This invention relates generally to the field of medical devices and methods. In particular, the invention relates to devices and methods for placing a surgical device, such as a biopsy device, in a desired location in relation to a patient during a biopsy procedure.
In diagnosing and treating certain medical conditions, it is often desirable to perform a biopsy, in which a specimen or sample of tissue is removed for pathological examination, tests and analysis. As is known, obtaining a tissue sample by biopsy and the subsequent examination are typically employed in the diagnosis of cancers and other malignant tumors, or to confirm that a suspected lesion or tumor is not malignant. Examination of tissue samples taken by biopsy is of particular significance in the diagnosis and treatment of breast cancer.
Magnetic resonance imaging (MRI) is often used to locate the site within a breast where a potentially cancerous lesion or tumor is located. Interventional MRI is the magnetic resonance imaging technique (often involving real time imaging) that allows a surgeon to perform MRI-guided tissue biopsy or surgery. One application of interventional MRI is to guide a surgeon during a biopsy or surgical operation on one or both of the breasts of a female patient.
Interventional MRI procedures typically require a magnetic resonance signal detection coil which has large openings so that the surgeon can have access to the surgical site through the coil with the biopsy device or other surgical devices. The MRI device may also include compression plates to compress the breast. Compression plates contain needle guide holes to allow for proper placement of a needle during a needle biopsy or larger windows configured to hold guide blocks. Guide blocks have block bodies with needle guide holes or with larger openings to allow access for larger biopsy devices. The guide blocks assist the physician with proper placement and stabilization of the biopsy device during a biopsy procedure.
The compression plates are secured to the housing of the signal detection coil. Markers, such as Vitamin E Capsules, which are highly visible under MRI device are placed on the compression plates and the position of the markers relative to the suspect tissue is measured using the magnetic resonance images. The proper window of the compression plate is then determined by finding the window in the compression plate which is closest to the desired entry point.
For larger biopsy devices the guide blocks are usually cube-shaped and contain about nine circular openings spaced in three rows of three. Due to the configuration of the openings in the guide block and the large size of some biopsy devices it is often difficult to precisely reach the desired tissue location. Present guide blocks for larger biopsy devices do not allow for access to every area of tissue directly behind the block. Thus, there is need in the art for improved guide blocks which allow access to all areas of tissue directly behind the block.
This invention relates to placement of surgical devices during biopsy procedures and in particular to devices and methods for placement of a biopsy device during a breast biopsy.
In one embodiment of the present invention a guide block has a body with a proximal face, a distal face and a longitudinal axis extending between the proximal and distal faces. The guide block has four passageways which are configured to slidably receive a surgical device, such as a biopsy device. The body of the guide block is configured to fit within a grid on the compression plate of a magnetic resonance imaging (MRI) device.
The four passageways extend longitudinally between the proximal and distal faces of the block and are parallel to the longitudinal axis. The first passageway is centrally disposed. The second passageway is located vertical or horizontal to the first passageway. The third passageway is located diagonal to the first and has a longitudinal opening along its length which is in fluid communication with the opening in the first passageway. The fourth passageway is located diagonal to the first passageway and on an opposite side of the body from the third passageway. The configuration of the passageways allows for all tissue directly behind the guide block to be accessed by rotating the guide block.
A method embodying features of the invention includes providing a guide block having a body with four passageways which are configured within the body as described above and inserting the guide block into a grid opening of a magnetic resonance imaging device nearest to the suspect tissue and orienting the block to provide access to the desired location in a patient.
In an alternative embodiment of the invention a guide block has a block body with a proximal face, a distal face, and a longitudinal axis extending between the proximal and distal faces. The guide block has at least one passageway disposed within the body which is open along the length thereof and which extends between the proximal and distal faces and are not parallel to the longitudinal axis. The configuration of the at least one passageway allows for access to tissue located outside of the exterior border of the compression plate.
A method embodying features of the invention includes providing a guide block having a body with a proximal face, a distal face, and a longitudinal axis extending between the proximal and distal faces. The guide block has at least one passageway disposed within the body which extends between the proximal and distal faces and which is not parallel to the longitudinal axis. The method further includes inserting the guide block into a grid opening of an MRI nearest to the suspect tissue and selecting the orientation of the block 10 to provide access to the desired location in the patient.
The first passageway 22 is centrally disposed. The second passageway 24 is located vertical or horizontal to the first passageway 22 and parallel to the longitudinal axis. The third passageway 26 is located diagonal to the first passageway 22, and is parallel to the longitudinal axis. The third passageway also has a longitudinal opening along its length which is in fluid communication with the opening in the first passageway 22. The fourth passageway 28, is parallel to the longitudinal axis, and is located diagonal to the first passageway 22 and in an opposite side of the body 12 from the diagonal location of the third passageway 26. Two suitable configurations of the passageways 20 within the guide block 10, shown in
The guide block 10 is configured to be used in conjunction with a locating or imaging devices such as a magnetic resonance imaging (MRI) device. An example of an MRI breast coil and grid device is the Invivo 7 channel breast biopsy array 800239 in
The location of the passageways 20 within the block 10 allows a biopsy device to gain access to all areas of tissue behind the block 10. By rotating the block before placing it within the grid opening 40, each area of tissue behind the block 10 will, at some point, be accessible through one of the four passageways 20.
In some embodiments the proximal face 14 has a larger surface area than the surface area of the distal face 16 and forms a radially projecting shoulder 46 which prevents the block from advancing too far past the grid opening 40. The shoulder 46 extends about 0.02 inches to about 0.06 inches from the outside wall of the body.
In one embodiment of the device each side 44 of the proximal face 14 of the device is about 0.4 inches to about 1.3 inches long, typically about 0.9 inches long. In this embodiment the center of the first passageway 22 is about 0.2 inches to about 0.6 inches from each side 44 of the proximal face, typically about 0.4 inches from each side 44. The center of the second passageway 24 is about to 0.1 inches about 0.35 inches from the center of the first passageway 22, typically about 0.2 inches away from the center of the first passageway 22. The center of the third passageway 26 is about 0.1 inches to about 0.25 inches, typically about 0.15 inches away from the center of the first passageway 22. The center of the fourth passageway 28 is about 0.15 inches to about 0.5 inches away from the center of the first guide passageway 22, typically about 0.3 inches. The length of block 10 is about 0.5 to about 0.9, typically about 0.8 inches.
In one embodiment the guide block 10 includes at least one tab 48 on the perimeter of the body which extends between the proximal and distal faces and which has a distal portion near the distal face of the block with a raised area 50. The tabs 48 are configured to allow the raised area 50 to bend inward toward the body when placing the block within a grid opening 40. Once in the opening the raised area 50 extends radially outward and presses against the sides 42 of the grid opening 40 as a means to maintain its position.
In some embodiments the tab is about 0.05 inches to about 0.15 inches wide, preferably about 0.10 inches wide. The tabs range in length from about 0.25 to about 0.8 inches long. In some embodiments of the invention at least one tab 48 is about 0.05 to about 0.2 inches wide, preferably about 0.15 inches wide.
The guide block 10 may be formed from a plastic such as MAKROLON®, a polycarbonate from Bayer Material Sciences a division of Bayer AG.
A method embodying features of the invention includes providing a guide block 10 having a body 12 with four passageways 20 which are configured within the body. The first passageway 22 is centrally disposed. The second passageway 24 is located vertical or horizontal to the first passageway 22 and parallel to the longitudinal axis. The third passageway 26 is located diagonal to the first passageway 22, and is parallel to the longitudinal axis. The third passageway also has a longitudinal opening along its length which is in fluid communication with the opening in the first passageway 22. The fourth passageway 28, is parallel to the longitudinal axis, and is located diagonal to the first passageway 22 and in on opposite side of the body 12 from the diagonal location of the third passageway 26. The method further includes inserting the guide block into a grid opening 40 of an MRI device 30 nearest to the suspect tissue and selecting the orientation of the block 10 to provide access to the desired location in patient.
In some methods embodying features of the invention an imaging device configured to locate suspect tissue is provided to locate the suspect tissue. Preferably the imaging device is magnetic resonance imaging 30.
An alternative embodiment of the invention illustrated in
A method embodying features of the invention includes providing a guide block 52 having a body 54 with a proximal face 56 a distal face 58, and a longitudinal axis 60 extending between the proximal and distal faces. The guide block 52 has at least one passageway 62 disposed within the body 54 which extends between the proximal 56 and distal faces 58 and which is not parallel to the longitudinal axis 60. The method further includes inserting the guide block 52 into a grid opening 68 of a compression plate 66 nearest to the suspect tissue and selecting the orientation of the block 52 to provide access to the desired location in the patient.
While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. Moreover, individual features of embodiments of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention be defined by the scope of the appended claims as broadly as the prior art will permit.
Terms such as “element”, “member”, “component”, “device”, “means”, “portion”, “section”, “steps”, “means” and words of similar import when used herein shall not be construed as invoking the provisions of 35 U.S.C § 112(6) unless the following claims expressly use the terms “means” or “step” followed by a particular function without reference to a specific structure or action. All patents and all patent applications referred to above are hereby incorporated by reference in their entirety.
This application is a continuation of U.S. patent application Ser. No. 14/275,383 filed May 12, 2014, now U.S. Pat. No. 9,700,349, which is a continuation of U.S. patent application Ser. No. 13/766,287 filed Feb. 13, 2013, now U.S. Pat. No. 8,758,265, which is a continuation of U.S. patent application Ser. No. 12/779,735 filed May 13, 2010, now U.S. Pat. No. 8,398,565, which is a continuation of U.S. patent application Ser. No. 11/981,006 filed Oct. 31, 2007, now U.S. Pat. No. 7,744,543, which is a divisional of U.S. patent application Ser. No. 11/298,154 filed Dec. 9, 2005, now U.S. Pat. No. 7,740,593, all of which are incorporated herein in their entirety by reference and from which priority is claimed.
Number | Name | Date | Kind |
---|---|---|---|
3039386 | Trisler | Jun 1962 | A |
3721218 | Null | Mar 1973 | A |
3844272 | Banko | Oct 1974 | A |
3927660 | Tegtmeyer | Dec 1975 | A |
3955558 | Fuisz | May 1976 | A |
4029084 | Soldner | Jun 1977 | A |
4228796 | Gardiner | Oct 1980 | A |
4289139 | Enjoji et al. | Sep 1981 | A |
4629451 | Winters et al. | Dec 1986 | A |
4642096 | Katz | Feb 1987 | A |
4784134 | Arana | Nov 1988 | A |
4798212 | Arana | Jan 1989 | A |
4911395 | Jones, Jr. | Mar 1990 | A |
4943986 | Barbarisi | Jul 1990 | A |
4952214 | Comparetto | Aug 1990 | A |
4998912 | Scarbrough et al. | Mar 1991 | A |
5078719 | Schreiber | Jan 1992 | A |
5098383 | Hemmy et al. | Mar 1992 | A |
5105457 | Glassman | Apr 1992 | A |
5110660 | Wolf et al. | May 1992 | A |
5254119 | Schreiber | Oct 1993 | A |
5306278 | Dahl et al. | Apr 1994 | A |
5335671 | Clement | Aug 1994 | A |
5349871 | Naganuma | Sep 1994 | A |
5417695 | Axelson, Jr. | May 1995 | A |
5449360 | Schreiber | Sep 1995 | A |
5514140 | Lackey | May 1996 | A |
5653723 | Kamerling et al. | Aug 1997 | A |
5690108 | Chakeres | Nov 1997 | A |
5702405 | Heywang-Koebrunner | Dec 1997 | A |
5741251 | Benoist | Apr 1998 | A |
5846212 | Beeuwkes, III et al. | Dec 1998 | A |
5855554 | Schneider et al. | Jan 1999 | A |
5904691 | Barnett et al. | May 1999 | A |
5913863 | Fischer et al. | Jun 1999 | A |
5931786 | Whitmore, III | Aug 1999 | A |
5957935 | Brown | Sep 1999 | A |
5971998 | Russell et al. | Oct 1999 | A |
6036632 | Whitmore, III et al. | Mar 2000 | A |
6066131 | Mueller et al. | May 2000 | A |
6206832 | Downey | Mar 2001 | B1 |
6416528 | Michelson | Jul 2002 | B1 |
6458074 | Matsui et al. | Oct 2002 | B1 |
6461296 | Desai | Oct 2002 | B1 |
6478799 | Williamson | Nov 2002 | B1 |
6500109 | Tokita et al. | Dec 2002 | B2 |
6508786 | Huitema et al. | Jan 2003 | B2 |
6530922 | Cosman et al. | Mar 2003 | B2 |
6551275 | Fontayne et al. | Apr 2003 | B2 |
6579262 | Mick et al. | Jun 2003 | B1 |
6589242 | Feiler | Jul 2003 | B1 |
6846315 | Barzell et al. | Jan 2005 | B2 |
6913463 | Blacklock | Jul 2005 | B2 |
7204209 | Marin et al. | Apr 2007 | B2 |
7235084 | Shakoon et al. | Jun 2007 | B2 |
7255682 | Bartol, Jr. et al. | Aug 2007 | B1 |
7379769 | Piron et al. | May 2008 | B2 |
7419499 | Dalton | Sep 2008 | B2 |
7507210 | Hibner et al. | Mar 2009 | B2 |
7549424 | Desai | Jun 2009 | B2 |
7658879 | Solar | Feb 2010 | B2 |
8057432 | Flagle et al. | Nov 2011 | B2 |
8273091 | Elghazaly | Sep 2012 | B2 |
8747331 | Luginbuhl et al. | Jun 2014 | B2 |
20020038071 | Fontayne | Mar 2002 | A1 |
20020058939 | Wagner et al. | May 2002 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20030060828 | Michelson | Mar 2003 | A1 |
20040059177 | Baltas | Mar 2004 | A1 |
20040143150 | Barzell | Jul 2004 | A1 |
20040167543 | Mazzocchi et al. | Aug 2004 | A1 |
20050080333 | Piron et al. | Apr 2005 | A1 |
20050101868 | Ridley et al. | May 2005 | A1 |
20050283069 | Hughes et al. | Dec 2005 | A1 |
20060155291 | Farrar et al. | Jul 2006 | A1 |
20070233157 | Mark et al. | Oct 2007 | A1 |
20070255168 | Hibner et al. | Nov 2007 | A1 |
20070282451 | Metzger et al. | Dec 2007 | A1 |
20080161669 | Hauck et al. | Jul 2008 | A1 |
20090018437 | Cooke | Jan 2009 | A1 |
20090138018 | Haines | May 2009 | A1 |
20090163830 | Hibner et al. | Jun 2009 | A1 |
20090292244 | Flagle et al. | Nov 2009 | A1 |
20100179532 | Buysse et al. | Jul 2010 | A1 |
20150305771 | Shabaz | Oct 2015 | A1 |
20160310197 | Black | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
4442609 | Aug 1996 | DE |
29519103 | Jan 1997 | DE |
0682916 | Nov 1995 | EP |
0832609 | Apr 1998 | EP |
0913169 | May 1999 | EP |
1219269 | Jul 2002 | EP |
0117585 | Mar 2001 | WO |
0213709 | Feb 2002 | WO |
03039386 | May 2003 | WO |
2004017842 | Mar 2004 | WO |
20040151409 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20170360474 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11298154 | Dec 2005 | US |
Child | 11981006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14275383 | May 2014 | US |
Child | 15642624 | US | |
Parent | 13766287 | Feb 2013 | US |
Child | 14275383 | US | |
Parent | 12779735 | May 2010 | US |
Child | 13766287 | US | |
Parent | 11981006 | Oct 2007 | US |
Child | 12779735 | US |