Images are processed for use with computing machines, such as a print apparatus. A print apparatus, for example, may use control data based on processed image data to reproduce a physical representation of an image by operating a print fluid ejection system according to the control data. Components of a print apparatus, such as a fluid ejection device, may be serviced to improve print quality and/or the life of the component, for example. Some print apparatus include a mechanism, such as a service station, to perform various service routines.
In the following description and figures, some example implementations of print apparatus, service station systems, and/or methods of determining routing of a web material are described. In examples described herein, a “print apparatus” may be a device to print content on a physical medium (e.g., paper, textile, a layer of powder-based build material, etc.) with a print material (e.g., ink or toner). For example, the print apparatus may be a wide-format print apparatus that prints latex-based print fluid on a print medium, such as a print medium that is size A2 or larger. The physical medium may printed on from sheets or a web roll. In the case of printing on a layer of powder-based build material, the print apparatus may utilize the deposition of print materials in a layer-wise additive manufacturing process. A print apparatus may utilize suitable print consumables, such as ink, toner, fluids or powders, or other raw materials for printing. In some examples, a print apparatus may be a three-dimensional (3D) print apparatus. An example of fluid print material is a water-based latex ink ejectable from a print head, such as a piezoelectric print head or a thermal inkjet print head. Other examples of print fluid may include dye-based color inks, pigment-based inks, solvents, gloss enhancers, fixer agents, and the like.
A print apparatus may include a service station to perform service routines on a component of the print apparatus. For example, a service station may include a wiping system and/or scraping system to remove excess print fluid from the fluid ejection device of the print apparatus. A service station may include a web material to use for wiping the fluid ejection device. The web material may be a consumable that moves used web material out of the way and moves unused web material to use for the subsequent service routine. The web material may be a textile, such as cloth, or made of other material appropriate for wiping a component of the print apparatus. Example textile web material of the service station may be woven fabric, non-woven fabric, fabric with synthetic layers, and the like.
Web material may wrinkle or wave up during operation, which may lead to a undesired contact between dirty cloth and a component of the apparatus which may contaminate the component and affect operation, for example. Consumable service materials, such as a web cloth, may be replaceable by a user and a user may incorrectly install the consumable material, which may lead to improper servicing or loss of function of the print apparatus.
Various examples described below relate to identification of proper routing of web material. A guide bar is used on a service station to provide tension on web material used for wiping. A sensor may use the guide bar as a reference to determine whether the web material is routed correctly on the service station. In this manner, the issue can be identified and the user may be informed about the condition of the web material in the service station.
The terms “include,” “have,” and variations thereof, as used herein, mean the same as the term “comprise” or appropriate variation thereof. Furthermore, the term “based on,” as used herein, means “based at least in part on.” Thus, a feature that is described as based on some stimulus may be based only on the stimulus or a combination of stimuli including the stimulus.
The wiper system 120 may place a force on the web material 110 to place the web material 110 on the exposed servicing side into a service state. The wiper system 120 may provide a force on the web material during a wiper operation by moving a wiper blade towards the print carriage with the web material against an edge of the wiper and moves the wiper away from the print carriage after the wiper operation. In other examples, the wiper system 120 may include a roller in place of a blade or other differences based on implementation. In the example of
The guide bar 104 is placed to provide tension on the web material 110 on the exposed service side of the service station system 102. This may be due to placing the guide bar 104 in a displaced position with respect to a plane defined by the centers of the plurality of spinnable bars 112 and 114. For example, the spinnable bars 112 and 114 may be located such that the guide bar 104 is not parallel to the spinnable bars relative to the height position. By locating the guide bar 104 in a position to provide tension due to displacement with respect to the locations of the spinnable bars, tension may be provided on the web material in a non-servicing state and during a servicing state. Constant tension may avoid undesired movement of the web material against a moving print carriage, for example, and thus, may avoid contamination of a fluid ejection device with undesired excess print fluid from used web material 110. The guide bar 104 may be located along the web material path (e.g., between bars) to allow the lifting mechanism of the wiper system 120 to act properly.
The guide bar 104 may be optically different from the web material 110. As discussed further herein, a sensor may be used to identify a difference in an expected signal corresponding to the guide bar 104 (e.g., when the web material 110 is routed below the guide bar 104) and a signal corresponding to the web material 110 (e.g., when the web material 110 is routed above the guide bar 104). For example, the sensor may be an optical sensor that converts reflected light into an electrical signal and the web material 110 may reflect a particular range of wavelength different from the range of wavelengths reflected by the guide bar 104. In that example, the guide bar 104 and the web material 110 may be different colors, such as the guide bar being a dark color and the web material being a white color. The sensor and/or a controller may perform guide bar verification operations by determining the optical difference between the guide bar 104 and the web material 110 based on the sensor data.
The sensor 132 includes circuitry, such as a photodiode, that is capable of sensing a difference between the guide bar 104 and web material, such as web material 110 of
The controller 134 may be a combination of circuitry and executable instructions representing a control program to perform a guide bar verification operation (e.g., a verification of which side of the guide bar the web material is routed on). The controller 134 may use data from the sensor 132 to identify that the web material is incorrectly routed with reference to the guide bar 104. For example, a reference signal pattern may be stored on memory of the controller 134 and the controller 134 may execute instructions to compare data received from the optical sensor 132 to the reference signal data pattern and cause a notification to indicate if the sensor data is not within the expected range of the reference signal data pattern. An example reference signal data pattern may correspond to a particular amount of reflected light associated with the guide bar 104 or may correspond to a distance from the sensor 132 and the sensed data may correspond to an amount of reflected light that is outside the expected range of the signal pattern or less than an expected distance from the sensor 132.
The sensor 132 may be located on the print carriage 130 relative to the print head receiving area such that the sensor 132 may be located over the expected location of the guide bar 104 when a print head is located over the blade of the wiper system 120. In this manner, a verification operation to identify whether the guide bar 104 is visible by the sensor 132 may be performed when the print carriage 130 is in a servicing position (or before the print carriage is in a servicing position). In another example, the print controller may move the print carriage 130 to place the sensor 132 in the expected location of the guide bar 104 and move the print carriage 130 to a servicing position after the verification operation determines that the web material 110 is routed correctly with reference to the guide bar 104.
Referring now to
Referring to
Referring to
Referring to
A processor resource is any appropriate circuitry capable of processing (e.g., computing) instructions, such as one or multiple processing elements capable of retrieving instructions from a memory resource and executing those instructions. For example, the processor 160 may be a central processing unit (CPU) that enables web material routing verification (e.g., guide bar verification) by fetching, decoding, and executing modules 164 and 166. Example processor resources include at least one CPU, a semiconductor-based microprocessor, a programmable logic device (PLO), and the like. Example PLDs include an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a programmable array logic (PAL), a complex programmable logic device (CPLD), and an erasable programmable logic device (EPLD). A processor resource may include multiple processing elements that are integrated in a single device or distributed across devices. A processor resource may process the instructions serially, concurrently, or in partial concurrence.
The computer readable medium is a memory resource. A memory resource represents a medium to store data utilized and/or produced by the system. The medium is any non-transitory medium or combination of non-transitory media able to electronically store data, such as modules 164 and 166 and/or data used by the systems, such as received sensor data or reference signal data. For example, the medium may be a storage medium, which is distinct from a transitory transmission medium, such as a signal. The medium may be machine-readable, such as computer-readable. The medium may be an electronic, magnetic, optical, or other physical storage device that is capable of containing (i.e., storing) executable instructions. A memory resource may be a non-volatile memory resource such as read only memory (ROM), a volatile memory resource such as random access memory (RAM), a storage device, or a combination thereof. Example forms of a memory resource include static RAM (SRAM), dynamic RAM (DRAM), electrically erasable programmable ROM (EEPROM), flash memory, or the like. A memory resource may include integrated memory such as a hard drive (HD), a solid state drive (SSD), or an optical drive. A memory resource may be said to store program instructions that when executed by a processor resource cause the processor resource to implement functionality of the systems discussed herein. A memory resource may be integrated in the same device as a processor resource or it may be separate but accessible to that device and the processor resource. A memory resource may be distributed across devices.
Components of the systems discussed herein may be implemented in a number of fashions. Looking at
At block 902, a sensor is moved across a distance corresponding to an expected location of a guide bar of a service station. The distance may be about the width of the guide bar starting at an expected position of the guide bar. For example, the sensor may be located about the same distance from the print head on the carriage as the guide bar is from the wiper system to service a print head.
At block 904, when the sensor is in a position corresponding to the expected location of the guide bar, the sensor records data corresponding to a signal received. For example, the sensor may be an optical sensor that records signals based on light reflected towards the sensor. For another example, the sensor may be a distance sensor that records signals based on the distance of an object from the sensor.
At block 906, the recorded signal data corresponding to the expected location of the guide bar is analyzed with respect to whether there is a change in signal across the distance corresponding to the expected location of the guide bar. For example, a peak and/or valley of the signal data (e.g., a signal change in excess of a noise threshold) across the distance may indicate a change in object or position of the service station where as a substantially flat signal (e.g., a signal change within a noise threshold) may indicate the same object has been detected across the sensed distance. The peak-to-peak or valley-to-peak analysis may take into consideration a noise threshold, where a guide bar is indicated when the peak-to-valley change is beyond a noise threshold to avoid false positives indicating the guide bar. In an example where the sensor data indicates distance, analysis of the recorded data may include identifying a distance of the web material from the sensor using sensor data at the expected location of the guide bar and comparing the identified distance of the web material to an expected distance (e.g., a known distance) of the guide bar from the sensor.
At block 908, the signal analysis is used to identify whether the web material is routed correctly or not. If the web material is determined to be routed correctly based on the signal data (e.g., the signal data indicates the web material is routed on the side of the guide bar opposite the print carriage so that the guide bar is showing towards the sensor), a fluid ejection device service operation may be performed at block 910. If the web material is determined to be routed incorrectly based on the signal data (e.g., the signal data indicates the web material is routed on the side of the guide bar towards the print carriage so that the guide bar is hidden from the sensor by the web material), an error message is generated at block 912. The error message may be presented on a control panel of the print apparatus, entered into a log stored on the print apparatus, sent as an email to a user account, and/or otherwise communicated. Communication of the error message allows for a user to open the print apparatus to access the service station and reroute the web material, which may avoid undesired contamination of the fluid ejection device if service was to be performed when the web material is routed incorrectly.
Although the flow diagram of
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the elements of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or elements are mutually exclusive.
The present description has been shown and described with reference to the foregoing examples. It is understood, however, that other forms, details, and examples may be made without departing from the spirit and scope of the following claims. The use of the words “first,” “second,” or related terms in the claims are not used to limit the claim elements to an order or location, but are merely used to distinguish separate claim elements.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/030379 | 5/1/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/203873 | 11/8/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4369456 | Cruz-Uribe | Jan 1983 | A |
4829318 | Racicot et al. | May 1989 | A |
5574485 | Anderson | Nov 1996 | A |
5992969 | Arminana Terrasa et al. | Nov 1999 | A |
6350012 | Sarkissian et al. | Feb 2002 | B1 |
6568787 | Girones et al. | May 2003 | B1 |
6761428 | Agarwal et al. | Jul 2004 | B2 |
7017489 | Perault et al. | Mar 2006 | B2 |
7963631 | Albertalli et al. | Jun 2011 | B2 |
8002382 | Steinfield et al. | Aug 2011 | B2 |
9004631 | Folkins | Apr 2015 | B1 |
9676195 | Coma Vives | Jun 2017 | B2 |
9919531 | Mataki | Mar 2018 | B2 |
20070174896 | Furuya et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
102009002244 | Oct 2010 | DE |
0685419 | Jun 1998 | EP |
Entry |
---|
Bruijnen, D.; “Design of a Printhead Alignment Sensor for a Temperature Varying Environment”; Jun. 14-16, 2006; http://ieeexplore.ieee.org/document/1655387/. |
Number | Date | Country | |
---|---|---|---|
20210129539 A1 | May 2021 | US |