The subject matter of the invention is a guide arrangement for hangings such as a blind or sunblind, in accordance with the preamble of claim 1.
Guide arrangements are used to vertically and laterally guide hangings, in particular venetian blinds and sunblinds. The guide rails provide the hanging with a lateral guide and a definite stop and prevent the hanging moving horizontally in the event of gusts of wind. Each hanging is usually guided by two guide rails which are laterally attached to the jambs of windows or doors of the building.
For some years now door and window openings have been made larger and larger, often being constructed as giant sliding windows. The result of this is, therefore, openings which are several meters wide and which exceed the maximum hanging widths which can be supplied by blind manufacturers. However, in order to also be able to mount a venetian blind or a vertical sunblind in front of such large openings, it is necessary to install one or more columns with guide rails arranged thereon in the clear cross-section of the opening between the two lateral jambs of the windows. This is undesirable for aesthetic reasons, because the unobstructed line of vision which is guaranteed by modern sliding windows is adversely affected by guide rail columns.
It is also known that, in the case of fixed glazing, the slats are supported and guided in the center by a wire which is fixed at the top and bottom.
One object of this invention is to now create a temporary guide arrangement, in order to guide two hangings respectively which are located next to each other and which are guided on one side on fixed guides, on the second side in the lowered condition and, when the hangings are pulled up, to make the second temporary guide disappear again from the field of vision, i.e. from the clear opening of the window or the door.
This object is achieved by a guide arrangement according to the features of claim 1. Advantageous embodiments of the guide arrangement are described in the dependent claims.
With the aid of elongated bodies forming a linear guide, which are either introduced vertically downwards from above into the door or window opening or which, on the one hand, can be deflected about a deflection pulley and, on the other hand, are rigid in the extended or tensed position, a guide can be produced before or during the lowering of the hanging and can also be removed again from the field of vision when the hanging is pulled up.
By using two link chains which are arranged, for example, lying above the elevating device and are deflected downwardly in order to form a temporary guide and are hooked to each other during the deflection, a stable, in particular a rigid guide can be created. In a preferred embodiment the front, that is the lower end, of the two combined link chains is connected to a holding and catching device arranged at the bottom of the door or window opening, said holding and catching device preventing the rigid guide rail swinging away laterally in the bottom area if, depending on the wind conditions, greater forces impinge on the lowered hanging. In the case of strong gusts of winds the new temporary guide is lowered and formed before the hanging is lowered, so that only the guide is exposed to any wind forces.
In a further advantageous embodiment of the invention, instead of a link chain, a steel strip is provided which substantially has an arc-shaped cross-section at rest, which is also stored above the elevating device and, on being guided down, combines with a second strip which is arranged as a mirror image and has a high degree of stiffness due to the tubular hollow body thus formed. The two strips are held securely in each position by guide sliders which are fastened to the ends of the two adjacent edges of the hangings.
In a further inexpensive embodiment, a wire rope or a strip is guided vertically downwards prior to the lowering or, if there is no wind, together with the lowering of the hanging, and the lower end thereof is suspended from a suitable holding and tensioning device, for example a slot or an eyelet. By gently pulling back, i.e. pulling the rope upwards, the latter can be tensioned and therefore also forms a temporary guide in the center of the window or door opening. The tensioning can of course also be effected by moving the holding and tensioning device downwards. In the case of door openings of a width which requires more than two hangings, the centrally arranged hangings can be respectively guided on both sides by temporary guides according to the invention.
The invention will be explained in more detail with the aid of three illustrated embodiment examples, wherein:
In the first embodiment example according to
The elevating device can also be fixed above the window or door opening on the facade. Guide rails 13, in which the slats 5a or guide elements or guide pins (not shown) mounted on the ends thereof are guided in a vertical slot, are fixed to the lateral jambs of the opening 11 or externally on the facade. The slats 5a, the guide elements or guide pins and the guide rails 13 are known from the state of the art, occurring in many embodiments. The two hangings 1a and 1b are consequently each guided by the guide rails 13 on one side at the ends of the slats 5a. The two adjacent sides of the two hangings 1a, 1b respectively, which are located in the center of an opening 11, are not guided in fixed guide rails but, according to the invention, in a guide arrangement as shown in sections in the enlarged view A in
Alternatively, guide and press rollers 21 can be arranged in front of the deflection pulleys 19, with which the elements 17 which are initially arc-shaped are pressed flat, in order, on being wound around the deflection pulleys 19, to lie in contact with these. Following the deflection by 90° the strip-shaped elements 17 come into contact with each other along their edges 17a. This coming into contact is supported by a guide sleeve 23. The elements 17 which then lie in contact with one another with total surface contact with their edges 17a penetrate the guide sleeve 23. Arranged below the guide sleeve 23 are glide sliders 25 at which the slats 5a are articulated on both sides. Articulated means: the slats 5a can be tilted by the turning belts 4 and elevating cords 3 in the conventional manner. The through-opening in the guide sliders 25 are dimensioned such that the guide sliders 25 can slide with little friction, preferably in an approximately frictionless manner, along the two strip-shaped elements 17 which are then combined to form a hollow body.
Of course, the rigid guide rails 13 can also be replaced by flexible temporary elements 17.
The mode of operation of the first embodiment of the invention will be briefly explained below.
Starting from a pulled-up hanging 1, wherein the slats 5a lie on top of each other with total surface contact and form a slat pack 5 (cf. black area in
A conical point 31 or the like is preferably arranged at the lower end of the vertical guide, i.e. at the two ends of the elements 17 which are free but rigidly connected to one another, which can engage in a recess 33 intended for this purpose as an anchoring on the lower edge of the window opening 11 or on the bottom, in order to stabilize and fix the vertical guide at the bottom.
The drives for the elevating cords 3 in the two hangings la and lb and the drives for the two elongated elements 17 are preferably synchronized, if necessary the drives for the elements 17 can run slightly ahead or run more quickly, so that the temporary vertical guide 29 with its point 31 reaches the recess 33, before the hanging 1 is completely extended. Of course, the temporary vertical guide 29 can already be extended completely downwards before the hanging 1 is lowered. This variant ensures that even in unfavorable wind conditions, the hanging 1 can be safely moved vertically downwards.
In the second embodiment example according to
The mode of operation of the second embodiment example will be explained below. Synchronously with the lowering of the slat pack 5 or running more or less in advance, the link chains 117 are connected together in the guide sleeve 123 and slide vertically downwards as a rigid vertical guide 129. The slats 5a, which are guided laterally in the guide rail elements 125 on the chain links 117, also move downwards and take up their spaced position with respect to the vertical.
As in the first embodiment example, a mandrel or the like can also be mounted at the lower end of the combined link chains 117, said mandrel being held centered in a recess in the bottom of the window or door opening.
The third embodiment example according to
In order to compensate for the mass of the lowered link chain 117, a spring 137 or a rubber strip can be attached at the upper end thereof, the second end of which is connected to the elevating device 7.
Of course the two adjacent hangings 1, which are guided by the guide arrangement, do not have to be located next to each other in a plane, but they can be arranged at any angle, whether it is an angle of 90° or more or less angular degrees.
A further aesthetically sophisticated design of the invention is shown in two embodiments in
A first embodiment of a device 241 is shown in
In the open condition according to
Suitably configured arresting hooks or tongues (not shown) are arranged in the device 241, which seize the magnets 231 or metal parts and pull the cables 217 downwards and tension them with a tensioning device, of which only a tensioning shaft 252 is visible. Alternatively, the upper cover 247 of the tensioning device 241 can be lowered and pull the magnets 231 resting on the underside thereof downwards.
As an alternative to a shaft 253 which has to be rotated by hand with an appropriate spanner as a tensioning element, an electrically operated tensioning device can also be used in the device 241. In a particularly advantageous embodiment of the device 241 for tensioning the cables 217, a sensor (not shown) can additionally be used which, if there are magnets 231 in the tensioning device 241, triggers the tensioning, so that the tensioning command does not have to be given manually.
In another advantageous embodiment of the tensioning device 241 a funnel-shaped opening can be configured in the lid 243 and in the upper cover 247, into which opening the magnet 231 is expediently inserted during lowering of the cable 217, so that the cables 231 are automatically tensioned, as soon as the cables 231 have reached the lower end. The command provides the trigger for the lowering of the cables 231; the blinds or sunblind, i.e. the hanging 1, is lowered.
A winding drum 255 for the cable 217 is shown diagrammatically in
In a further embodiment of the monitoring device according to
The rocker 373 can either be arranged on one side or on both sides of the winding drum 355. The end of the rocker 373 opposite the pivot point 375 is attached to a tension spring 377, which is permanently attached at the top and acts at the bottom on a bolt 379 on the rocker 373. In the untensioned state, as shown in
Once the hanging has been raised again by the operator and the window or door opening is no longer covered by a hanging, the rope can be released again from the device 241 for tensioning the rope 317 and is rolled back up onto the winding drum 355 by a spring installed in the winding drum 355. A brake element (not shown) in the winding drum 355 causes the rope 317 to pull up slowly and the latter's lower end cannot be tossed around uncontrollably with the magnetic or metallic holding element.
In
The downwards movement, i.e. the unwinding of the cables 217, is carried out in the basic embodiment by pulling down the cables 217 at the magnets 231 or magnetizable metal elements, for example with a magnet arranged at the end of a bar (no figure). Of course, it is also possible for the winding drum 255 to be driven electrically, i.e. for the cable 217 to be unwound without manual interventions and, if a funnel-shaped inlet is provided in the tensioning device 241, to allow the cable to run in there and have it tensioned by the tensioning device.
In a further embodiment, which is not shown, the vertical guide for the slats 5a is formed by a plurality of pipe sections lined up on a rope. The pipe sections can, if the rope is not tensioned, be guided vertically like the chain links in the second embodiment example about a deflection pulley, and by tensioning of the rope following transfer into the vertical position the pipe sections are pressed together such that they form the stiffened guide for the slats 5a.
In a further embodiment of the invention, which is not shown, the vertical guide is formed by a telescopic tube which enters the light of the door or window opening from above and on which guides are arranged which guide the ends of the slats 5a of the adjacent hangings 1 (no figure).
Number | Date | Country | Kind |
---|---|---|---|
2302/12 | Nov 2012 | CH | national |
1729/13 | Oct 2013 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CH2013/000179 | 10/18/2013 | WO | 00 |