectively, of a skeleton showing various visualization perspectives of a target site.



FIGS. 17
a through 17g are an anterior-posterior view from the posterior, a lateral view, an isometric view, an anterior-posterior view from the anterior, an inlet view, a close-up inlet view, and an outlet view, respectively, of a variation of a method for placing an anchor wire at a target site.



FIG. 18
a is a lateral view of a variation of a method of placement of the wire guide, the anchor wire and the reamer wire, and an additional side perspective view of the guide tool for illustrative purposes.



FIGS. 18
b and 18c are outlet and inlet views, respectively, of a variation of the placement of the reamer wire.



FIG. 19 is a posterior view of a variation of a method for placing the reamer wire with the anchor wire and wire guide tool.



FIG. 20 is a posterior view of a skeleton with reamer wire in place and the wire guide and anchor wire removed from the target site.



FIGS. 21
a and 21b are perspective and sectional views of the target site during a variation of a method of placing the anchor wire and reamer wire in the spine.



FIG. 22 illustrates a method of removing the anchor wire and leaving the reamer wire at the target site.



FIG. 23
a illustrates a method for inserting the reamer wire into the intervertebral space.



FIG. 23
b illustrates a method for creating a bone channel and inserting a reamer into the intervertebral space.



FIG. 24 illustrates a variation of the results from a discectomy performed on the target intervertebral space.



FIGS. 25
a through 25d illustrate variations of the support device.



FIGS. 26
a through 26d illustrate a variation of a method for delivering a variation of the support device through the bone channel, into the intervertebral space, and filling the bone channel.



FIGS. 27
a through 27c illustrate variations of the support device.



FIGS. 28
a through 28d illustrate a variation of a method for delivering a variation of the support device through the bone channel, into the intervertebral space, and filling the bone channel.



FIGS. 29
a through 29d illustrate a variation of a method for delivering a variation of the support device through the bone channel, into the intervertebral space, and filling the bone channel.





DETAILED DESCRIPTION

Implantable orthopedic support devices and methods for implanting the same that can provide surgeons access, control (i.e., steering, translation) and implant into the L5-S1 disc space are disclosed. The method can deliver the device traveling through a tunnel drilled through the Sacroiliac joint into the L5-S1 joint space. The delivery method can be performed without disrupting nerves and major blood vessels. The implant has additional hardware to “lock” or stabilize the implant and the connect L5 to S1.


The support device can be one or more flexible fusion devices, such as unibody or multi-part cages or stents. The support devices can articulate and/or bend, for example to be able to make a sharp turn from exiting a transosseous bone channel and entering into the L5-S1 disc space. The support devices can have rigid sections connected by articulatable axes (e.g., hinges), or rigid sections and flexible lengths, or be flexible along the entire length of the device, or combinations thereof.



FIGS. 6 and 7 illustrate a transosseous access bone channel 30, as shown with dashed (i.e., phantom) lines, to the L5-S1 disc space 12b through the Ala 16 of the sacrum. The bone channel 30 can be drilled through the Ilium and/or sacrum, for example having a lateral port or opening on the lateral side of the Iliam, as shown in FIG. 7. The bone channel 30 can pass through the Sacroiliac joint 18. The bone channel 30 can be drilled with a straight and/or flexible or articulatable drill. The bone channel 30 can be hollow.


The bone channel 30 can be fitted with a collar or tube in contact with the perimeter of the channel. The collar or tube can be attached to a trocar. The tube can be delivered into the channel separate from a trocar. The tube can be hollow. The tube can have one, two, three or more lumens. The implant device can be inserted through the tube. The tube lumen(s) can have a low friction internal surface. For example, the internal surface can be coated with PTFE (e.g., Teflon).



FIG. 7 illustrates a lateral view of the lower spine. The transosseous access bone channel 30 can be oblique and non-perpendicular to the spine. Hence, the delivery (i.e., access) path 22 to the L4-L5 or L5-S1 disc space 12a or 12b can be oblique and non-perpendicular. The transosseous delivery path 22 can be through bone (e.g., through the Ilium and sacrum). The delivery path 22 can bypass all or major arteries, veins, muscles, nerves or combinations thereof. The delivery path 22 can pass through soft tissue, including skin fat and muscle, lateral to the Ilium 14.


Access tools, such as elongated retractors that can be fit through the move soft tissue out of the way to create the channel 30. The distal end of the implanted support device 32 can be atraumatic, but come to a rounded tip to spread or dissect tissue away from the delivery path 22 during translation of the device 32 during delivery.


One or more deployment tools can delivery and deploy the support device 32. The deployment tools can allow the support device 32 to passively articulate or flex in response to resistive forces from surrounding tissue and/or actively articulate or flex the support device upon control inputs (e.g., pushing, twisting, button pressing, level manipulation, etc.) from the user. The interface or connection between the deployment tool and the support device 32 can bend, flex, steer, or a combination thereof. The deployment tool or tools can clear out the disk space 12 (i.e., performing a partial or complete discectomy). The deployment tools can articulate and/or flex and follow the delivery paths shown for the support device herein, for example to reach the L4-L5 and/or L5-S1 disc space 12a and/or 12b. The deployment tools can be pre-angled to reach and remove disk material, for example the deployment tool can be rigid and bent or flex.


A stand alone fusion system and method can include utilizing the support device in a transosseous approach optionally with additional securing and/or targeting devices.



FIGS. 8
a through 9 illustrate that additional securing devices 34 and methods can be used to fix, stabilize, help heal, minimize or prevent migration of the support device 32, reduce bone (e.g., L4, L5, S1, and combinations thereof) movement relative to the support device 32 and relative to the other bones, and combinations thereof. The supplement stabilization elements or securing devices 34 can secure the position of the flexible implant to the surrounding bone. The support device 32 can completely fuse to the ends plates of the surrounding bone (e.g., L4, L5, S1, and combinations thereof). Other securing devices 34 can be used in combination with the support device 32 such as facet fusion elements, pedicle-based screws and rods, anterior plates, and combinations thereof.



FIG. 8
a illustrates that the support device 32 can be long enough and/or inserted at a length into the disc space 12 so that a portion of the support device 32 extends into the bone channel 30 after the insertion is complete. The portion of the support device 32 inside of the bone channel 30 can be straight or at an angle to the portion of the support device 32 directly adjacent and on the outside of the bone channel 30. For example, the support device 32 can be flexible through the distal ⅔ of the length of the support device 32 and the proximal ⅓ of the length of the support device 32 can be rigid or not flexible, but articulatable with the distal ⅔ of the length of the support device 32. The proximal ⅓ of the length of the support device 32 can remain within the sacrum access tunnel or bone channel 30 after the support device 32 is positioned at the target site in the disc space 12. The stiff proximal section 36 of the support device 32 can be hingedly and/or flexibly connected to the distal length of the support device 32. The support device 32 can be fixed to the bone channel 30, for example at the proximal length 36 of the support device 32. The proximal end 36 of the support device 32 can be glued, impacted, screwed, or a combination thereof, to the bone channel 30 and/or to a collar in the bone channel 30. The support device proximal rigid end 36 can be made from any material listed herein including PEEK, allograft, Ti, PE, PMMA, milled bone, steel, or combinations thereof.


The proximal and/or distal ends of the support device 32 can have a porous bone ingrowth matrix on the outer surfaces of the support device 32, for example promoting bone growth into the support device fixing the support device to surrounding bone (e.g., in the bone channel and/or L4, L5, and/or S1). The proximal, distal or entire length of the support device can be hollow, cannulated, threaded, have teeth, be expandable, barbed, be multiple pieces, or combinations thereof (e.g., to promote bone growth into the support device).



FIG. 8
b illustrates that an interference screw 34 can anchor the stiff or flexible proximal section 36 of the support device 32. The interference screw 34 can be inserted between the proximal length 36 of the support device 32 and the bone channel 30 and/or between the distal length of the support device 32 and the adjacent bone 10. The interference screw 34 can pressure-fit the support device 32 against the bone channel 30 and/or adjacent bone 10. The interference screw 34 can be inserted parallel with the longitudinal axis of the length of the support device 32 adjacent to the interference screw 34. The interference screw 34 can be made from any material listed herein including PEEK, allograft, Ti, PE, PMMA, milled bone, steel, or combinations thereof.



FIGS. 9
a through 9c illustrate that the support device can have additional transosseous single, double, or crossing lag screws, bolts, spears, tacks, or other anchors or securing devices (referred to as “screws”) 34 inserted through or around the support device 32 and into surrounding bone 10 and/or soft tissue. The screws 34 can pass through the support device 32 or outside the support device 32 in front, back and/or to the side of the support device 32 (i.e., anteriorly, posteriorly and/or laterally).


The outer diameter of the screws 34 can be larger, smaller or the same as the inner diameter of the bone channel (or tube lumen) through which the respective screw 34 is to be delivered. The proximal ends of the screws 34 can be threaded or smooth. The proximal end of the screws 34 can be can be inside a larger diameter plug smaller than, equal to or larger than the bone channel or tube lumen inner diameter. The screws 34 can be rigid.



FIG. 9
a illustrates that a single screw 34 can be inserted through a bone channel 30. FIG. 9b illustrates that a first screw 34a and a second screw 34b can be inserted through a bone channel 30. FIG. 9c illustrates that a first screw 34a can be inserted through a first bone channel 30a and a second screw 34b can be inserted through a second bone channel 34b. The first bone channel 30a can be on the same or opposite side of the target site from the second bone channel 30b.



FIG. 10 illustrates that a blocking plug 38 can be inserted into the bone channel 30 and/or tube lumen. The plug 38 can have an outer diameter smaller than, equal to or larger than the inner diameter of the bone channel 30 and/or tube lumen. The plug 38 can taper to a smaller diameter on the distal end of the plug 38. The plug 38 can be fixed to the screw 34. The plug 38 can be surrounded by bone cement and/or an adhesive. The plug 38 can be used to center the screw 34. The plug 38 can interference fit with the bone channel 30, for example preventing and/or minimizing migration of the support device 32 and/or screw 34. The plug 38 and/or screw 34 can penetrate or not penetrate the support device 32. The plug 38′ and/or screw 34 can make contact with (e.g., interference fit or bump up against) the support device 32, for example to hold or brace the support device 32 in a deployed position (e.g., expanded, properly articulated, and/or located). The plug 38 can be inserted to a depth to push on the proximal end 36 of the support device 32 (e.g., to position the support device). The plug 38 can be positioned behind the support device 32 (e.g., posterior spine), pushing the support device 32 forward (e.g., distally or anteriorly) and blocking the access pathway (e.g., bone channel 30). The blocking plug can seat against and/or block lateral channel port.



FIGS. 11
a and 11b illustrate that first and second support devices 32a and 32b can be inserted into the target site. The first support device 32a can be anterior or posterior, lateral or medial, superior or inferior (e.g., in contact or in different disc spaces such as a first support device 32a in the L4-L5 space 12a and the second support device 32b in the L5-S1 space 12b), or a combination thereof of the second support device 32b. For example, different diameter support devices 32 can be inserted through different diameter bone channels 30 and/or tube lumens (e.g., larger diameter support devices 32 can be inserted through larger diameter bone channels 30 and smaller diameter support devices 32 can be inserted through smaller bone channels 30).


Each bone channel 30 can have a medial bone channel port 40a and a lateral bone channel port 40b. The lateral bone channel port 40b can be on the lateral side of the Ilium. The medial bone channel port 40a can be at the bone face exposed to the target site, such as adjacent to and in fluid communication with the respective intervertebral disc space.



FIGS. 12
a and 12b illustrate a guidance tool (i.e., guide tool) 42 that can be used to guide wires used to access the target site, such as the L5-S1 vertebral joint space 12b. The guide tool 42 can have a handle 44, a guide base 46, a wire holding fixture 48 or combinations thereof. The handle 44 can be releasably or fixedly attached to the guide base 46. The guide base 46 can be fixedly or releasably attached to the wire holding fixture 48. The guide base 46 can have a fixture lock 50 that can attach and release the wire holding fixture 48 to the guide base 46.


The wire holding fixture 48 can have an outer fixture 52a and an inner fixture 52b. The outer fixture 52a and the inner fixture 52b can have radii of curvature 54a and 54b, respectively, with respect to a target lateral axis 56a from about 4 in. to about 10 in., more narrowly from about 5.5 in. to about 7 in., for example about 5.5 in. or about 6 in., and radii of curvature with respect to a target vertical axis 56b from about 4 in. to having no curvature with respect to the target vertical axis 56b, more narrowly from about 4 in. to about 10 in., more narrowly from about 5.5 in. to about 7 in., for example about 5.5 in. or about 6 in. The outer and inner fixture radii of curvature about the target lateral axis can be the same or different as the radii of curvature about the target vertical axis.


The outer fixture 52a can be radially separated by a gap from the inner fixture 52b.


The outer fixture 52a and inner fixture 52b can have one or more reamer wire holes. The outer fixture 52a can have outer lateral reamer wire holes 58a and outer central reamer wire holes 58b. The inner fixture 52b can have inner lateral reamer wire holes 60a and inner central reamer wire holes 60b. Each central reamer wire hole can have a lateral reamer wire hole on one or both lateral sides of the central reamer wire hole, forming reamer wire hole rows. The outer reamer wire holes can align radially with the inner reamer wire holes.


The reamer wire hole rows can be spread apart by about 5° increments. The reamer wire holes can be replaced or used in addition to a reamer wire holder on a track that can be slid up and down the wire holding fixture (e.g., like a protractor), being adjustable, for example, in infinitely small increments within the range allowed by the fixture.


The wire holding fixture 48 can have a visualization pin hole 62, for example, at the terminal end of the wire holding fixture 48 away from the guide base 46. The visualization pin hole 62 can be configured to hold a pin substantially parallel to the anchor wire 64.


The anchor wire 64 can extend from the guide base 46 colinear or parallel to the handle 44. The anchor wire 64 can be releasably attached to the guide base 46. The guide base 46 can have an anchor lock 66 to releasably fix the anchor wire 64 to the guide base 46. A length of the anchor wire 64 can be slid into the guide base 46 before securing, locking or otherwise fixing the anchor wire 64 to the guide base 46.


The reamer wire 68 can slide through the desired reamer wire holes 58 and/or 60. The reamer wire 68 can be slidably received by the reamer wire holes 58 and/or 60. The reamer wire 68 can be cannulated.


The use of the word “wire” to describe the anchor wire 64, reamer wire 68 or other wires is exemplary only. The wires can be hollow or solid and can be rods, leaders, staffs, shafts, needles, trocars, pins, bars, cylinders, poles, bars, or combinations thereof. The wires can have cross-sections of circular, oval, square, triangular, rectangular shape, or combinations thereof. The anchor wire can have a diameter from about 1 mm to about 10 mm, more narrowly from about 3 mm to about 5 mm, for example about 3 mm or about 4 mm. The reamer wire can have a diameter from about 1 mm to about 10 mm, more narrowly from about 2 mm to about 4 mm, for example about 3 mm or about 4 mm.


The reamer wire 68 can extend to intersect and contact the anchor wire 64 at a guide target location 70. The reamer wire distal terminal tip 72 and the anchor wire distal terminal tip 74 can meet or touch or almost meet or touch at the guide target location 70. The guide target location 70 can be the origin location for the target lateral axis 56a and the target vertical axis 56b. The guide target location 70 can be placed in or adjacent to the desired target vertebral disc space 12 and/or the medial bone channel port 40a.



FIGS. 13
a and 13b illustrate that a visualization guidance pin 76 can extend through the visualization pin hole. The visualization guidance pin can be parallel with the anchor wire. The visualization guidance pin 76, anchor wire 64 and reamer wire 66 can be co-planar with any combination or all of each other.


The visualization guidance pin 76 can be highly visible for a chosen visualization technique. For example, all or part of the visualization guidance pin 76 can be radiopaque, echogenic, radioactive, magnetic, fluorescing, electrically conductive or resistant, or combinations thereof. The visualization guidance pin can be configured to be observed with the naked eye, MRI, x-ray, CAT scanning, sonograms, fluoroscopy, or combinations thereof.


The guidance tool 42 can hold the guidance pin 76 at an orientation and position so the guidance pin 76 does or does not contact or pierce the patient.


The distal terminal end of the reamer wire can have a reamer wire tip 72. The distal terminal end of the anchor wire can have an anchor wire tip 74. The wire tips 72 and 74 can have chisel tip, bullet tip, needle tip and/or hollow tip configurations.


One or both of the wire tips 72 and/or 74 can have a visualization marking the same or different from the remainder of the respective wire. For example, the wire tips can be radiopaque whether or not the remainder of the wire is radiopaque. Similarly, the wire tips can be echogenic, magnetic, radioactive, fluorescing, electrically conductive or resistant, or combinations thereof.



FIG. 14 illustrates that a first reamer wire 68a can be inserted through the outer and inner central reamer wire holes 58b and 60b in a second reamer wire hole row 78b (as enumerated from the terminal end of the wire holding fixture, although the enumeration is arbitrary and can start at either end). A second reamer wire 68b can be inserted through the outer and inner lateral reamer wire holes 58a and 60a in a third reamer wire hole row 78c. The first and second reamer wires 68a and 68b can be inserted concurrently or subsequently and can be withdraw concurrently or subsequently from the wire holding fixture 48. For example, if the user is not satisfied with the path of the first reamer wire 68a, the user can withdraw the first reamer wire 68a and re-insert the first reamer wire 68a through a different set of holes or insert a second reamer wire 68b through a different set of holes. Also for example, if the user wishes to create two access paths to the target site, the user can insert a first reamer wire 68a through a first set of holes and a second reamer wire 68b through a second set of holes.



FIGS. 15
a through 15c illustrate that the guide tool 42 can be disassembled. For example, the wire holding fixture can be separated from and re-attached to the guide base. During use, after the reamer wire is in position with the reamer wire tip at the target site, the wire holding fixture can be separated from the guide base. The fixture lock can be turned to release the wire holding fixture from the guide base. The anchor wire can then be removed from the target site by pulling the handle and the wire holding fixture can be slid off the reamer wire, leaving only the reamer wire at the target site.



FIG. 15
c illustrates that the wire holding fixture 48 can have a fixture interface 80, such as a tongue, and the guide base 46 can have a base interface 82 such as a groove. The fixture interface can releasably and slidably attach to the base interface. The fixture interface and the base interface can be configured to prevent or minimize separation of the wire holding fixture from the guide base in any direction other than parallel with the anchor wire.



FIGS. 16
a and 16b illustrate inlet views, perpendicular to the S1 end plate, shown by arrow 84a, and outlet view parallel to the S1 end plate, shown by arrow 84b, used for visualizing a target site of the L5-S1 vertebral joint. FIG. 16b shows the Ilium in partial see-through to illustrate the L5-S1 joint. The visualizations can be performed using a C-arm and fluoroscopy, MRI, CAT, x-rays, sonograms, or combinations thereof.



FIGS. 17
a through 17g illustrate the initial anchor wire placement parallel to the S1 end plate, through the Ilium and sacroiliac joint, for example, performed with lateral view visualization (e.g., X-ray). The anchor wire 64 can be inserted along an anchor wire delivery path 86 through the Ilium. The anchor wire tip 74 can be inserted through the bone. The anchor wire tip 74 can be positioned in the S1 vertebra 10d inferior and adjacent to the S1 vertebral body endplate, as indicated by anchor wire target site position “x” 88 in FIG. 17b. The anchor wire can be guided by lateral fluoroscopy x-ray parallel to the S1 end plate. The anchor wire can be attached to the guide base or not attached to the guide base during the insertion of the anchor wire and placement of the anchor wire tip at the target site in the S1 vertebra.



FIG. 17
f illustrates an exemplary anterior to posterior target range, as shown by arrows 90, of a targeted placement of the anchor wire tip 74 in the S1 vertebra. For example, the resulting exit point of the access hole into the S1 endplate 92b can correlate to the desired position of the medial bone channel port. FIG. 17g illustrates an exemplary depth range, as shown by arrows, of a targeted placement of the anchor wire tip in the S1 vertebra.


The anchor wire can be delivered through the Ilium and/or ala.



FIG. 18
a illustrates that after the anchor wire 64 is inserted into the target site, for example with the anchor wire tip 74 adjacent to the S1 vertebral body end plate 92b, the guide base 46 and the remainder of the guide tool 42 can be attached to the proximal end of the anchor wire 64 extending from the body. The anchor wire 64 can be fixed to the guide base 46 with the anchor lock 66. The guide tool is shown in partial see-through for illustrative purposes.


The reamer wire can then be inserted through a desired set of reamer wire holes. The approach angle of the reamer wire can be controlled by the selected reamer wire hole position. A position closer to the terminal end of the wire holder fixture can deliver the reamer wire at a higher angle relative to the anchor wire. The reamer wire can be inserted through the Ilium and ala, for example by pushing, turning or hammering, to position the reamer wire tip adjacent to or in contact with the anchor wire tip.


The reamer wire and/or the anchor wire can be delivered to the target site substantially entirely through bone after insertion into the Ilium (e.g., through superficial tissue and then into the Ilium and then through bone the entire length until the wire reaches the inside of the S1 vertebral body endplate).


The visualization guidance pin can be inserted into the visualization pin hole. The visualization guidance pin can extend parallel to the anchor wire on the outside of the patient. The visualization guidance pin can make no puncture or other wound in the patient during use.



FIGS. 18
b and 18c illustrate that the visualization guidance pin can form a plane with the reamer wire and the anchor wire in the inlet view to insure that the delivery of the reamer wire is in the desired orientation. The plane over the sacrum ala can be indicated, as shown in FIG. 18c, when the wires and pin align to form a single line in the inlet view. The guide tool can be rotated and/or the reamer pin can be inserted in a different reamer pin hole to correct for a misaligned reamer wire. (The reamer wire is shown as a dashed line in FIG. 18c for clarity.) The alignment indicated in FIGS. 18b and 18c can create the delivery path or check that the delivery path of the reamer wire passes directly through the ala when the reamer wire tip meets the anchor wire tip near the S1 end plate.



FIG. 19 illustrates in an anterior-posterior view that the anchor wire and/pr reamer wire can pass through the Ilium, sacroiliac joint, ala, and sacrum. The wire holding fixture is labeled as “wire guide” in FIG. 19.



FIG. 20 illustrates that the guide tool and anchor wire can be removed from the body. A cannulated reamer can then be inserted over the reamer wire, as described below.



FIGS. 21
a and 21b illustrate the reamer wire tip and anchor wire tip positioned at the guide target location. The guide target location, anchor wire tip, and reamer wire tip can be inside the sacrum bone adjacent to the endplate. The guide target location, anchor wire tip, and reamer wire tip can be (an exemplary distance) of about 5-10 mm under the endplate in the sacrum, for example in the cancellous bone of the sacrum.



FIG. 22 illustrates that the anchor wire can be removed from the target site, leaving the reamer wire at the target site.



FIG. 23
a illustrates that the reamer wire can be forced, as shown by arrow, through the S1 vertebral end plate and into the intervertebral disc.



FIG. 23
b illustrates that a cannulated reamer can be translated, as shown by arrow, over the reamer wire. The reamer can enter the intervertebral space. The reamer can open a hole in the S1 vertebral plate, or the S1 vertebral plate hole can be opened first by the reamer wire, as shown in FIG. 23a.


The reamer can rotate, as shown by arrows, reaming a bone channel through the pathway defined by the reamer wire. The bone channel can extend from the Ilium to the S1 vertebral end plate. The reamer can have a reamer diameter from about 10 mm to about 23 mm, for example about 15.5 mm. The bone channel can have a bone channel diameter approximately equal to the reamer diameter.


During reaming, the reamer can experience more resistance from the cortical S1 vertebral end plate, indicating to the user that the reamer is approaching the intervertebral space (due to the change in bone density). The reaming can be performed with a visualization technique (e.g., fluoroscopy) to indicate the position of the reamer with respect to the surrounding anatomy. The reamer can ream the bone channel into the L5 vertebra or stop short of reaming the L5 vertebra (as shown). The bone reamed during the reaming process can be preserved for use later as a filler. The reamer can be threaded and/or have one or more cutting blades extending radially outward. Irrigation (e.g., or saline solution, anesthetic, antibiotics, or combinations thereof) and suction can be delivered to the treatment site before, during and/or after reaming, wire insertion, support device insertion, bone filler delivery, or combinations thereof.



FIG. 24 illustrates that a discectomy can be performed through the bone channel. The L5-S1 intervertebral disc can be morselized and removed by suction through the bone channel.


The bone channel can have a bone channel longitudinal axis. The bone channel longitudinal axis can form an access angle with respect to the plane defined by the S1 vertebral end plate. The access angle can be from about 1° to about 90°, more narrowly from about 3° to about 40°, yet more narrowly from about 5° to about 30°, yet more narrowly from about 10° to about 25°, for example about 15°, about 20°, or about 25°.



FIG. 25
a illustrates that the support device can have one, two, three or more support device segments in a linear arrangement rotatably attached to each other. The support device segments can have rectangular configurations. The support device segments can be rigid and/or flexible. For example, the support device segments can be configured to expand in height when compressed in length. After insertion into an intervertebral space, the support device segments can be longitudinally compressed and expand in height to fill the intervertebral space.


The support device segments can be attached to adjacent support device segments with one, two or three hinges, such as top hinges, middle hinges, bottom hinges, or a combination thereof. Although single hinge attachments between segments can be used, a multiple hinge attachment can be used when the hinges away from the rotation can detach, such as pop-fit hinges.



FIG. 25
b illustrates that the adjacent segments can be rotatably attached by a single hinge. The hinge can be in a hinge track that can allow the hinge to translate vertically (as shown) or longitudinally with respect to the support device segment.



FIG. 25
c illustrates that that support device segments can have a hinge link extending from a single end of the segment. The hinge link can have the hinge at the terminal end of the hinge link. The hinge link can have a smaller height than the remainder of the support device, for example allowing adjacent support device segments greater range of rotational motion with respect to the adjacent support device segment. For example, the support device segments can rotate up to about 300°, more narrowly up to about 270°, yet more narrowly up to about 240°, before interference fitting against the adjacent segment.



FIG. 25
d illustrates that the support device segments can have a first hinge link extending from one end of the segment and a second hinge link extending from a second end of the segment. The hinge links from adjacent segments can attach to each other at a hinge. The support device segments can rotate up to about 330°, more narrowly up to about 270°, before interference fitting against the adjacent segment.



FIG. 26
a illustrates that the support device can be inserted, as shown in translation by the arrow, through the bone channel. FIG. 26b illustrates that the support device can articulate as the support device enters the intervertebral space from the bone channel. The spine can be placed in tension and/or the L5 vertebra can be distended from the S1 vertebra, for example to hold or increase the height of the L5-S1 intervertebral space before the support device is inserted into the intervertebral space. For example, the patient's shoulders and legs or hip can be pulled apart, remote mechanical retractors (e.g., a scissors jack) can be inserted through the bone channel and deployed in the intervertebral space, a high-strength balloon can be inserted through the bone channel into the intervertebral space and be inflated, or a combination thereof to move the L5 end plate away from the S1 end plate.


The support device can enter the intervertebral space free of obstruction or can interference fit against (i.e., bump into) the L5 vertebral end plate, further passively articulating the support device segments and redirecting the support device further into the intervertebral bone space. The support device segments can be actively articulatable with respect to each other, for example by control through releasable cables or wires extending through a hollow channel in the support device and connected to the individual support device segments.



FIG. 26
c illustrates that the support device can be completely positioned within the intervertebral space. The support device can be the entire width of the intervertebral space or less than the entire width of the intervertebral space (as shown). The support device can be longitudinally compressed, which for example can result in height expansion of the support device (such as for support devices with a structure having expandable struts or compressible expansion ramps between support device end plates).


A hollow channel or cavity in the support device and/or the intervertebral space outside of the support device can be filled with a filler, such as morselized bone (including autograft of the bone removed to create the hone channel), BMP, any material listed herein, or combinations thereof.


The support device can be fixed to the end plates with screws, staples, anchors, brads, hooks, epoxy or combinations thereof. For example, anchoring screws can be delivered through the bone channel.



FIG. 26
d illustrates that the bone channel can be filled with a bone channel filler, such as morselized bone (including autograft of the bone removed to create the bone channel), BMP, any material listed herein, or combinations thereof.



FIG. 27
a illustrates that the support device segments can each have proximal and distal chamfers, bevels, notches. The proximal and distal chamfers can be on the top side of the support device segments.



FIG. 27
b illustrates that the top of the distal-most support device segment of the support device can have a distal chamfer. The top of the proximal-most support device segment of the support device can have a proximal chamfer. The remainder of the support device segments can have no significant chamfers.



FIG. 27
c illustrates that the tops of the distal-most and proximal-most support device segments of the support device can have distal chamfers and proximal chamfers. The remainder of the support device segments can have no significant chamfers.



FIG. 28
a illustrates that the support device can be inserted, as shown in translation by the arrow, through the bone channel. FIG. 28b illustrates that the support device can articulate as the support device enters the intervertebral space from the bone channel. The support device can move clear of the L5 vertebral end plate during the initial insertion, for example the anterior chamfer of the anterior support device segment can allow the support device segments to initial move into the intervertebral space without pressing against the L5 end plate. During continue insertion of the support device, the support device segments can press against the L5 intervertebral end plate.



FIG. 28
c illustrates that similar to the support device shown and described in FIG. 26c, the support device can be positioned in the intervertebral space. The support device can be fixed to the surrounding tissue. The support device and/or the intervertebral space can be filled with filler.



FIG. 28
d illustrates that similar to the support device shown and described in FIG. 26d, the bone channel can be filled with filler.



FIGS. 29
a through 29d illustrate that the support device can be flexible. The support device can have one or more support device segments (shown as a single segment for illustrative purposes). The support device can be elastically or plastically deformable during insertion from the bone channel intro the intervertebral space. As shown in FIG. 29b, the support device can flexible, and elastically (i.e., resiliently) or plastically bend around the turn from the bone channel into the intervertebral space.



FIG. 29
c illustrates that similar to the support device shown and described in FIG. 26c, the support device can be positioned in the intervertebral space. The support device can be fixed to the surrounding tissue. The support device and/or the intervertebral space can be filled with filler.



FIG. 29
d illustrates that similar to the support device shown and described in FIG. 26d, the bone channel can be filled with filler.


Any or all elements of the device and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyethylene teraphathalate (PET)/polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, (PET), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ketone (PEK), polyether ether ketone (PEEK), poly ether ketone ketone (PEKK) (also poly aryl ether ketone ketone), nylon, polyether-block co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyethyl acrylate (PEA), polydioxanone (PDS), and pseudo-polyamino tyrosine-based acids, extruded collagen, silicone, zinc, echogenic, radioactive, radiopaque materials, a biomaterial (e.g., cadaver tissue, collagen, allograft, autograft, xenograft, bone cement, morselized bone, osteogenic powder, beads of bone) any of the other materials listed herein or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.


Any or all elements of the device and/or other devices or apparatuses described herein, can be, have, and/or be completely or partially coated with agents and/or a matrix a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth. The matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.


The device and/or elements of the device and/or other devices or apparatuses described herein and/or the fabric can be filled, coated, layered and/or otherwise made with and/or from cements, fillers, glues, and/or an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glues can be osteogenic and osteoinductive growth factors.


Examples of such cements and/or fillers includes bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.


The agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al, Inhibition of Prostoglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al, Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J. Surgery 88 (7), 935-940; Franklin et al, Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Spl Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entireties.


PCT Application Nos. PCT/US2011/000974, filed 27 May 2011; and PCT/US2011/048992, filed 24 Aug. 2011; and U.S. Provisional Application Nos. 61/349,151, filed 27 May 2010; 61/376,626, filed 24 Aug. 2010, are all incorporated by reference herein in their entireties.


Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination.

Claims
  • 1. A method for guided deployment of a biological implant support device comprising: locating a spinal location within a vertebral bone with a first wire tip of a first wire, wherein the locating comprises positioning the first wire tip at the spinal location;positioning a frame on the first wire;inserting a second wire having a second wire tip through the frame;visualizing the first wire and the second wire, wherein the visualizing comprises visualizing with an imaging system;rotating the frame around the first wire so the first wire and second wire form a single line when viewed by the imaging system;further inserting the second wire through the frame to the spinal location;reaming through bone along a path of the second wire, wherein reaming comprises creating a bone channel;inserting a support device through the bone channel, wherein inserting comprises positioning the support device in an intervertebral location;supporting with the support device a first vertebral end plate on a first side of the intervertebral location, and supporting with the support device a second vertebral end plate on a second side of the intervertebral location; andpositioning a third wire parallel with the first wire, wherein the second wire is positioned between the first wire and the third wire.
  • 2. The method of claim 1, wherein the bone channel accesses the intervertebral location, and wherein a longitudinal axis of the bone channel forms an access angle with respect to the first vertebral end plate, and wherein the access angle is less than 45°.
  • 3. The method of claim 2, wherein the access angle is less than 30°.
  • 4. The method of claim 2, wherein the access angle is less than 25°.
  • 5. The method of claim 1, wherein the support device is positioned entirely within the intervertebral space.
  • 6. The method of claim 1, wherein the support device is comprises a first segment and a second segment and wherein the first segment is rotatably attached to a second segment, wherein the inserting of the support device comprises rotating the first segment with respect to the second segment.
  • 7. The method of claim 1, further comprising visualizing the third wire.
  • 8. The method of claim 1, wherein the third wire is inserted through the frame.
  • 9. The method of claim 8, wherein the first wire is inserted through the frame.
  • 10. The method of claim 1, wherein the third wire does not enter a body of a patient upon which the support device is inserted.
  • 11. The method of claim 1, wherein the first wire extends through a first port in a wire guide, and wherein the second wire extends through a second port in the wire guide, and wherein the wire guide has a third port configured to receive the second wire.
  • 12. The method of claim 11, wherein the third wire extends through the wire guide.
  • 13. The method of claim 11, wherein the third port is angularly offset on the wire guide from the second port.
  • 14. The method of claim 11, wherein the third port is laterally adjacent on the wire guide to the second port.
  • 15. The method of claim 1, wherein the visualizing comprises positioning the imaging system to produce an inlet view.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/456,806 filed 12 Nov. 2010, which is incorporated by reference in its entirety.

US Referenced Citations (542)
Number Name Date Kind
646119 Clamer et al. Mar 1900 A
4204531 Aginsky May 1980 A
4569338 Edwards Feb 1986 A
4636217 Ogilvie et al. Jan 1987 A
4653489 Tronzo Mar 1987 A
4716839 Catena Jan 1988 A
4716893 Fischer et al. Jan 1988 A
4725264 Glassman Feb 1988 A
4733665 Palmaz Mar 1988 A
4759769 Hedman et al. Jul 1988 A
4763644 Webb Aug 1988 A
4863476 Shepperd Sep 1989 A
4886062 Wiktor Dec 1989 A
4911718 Lee et al. Mar 1990 A
4932975 Main et al. Jun 1990 A
4941466 Romano Jul 1990 A
4969888 Scholten et al. Nov 1990 A
5007909 Rogozinski Apr 1991 A
5015247 Michelson May 1991 A
5026373 Ray et al. Jun 1991 A
5059193 Kuslich Oct 1991 A
5108404 Scholten et al. Apr 1992 A
5123926 Pisharodi Jun 1992 A
5139480 Hickle et al. Aug 1992 A
5171278 Pisharodi Dec 1992 A
5217483 Tower Jun 1993 A
5258031 Salib et al. Nov 1993 A
5306278 Dahl et al. Apr 1994 A
5324295 Shapiro Jun 1994 A
5342348 Kaplan Aug 1994 A
5345927 Bonutti Sep 1994 A
5390683 Pisharodi Feb 1995 A
5390898 Smedley et al. Feb 1995 A
5397364 Kozak et al. Mar 1995 A
5425773 Boyd et al. Jun 1995 A
5454365 Bonutti Oct 1995 A
5458643 Oka et al. Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5484384 Fearnot Jan 1996 A
5496365 Sgro Mar 1996 A
5522899 Michelson Jun 1996 A
5534002 Brumfield et al. Jul 1996 A
5540690 Miller et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556413 Lam Sep 1996 A
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5571189 Kuslich Nov 1996 A
5571192 Schonhoffer Nov 1996 A
5584831 McKay Dec 1996 A
5591197 Orth et al. Jan 1997 A
5593409 Michelson Jan 1997 A
5609356 Mossi Mar 1997 A
5609635 Michelson Mar 1997 A
5643264 Sherman et al. Jul 1997 A
5643312 Fischell et al. Jul 1997 A
5645560 Crocker et al. Jul 1997 A
5649950 Bourne et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5674295 Ray et al. Oct 1997 A
5683394 Rinner Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702449 McKay Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5741253 Michelson Apr 1998 A
5749916 Richelsoph May 1998 A
5772661 Michelson Jun 1998 A
5776181 Lee et al. Jul 1998 A
5776197 Rabbe et al. Jul 1998 A
5776198 Rabbe et al. Jul 1998 A
5776199 Michelson Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782903 Wiktor Jul 1998 A
5785710 Michelson Jul 1998 A
5800520 Fogarty et al. Sep 1998 A
5824054 Khosravi et al. Oct 1998 A
5824093 Ray et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5853419 Imran Dec 1998 A
5861025 Boudghene et al. Jan 1999 A
5863284 Klein Jan 1999 A
5865848 Baker Feb 1999 A
5972015 Scribner et al. Oct 1999 A
5980522 Koros et al. Nov 1999 A
5980550 Eder et al. Nov 1999 A
5984957 Laptewicz et al. Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6019765 Thornhill et al. Feb 2000 A
6019792 Cauthen Feb 2000 A
6022376 Assell et al. Feb 2000 A
6025104 Fuller et al. Feb 2000 A
6027527 Asano et al. Feb 2000 A
6036719 Meilus Mar 2000 A
6039761 Li et al. Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6053916 Moore Apr 2000 A
6066154 Reiley et al. May 2000 A
6077246 Kullas et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6086610 Duerig et al. Jul 2000 A
6090143 Meriwether et al. Jul 2000 A
6102950 Vaccaro Aug 2000 A
6113639 Ray et al. Sep 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132465 Ray et al. Oct 2000 A
6140452 Felt et al. Oct 2000 A
6146417 Ischinger Nov 2000 A
6159244 Suddaby Dec 2000 A
6159245 Meriwether et al. Dec 2000 A
6168616 Brown, III Jan 2001 B1
6171312 Beaty Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6179874 Cauthen Jan 2001 B1
6183506 Penn et al. Feb 2001 B1
6183517 Suddaby Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6206910 Berry et al. Mar 2001 B1
6206924 Timm Mar 2001 B1
6224595 Michelson May 2001 B1
6224603 Marino May 2001 B1
6224604 Suddaby May 2001 B1
6224607 Michelson May 2001 B1
6235043 Reiley et al. May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6245101 Drasler et al. Jun 2001 B1
6245107 Ferree Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6280456 Scribner et al. Aug 2001 B1
6287332 Bolz et al. Sep 2001 B1
6293967 Shanley Sep 2001 B1
6302914 Michelson Oct 2001 B1
6332895 Suddaby Dec 2001 B1
6371989 Chauvin et al. Apr 2002 B1
6395031 Foley et al. May 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409765 Bianchi et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6419705 Erickson Jul 2002 B1
6423083 Reiley et al. Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428569 Brown Aug 2002 B1
6432107 Ferree Aug 2002 B1
6436098 Michelson Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6440168 Cauthen Aug 2002 B1
6447544 Michelson Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6447547 Michelson Sep 2002 B1
6451025 Jervis Sep 2002 B1
6454804 Ferree Sep 2002 B1
6468301 Amplatz et al. Oct 2002 B1
6468302 Coc et al. Oct 2002 B2
6478823 Michelson Nov 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6488710 Besselink Dec 2002 B2
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6508820 Bales Jan 2003 B2
6508839 Lambrecht et al. Jan 2003 B1
6514255 Ferree Feb 2003 B1
6520991 Huene Feb 2003 B2
6533817 Norton et al. Mar 2003 B1
6554833 Levy et al. Apr 2003 B2
6562074 Gerbec et al. May 2003 B2
6582431 Ray Jun 2003 B1
6582467 Teitelbaum et al. Jun 2003 B1
6585770 White et al. Jul 2003 B1
6592589 Hajianpour Jul 2003 B2
6592625 Cauthen Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6602291 Ray et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6607544 Boucher et al. Aug 2003 B1
6613054 Scribner et al. Sep 2003 B2
6623505 Scribner et al. Sep 2003 B2
6641587 Scribner et al. Nov 2003 B2
6641614 Wagner et al. Nov 2003 B1
6645213 Sand et al. Nov 2003 B2
6645247 Ferree Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6648918 Ferree Nov 2003 B2
6648920 Ferree Nov 2003 B2
6652584 Michelson Nov 2003 B2
6656178 Veldhuizen et al. Dec 2003 B1
6663647 Reiley et al. Dec 2003 B2
6666891 Boehm, Jr. et al. Dec 2003 B2
6676665 Foley et al. Jan 2004 B2
6679915 Cauthen Jan 2004 B1
6685695 Ferree Feb 2004 B2
6695760 Winkler et al. Feb 2004 B1
6706068 Ferree Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6709458 Michelson Mar 2004 B2
6712853 Kuslich Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716247 Michelson Apr 2004 B2
6719773 Boucher et al. Apr 2004 B1
6723126 Berry Apr 2004 B1
6726691 Osorio et al. Apr 2004 B2
6733535 Michelson May 2004 B2
6740090 Cragg et al. May 2004 B1
6743255 Ferree Jun 2004 B2
6746451 Middleton et al. Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6793656 Mathews Sep 2004 B1
6793679 Michelson Sep 2004 B2
6808537 Michelson Oct 2004 B2
6814756 Michelson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6852115 Kinnett Feb 2005 B2
6852123 Brown Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6893464 Kiester May 2005 B2
6899716 Baldwin May 2005 B2
6899719 Reiley et al. May 2005 B2
6921264 Mayer et al. Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6923830 Michelson Aug 2005 B2
6936065 Khan et al. Aug 2005 B2
6936070 Muhanna Aug 2005 B1
6948223 Shortt Sep 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6960215 Olson et al. Nov 2005 B2
6962606 Michelson Nov 2005 B2
6981981 Reiley et al. Jan 2006 B2
7008453 Michelson Mar 2006 B1
7018415 McKay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7060073 Frey et al. Jun 2006 B2
7066961 Michelson Jun 2006 B2
7077864 Byrd, III et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7094257 Mujwid et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7112206 Michelson Sep 2006 B2
7118598 Michelson Oct 2006 B2
7135043 Nakahara et al. Nov 2006 B2
7166110 Yundt Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7201775 Gorensek et al. Apr 2007 B2
7204853 Gordon et al. Apr 2007 B2
7211112 Baynham et al. May 2007 B2
7212480 Shoji et al. May 2007 B2
7223292 Messerli et al. May 2007 B2
7226475 Lenz et al. Jun 2007 B2
7226481 Kuslich Jun 2007 B2
7226483 Gerber et al. Jun 2007 B2
7238186 Zdeblick et al. Jul 2007 B2
7241297 Shaolian et al. Jul 2007 B2
7241303 Reiss et al. Jul 2007 B2
7300440 Zdeblick et al. Nov 2007 B2
7309338 Cragg Dec 2007 B2
7311713 Johnson et al. Dec 2007 B2
7316714 Gordon et al. Jan 2008 B2
7318826 Teitelbaum et al. Jan 2008 B2
7396360 Lieberman Jul 2008 B2
7431735 Liu et al. Oct 2008 B2
7452371 Pavcnik et al. Nov 2008 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7582106 Teitelbaum et al. Sep 2009 B2
7601172 Segal et al. Oct 2009 B2
7618457 Hudgins Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7722674 Grotz May 2010 B1
7749228 Lieberman Jul 2010 B2
7763028 Lim et al. Jul 2010 B2
7828849 Lim Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7867233 Shaolian et al. Jan 2011 B2
7875035 Boucher et al. Jan 2011 B2
7879036 Biedermann et al. Feb 2011 B2
7879082 Brown Feb 2011 B2
8007498 Mische Aug 2011 B2
8105382 Olmos et al. Jan 2012 B2
8246622 Siegal et al. Aug 2012 B2
20010007956 Letac et al. Jul 2001 A1
20010034552 Young et al. Oct 2001 A1
20020007218 Cauthen Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020022887 Huene Feb 2002 A1
20020032444 Mische Mar 2002 A1
20020052656 Michelson May 2002 A1
20020068911 Chan Jun 2002 A1
20020068939 Levy et al. Jun 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020082598 Teitelbaum Jun 2002 A1
20020082600 Shaolian et al. Jun 2002 A1
20020091390 Michelson Jul 2002 A1
20020095155 Michelson Jul 2002 A1
20020099378 Michelson Jul 2002 A1
20020111688 Cauthen Aug 2002 A1
20020120337 Cauthen Aug 2002 A1
20020123807 Cauthen Sep 2002 A1
20020128713 Ferree Sep 2002 A1
20020138077 Ferree Sep 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020138144 Michelson Sep 2002 A1
20020143401 Michelson Oct 2002 A1
20020151896 Ferree Oct 2002 A1
20020151980 Cauthen Oct 2002 A1
20020156530 Lambrecht et al. Oct 2002 A1
20020161367 Ferree Oct 2002 A1
20020161373 Osorio et al. Oct 2002 A1
20020165542 Ferree Nov 2002 A1
20020189622 Cauthen et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004511 Ferree Jan 2003 A1
20030004574 Ferree Jan 2003 A1
20030009227 Lambrecht et al. Jan 2003 A1
20030014118 Lambrecht et al. Jan 2003 A1
20030026788 Ferree Feb 2003 A1
20030032963 Reiss et al. Feb 2003 A1
20030040796 Ferree Feb 2003 A1
20030040798 Michelson Feb 2003 A1
20030050701 Michelson Mar 2003 A1
20030065394 Michelson Apr 2003 A1
20030065396 Michelson Apr 2003 A1
20030074076 Ferree et al. Apr 2003 A1
20030078579 Ferree Apr 2003 A1
20030088249 Furderer May 2003 A1
20030120345 Cauthen Jun 2003 A1
20030125748 Li et al. Jul 2003 A1
20030125807 Lambrecht et al. Jul 2003 A1
20030135220 Cauthen Jul 2003 A1
20030135279 Michelson Jul 2003 A1
20030149482 Michelson Aug 2003 A1
20030153976 Cauthen et al. Aug 2003 A1
20030158553 Michelson Aug 2003 A1
20030158604 Cauthen et al. Aug 2003 A1
20030163200 Cauthen Aug 2003 A1
20030181979 Ferree Sep 2003 A1
20030181980 Berry et al. Sep 2003 A1
20030181983 Cauthen Sep 2003 A1
20030187507 Cauthen Oct 2003 A1
20030187508 Cauthen Oct 2003 A1
20030191536 Ferree Oct 2003 A1
20030195514 Trieu et al. Oct 2003 A1
20030195630 Ferree Oct 2003 A1
20030195631 Ferree Oct 2003 A1
20030199979 McGuckin Oct 2003 A1
20030199981 Ferree Oct 2003 A1
20030204260 Ferree Oct 2003 A1
20030208270 Michelson Nov 2003 A9
20030220643 Ferree Nov 2003 A1
20030220650 Major et al. Nov 2003 A1
20030220690 Cauthen Nov 2003 A1
20030220693 Cauthen Nov 2003 A1
20030220694 Cauthen Nov 2003 A1
20030233097 Ferree Dec 2003 A1
20030233148 Ferree Dec 2003 A1
20030233188 Jones Dec 2003 A1
20030236520 Lim et al. Dec 2003 A1
20040002759 Ferree Jan 2004 A1
20040002760 Boyd et al. Jan 2004 A1
20040002769 Ferree Jan 2004 A1
20040006341 Shaolian et al. Jan 2004 A1
20040006344 Nguyen et al. Jan 2004 A1
20040010315 Song Jan 2004 A1
20040010318 Ferree Jan 2004 A1
20040019386 Ferree Jan 2004 A1
20040024400 Michelson Feb 2004 A1
20040024459 Ferree Feb 2004 A1
20040024460 Ferree Feb 2004 A1
20040024461 Ferree Feb 2004 A1
20040024462 Ferree et al. Feb 2004 A1
20040024469 Ferree Feb 2004 A1
20040024471 Ferree Feb 2004 A1
20040028718 Ferree Feb 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040030389 Ferree Feb 2004 A1
20040030390 Ferree Feb 2004 A1
20040030391 Ferree Feb 2004 A1
20040030398 Ferree Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044410 Ferree et al. Mar 2004 A1
20040049289 Tordy et al. Mar 2004 A1
20040059418 McKay et al. Mar 2004 A1
20040059419 Michelson Mar 2004 A1
20040059429 Amin et al. Mar 2004 A1
20040068259 Michelson Apr 2004 A1
20040082954 Teitelbaum et al. Apr 2004 A1
20040082961 Teitelbaum Apr 2004 A1
20040087950 Teitelbaum May 2004 A1
20040092933 Shaolian et al. May 2004 A1
20040092988 Shaolian et al. May 2004 A1
20040097927 Yeung et al. May 2004 A1
20040111108 Farnan Jun 2004 A1
20040133229 Lambrecht et al. Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040138673 Lambrecht et al. Jul 2004 A1
20040153064 Foley et al. Aug 2004 A1
20040153065 Lim Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20050010292 Carrasco Jan 2005 A1
20050015152 Sweeney Jan 2005 A1
20050033431 Gordon et al. Feb 2005 A1
20050038512 Michelson Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050080422 Otte et al. Apr 2005 A1
20050085910 Sweeney Apr 2005 A1
20050107863 Brown May 2005 A1
20050113919 Cragg et al. May 2005 A1
20050113928 Cragg et al. May 2005 A1
20050119561 Kienzle Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050182463 Hunter et al. Aug 2005 A1
20050187558 Johnson et al. Aug 2005 A1
20050209698 Gordon et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050240188 Chow et al. Oct 2005 A1
20050249776 Chen et al. Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060004455 Leonard et al. Jan 2006 A1
20060015184 Winterbottom et al. Jan 2006 A1
20060036241 Siegal Feb 2006 A1
20060052788 Thelen et al. Mar 2006 A1
20060052870 Ferree Mar 2006 A1
20060058807 Landry et al. Mar 2006 A1
20060058876 McKinley Mar 2006 A1
20060058880 Wysocki et al. Mar 2006 A1
20060085069 Kim Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060106460 Messerli et al. May 2006 A1
20060122701 Kiester Jun 2006 A1
20060142859 McLuen Jun 2006 A1
20060149239 Winslow et al. Jul 2006 A1
20060149349 Garbe Jul 2006 A1
20060149385 McKay Jul 2006 A1
20060161261 Brown et al. Jul 2006 A1
20060178694 Greenhalgh et al. Aug 2006 A1
20060184188 Li et al. Aug 2006 A1
20060200166 Hanson et al. Sep 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060235423 Cantu Oct 2006 A1
20060241764 Michelson Oct 2006 A1
20060253201 McLuen Nov 2006 A1
20060264968 Frey et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060287725 Miller Dec 2006 A1
20060287726 Segal et al. Dec 2006 A1
20060287727 Segal et al. Dec 2006 A1
20060287729 Segal et al. Dec 2006 A1
20060287730 Segal et al. Dec 2006 A1
20070027363 Gannoe et al. Feb 2007 A1
20070032791 Greenhalgh Feb 2007 A1
20070043440 William et al. Feb 2007 A1
20070055375 Ferree Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070067034 Chirico et al. Mar 2007 A1
20070093897 Gerbec et al. Apr 2007 A1
20070093899 Dutoit et al. Apr 2007 A1
20070112428 Lancial May 2007 A1
20070118222 Lang May 2007 A1
20070162044 Marino Jul 2007 A1
20070162135 Segal et al. Jul 2007 A1
20070173824 Rosen Jul 2007 A1
20070173830 Rosen Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070213717 Trieu et al. Sep 2007 A1
20070225703 Schmitz et al. Sep 2007 A1
20070233260 Cragg Oct 2007 A1
20070239162 Bhatnagar et al. Oct 2007 A1
20070244485 Greenhalgh et al. Oct 2007 A1
20070255408 Castleman et al. Nov 2007 A1
20070255409 Dickson et al. Nov 2007 A1
20070260270 Assell et al. Nov 2007 A1
20070260315 Foley et al. Nov 2007 A1
20070270956 Heinz Nov 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276377 Yundt Nov 2007 A1
20070288028 Gorensek et al. Dec 2007 A1
20080015694 Tribus Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080021559 Thramann Jan 2008 A1
20080071356 Greenhalgh et al. Mar 2008 A1
20080077150 Nguyen Mar 2008 A1
20080140082 Erdem et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080147194 Grotz et al. Jun 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080188941 Grotz Aug 2008 A1
20080221687 Viker Sep 2008 A1
20080243254 Butler Oct 2008 A1
20080249625 Waugh et al. Oct 2008 A1
20080294205 Greenhalgh et al. Nov 2008 A1
20080312743 Vila et al. Dec 2008 A1
20080312744 Vresilovic et al. Dec 2008 A1
20090018524 Greenhalgh et al. Jan 2009 A1
20090024204 Greenhalgh et al. Jan 2009 A1
20090024217 Levy et al. Jan 2009 A1
20090054991 Biyani et al. Feb 2009 A1
20090076511 Osman Mar 2009 A1
20090149956 Greenhalgh et al. Jun 2009 A1
20090163918 Levy et al. Jun 2009 A1
20090182431 Butler et al. Jul 2009 A1
20090198338 Phan Aug 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090318928 Purcell et al. Dec 2009 A1
20100004750 Segal et al. Jan 2010 A1
20100004751 Segal et al. Jan 2010 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100125274 Greenhalgh et al. May 2010 A1
20100262147 Siegal et al. Oct 2010 A1
20100292796 Greenhalgh et al. Nov 2010 A1
20100324560 Suda Dec 2010 A1
20110029083 Hynes et al. Feb 2011 A1
20110054621 Lim Mar 2011 A1
20110087296 Reiley et al. Apr 2011 A1
20110106260 Laurence et al. May 2011 A1
20110125266 Rodgers et al. May 2011 A1
20110184519 Trieu Jul 2011 A1
20110257684 Sankaran Oct 2011 A1
20110282387 Suh et al. Nov 2011 A1
20110319898 O'Neil et al. Dec 2011 A1
20110320000 O'Neil et al. Dec 2011 A1
Foreign Referenced Citations (74)
Number Date Country
0734702 Oct 1996 EP
0758541 Feb 1997 EP
1804733 Jul 2007 EP
2874814 Nov 2007 FR
2900814 Nov 2007 FR
2000-210315 Aug 2000 JP
2002-535080 Oct 2002 JP
2003-512887 Apr 2003 JP
2004-511297 Apr 2004 JP
2004-531355 Oct 2004 JP
2004-321348 Nov 2004 JP
662082 May 1979 SU
WO 8803781 Jun 1988 WO
WO 9214423 Sep 1992 WO
WO 9531945 Nov 1995 WO
WO 9603092 Feb 1996 WO
WO 9700054 Jan 1997 WO
WO 0030523 Jun 2000 WO
WO 0044319 Aug 2000 WO
WO 0044321 Aug 2000 WO
WO 0132099 May 2001 WO
WO 0178625 Oct 2001 WO
WO 0195838 Dec 2001 WO
WO 0213700 Feb 2002 WO
WO 0232347 Apr 2002 WO
WO 03003943 Jan 2003 WO
WO 03003951 Jan 2003 WO
WO 2005062900 Jul 2005 WO
WO 2005096975 Oct 2005 WO
WO 2005120400 Dec 2005 WO
WO 2006023514 Mar 2006 WO
WO 2006023671 Mar 2006 WO
WO 2006026425 Mar 2006 WO
WO 2006028971 Mar 2006 WO
WO 2006034396 Mar 2006 WO
WO 2006034436 Mar 2006 WO
WO 2006037013 Apr 2006 WO
WO 2006042334 Apr 2006 WO
WO 2006050500 May 2006 WO
WO 2006060420 Jun 2006 WO
WO 2006072941 Jul 2006 WO
WO 2006076712 Jul 2006 WO
WO 2006086241 Aug 2006 WO
WO 2006096167 Sep 2006 WO
WO 2006116761 Nov 2006 WO
WO 2006132945 Dec 2006 WO
WO 2007009107 Jan 2007 WO
WO 2007009123 Jan 2007 WO
WO 2007016368 Feb 2007 WO
WO 2007038611 Apr 2007 WO
WO 2007041698 Apr 2007 WO
WO 2007047098 Apr 2007 WO
WO 2007050322 May 2007 WO
WO 2007056433 May 2007 WO
WO 2007062080 May 2007 WO
WO 2007075411 Jul 2007 WO
WO 2007079021 Jul 2007 WO
WO 2007084257 Jul 2007 WO
WO 2007084268 Jul 2007 WO
WO 2007084810 Jul 2007 WO
WO 2007100591 Sep 2007 WO
WO 2007123920 Nov 2007 WO
WO 2007124130 Nov 2007 WO
WO 2007126622 Nov 2007 WO
WO 2007130699 Nov 2007 WO
WO 2007131026 Nov 2007 WO
WO 2007133608 Nov 2007 WO
WO 2007140382 Dec 2007 WO
WO 2008005627 Jan 2008 WO
WO 2008016598 Feb 2008 WO
WO 2008070863 Aug 2008 WO
WO 2009114381 Sep 2009 WO
WO 2009130824 Oct 2009 WO
WO 2012027490 Mar 2012 WO
Non-Patent Literature Citations (7)
Entry
Franklin, I.J. et al., “Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis,” Brit. J. Surger, 86(6):771-775, 1999.
Pyo, R. et al., “Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms,” J. Clinical Investigation, 105(11):1641-1649, Jun. 2000.
Tambiah, J. et al., “Provocation of Experimental Aortic Inflammation Mediators and Chlamydia pneumoniae,” Brit., J. Surgery, 88(7):935-940, Feb. 2001.
Walton, L.J. et al., “Inhibition of Prostoglandin E2 Synthesis in Abdonminal Aortic Aneurysms,” Circulation, 48-54, Jul. 6, 1999.
Xu. Q. at al., “Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium,” J. Biological Chemistry, 275(32)24583-24589, Aug. 2000.
Choi, G. et al., “Percutaneous Endoscopic Lumbar Discemtomy by Transiliac Approach,” Spine, 34(12):E443-446, May 20, 2009.
Database WPI, Week 198004, Thomson Scientific, London, GB; AN 1980-A8866C, XP002690114, -& SU 662 082 A1 (Tartus Univ) May 15, 1979, abstract, figures 1,2.
Provisional Applications (1)
Number Date Country
61456806 Nov 2010 US