This application claims priority to PCT International Application No. PCT/IB2020/057824 filed on Aug. 20, 2020, which application claims priority to Italian Patent Application No. 102019000014925 filed on Aug. 22, 2019, the disclosures of which are expressly incorporated herein by reference.
Not applicable.
The present invention falls within the scope of rolling plants of tubular bodies. More precisely, the invention relates to a device for guiding a mandrel or guiding a driving bar of a mandrel which can be employed for rolling tubular bodies. The invention also relates to a guide unit comprising at least one guide device according to the present invention.
Processes are known for making hollow bodies (or tubular bodies) such as, for example, seamless tubes. A first process which is very well known in the field is the one called push bench, for example described in U.S. Pat. No. 2,083,698. Such a process consists in preforming a cup made of the material to be rolled and then pushing it through a series of rolling stands or matrixes having decreasing sections by means of a mandrel inserted in the cup. A reduction of the thickness with subsequent elongation of the tube itself is obtained due to the effect of the pressure exerted on the material during the passage thereof between the matrixes (or stands) and the mandrel itself. Conventionally, the cup from which the process starts is generally made from a suitably heated bloom. At the end of the rolling, the mandrel is separated from the rolled tube thus obtained. The end of the tube, called a cap, is cut before the tube continues along the successive passages during which the deformation (calibration, finishing) is completed.
Another process of the known type, known as the CPE (Cross Piercing and Elongation) process, consists in making a starting hollow body by piercing the bloom, inserting the mandrel into the hollow body and mechanically fastening the hollow body to the mandrel in the end area of the tip by means of local deformation called crimping. With respect to the push bench type of process, this second process allows improving the yield of the material while avoiding discarding the cap.
Both the above-indicated processes provide pushing the mandrel along the rolling mill by means of a driving bar placed at the back of the mandrel with respect to the advancement direction thereof. Conventionally, the nominal diameter (or caliber) of the driving bar coincides with the one of the mandrel to be pushed. In use, the diameter of the mandrel may be slightly greater than that of the bar pushing it due to the increased temperature. In any event, the mandrel is pushed by a greater length than the one of the mandrel itself. Considering, for example, the production of blanks having maximum length of 21 to 21.5 meters, the total length of the mandrel plus the driving bar overall exceeds 45 meters. The driving bar and mandrel assembly is subject to compression during the rolling and, due to the length, tends to result in a very narrow rod. Guide and containment systems are provided which keep the elements to be guided (bar and mandrel) aligned along the rolling direction to avoid the bending of bar and/or mandrel.
Again with reference to
As indicated above, due to the length of the bar-mandrel unit, the rolling plant comprises a significant number of these modules. Overall, the rules form a guide system which, during rolling, is subjected to considerable forces, impacts and vibrations. For this reason, the hydraulic locking means, and more generally all the fastening systems, are to be configured so as not to allow the disconnection of the rules. However, the rules are subjected to heavy wear due to the forces involved and the sliding on the surfaces thereof. Therefore, with respect to the significant length (also greater than 40 meters) of the guide unit, the costs associated with performing maintenance on and for replacing the worn rules are particularly significant, especially in those plants in which the use of mandrels with different diameter (also called caliber) is provided.
In this regard,
Therefore, the need arises from the above-indicated considerations, to create a new guide system of the driving bar and/or of the mandrel which allows overcoming the above-mentioned drawbacks.
The main task of the present invention is the one of providing a guide device of a driving bar and/or of a mandrel which allows overcoming the above-indicated drawbacks. Within the scope of this task, it is an object of the present invention to provide a guide device which allows a reduction of the costs and the maintenance interventions associated with the wear of the guide surfaces. It is another task of the present invention to provide a functionally versatile guide device, i.e. which easily lends itself to guiding driving bars and/or mandrels having different diameter. It is a yet further object of the present invention to provide a guide device which is reliable and easy to manufacture at competitive costs.
The present invention is based on the general consideration of achieving the above-indicated objects by employing four abutment surfaces and arranging such surfaces on slides which are movable along a direction orthogonal to the advancement one of the bar or mandrel (hereinafter generically indicated as movable element). In particular, the device according to the invention comprises a support structure which identifies an advancement direction of the movable element to be guided. The support structure carries a first slide and a second slide, which are slidable along a transverse direction substantially orthogonal to the advancement direction. Each of the two slides carries two abutment surfaces for guiding the movable element and is movable along said transverse direction between at least a first operating position, upon reaching which said abutment surfaces are susceptible to coming into contact with a movable element having a first predefined diameter, and at least a second operating position, upon reaching which said abutment surfaces are susceptible to coming into contact with another movable element having a second predefined diameter; the device according to the invention comprises actuating means which move the slides along the transverse direction between the operating positions and then lock the slides themselves when one of said operating positions is reached.
The employment of two slides which are transversely movable with respect to the advancement direction of the element to be guided and the employment of four surfaces, on the one hand allows recuperating the wear of the abutment surfaces and on the other, adapting the device to the possible variation of the diameter of the mandrel. The operating position of the abutment surfaces becomes adjustable through the movable slides, and therefore adaptable to the diameter of the movable element to be guided.
According to a possible embodiment, the abutment surfaces of the first slide mirror the abutment surfaces of the second slide with respect to a vertical reference plane containing the advancement axis of the movable element. Preferably, the abutment surfaces for at least one of the slides extend over corresponding planes of extension which are tilted with respect to a horizontal reference plane containing the advancement direction (hereinafter also indicated by the expression “advancement axis”). The planes of extension are tilted by a same angle with respect to said reference plane and substantially intersect on the same reference plane so that the abutment surfaces substantially are arranged in a V. It has been see how this solution allows a particularly effective guide of the element, on the one hand because the contact surfaces are uniformly distributed about the advancement direction and on the other, they mirror one another two-by-two with respect to the vertical reference plane containing the same advancement direction.
According to a preferred embodiment, the actuating means comprise a first moving unit for the first slide and a second moving unit for the second slide. At least one of said units comprises an articulated mechanism configured to take on at least a first configuration which is characteristic of said first operating position and a second configuration which is characteristic of said second operating position. The actuating means further comprise thrust means for varying the configuration of said articulated mechanism. The employment of articulated mechanisms and corresponding thrust means allows a rapid movement of the two slides between the two operating positions and, therefore, device tooling times are significantly reduced.
According to a possible embodiment, the corresponding moving unit for at least one of the slides comprises a mechanical locking element which intervenes on the corresponding articulated mechanism, thus locking it in said second configuration and so that the configuration of said articulated mechanism can be varied only upon the actuation of said thrust means. The employment of a mechanical locking element is particularly advantageous in terms of reliability because the articulated mechanism may operate (i.e. keep the corresponding slide in the operating position) also in the event of failure or breakdown of the thrust means.
Preferably, the thrust means are connected to the connecting rod and comprise a hydraulic, pneumatic or electric type actuator.
In a possible embodiment, the mechanical locking element comprises an abutment surface against which the second lever of each pair of levers rests when said articulated mechanism takes on said second configuration.
According to a possible embodiment, at least one of said slides comprises a movable portion carrying a first abutment surface of said abutment surfaces; such a movable portion is movable between a closed position and an open position; when in said closed position, said first abutment surface is susceptible to contacting the movable element, and in which in said open position, said first surface occupies a position which is distal from the advancement axis such as to allow the positioning of the movable element in a housing space delimited by the other abutment surfaces.
In a possible embodiment, the movable portion is rotatable between the closed position and the open position about a rotation axis parallel to the advancement axis; the device comprises at least one rotation unit for rotating the movable portion between the closed position and the open one.
In a possible embodiment, the device comprises two rotation units installed on opposite end parts of said at least one of said slides, in which the end parts are assessed along a direction parallel to said advancement axis.
According to a possible embodiment, the rotation unit comprises:
Preferably, at least one of said rotation units comprises a mechanical locking element which acts on said articulated kinematism, thus locking it in said second configuration and so that the configuration of articulated kinematism can be varied only upon the actuation of said operating element.
According to a possible embodiment, the operating element comprises an actuator and said articulated kinematism comprises:
Further objects and advantages of the present invention will become apparent from the following detailed description of an exemplary embodiment thereof and from the accompanying drawings, which are merely illustrative and non-limiting, in which:
The same numerals and reference letters in the Figures identify the same elements or components.
With reference in particular to
Device 1 of the invention comprises a first slide 11 and a second slide 12, which are carried by said first part 10A and by said second part 10B of structure 10, respectively. More precisely, the two slides 11, 12 are slidable along a transverse direction 202, i.e. substantially orthogonal to the vertical reference plane 200 and to the advancement axis 201. The movement of the slides 11, 12 along the transverse direction 202 is defined by guides 4A, 4B which are carried by the two parts 10A, 10B of structure 10. In an embodiment shown in the Figures, two guides 4A, 4B are provided for each slide 11, 12.
According to the present invention, each of the two slides 11, 12 comprises two abutment surfaces 51, 52, 53, 54 for bar 5 and/or for mandrel 6, depending on the function for which device 1 is intended. More precisely, according to a first possible employment, the abutment surfaces 51, 52, 53, 54 serve to guide bar 5 alone, while in a second possible embodiment, the surfaces 51, 52, 53, 54 guide mandrel 6 and bar 5 in sequence. In any event, each abutment surface 51, 52, 53, 54 serves the function of guiding the movable element (bar and/or mandrel) and of countering the bending/deformation to which the element itself is subjected due to the loads weighing thereon.
According to the invention, each of the slides 11, 12 is movable along the transverse direction 202 between a first operating position, upon reaching which the abutment surfaces 51, 52, 53, 54 are susceptible to coming into contact with a movable element having a first predefined diameter, and a second operating position, upon reaching which the abutment surfaces 51, 52, 53, 54 are able to come into contact with a movable element having a second predefined diameter which is different from said first predefined diameter. In other words, according to the invention, each operating position of the slides 11, 12 is characteristic of a predefined diameter of the movable element 5-6.
According to the invention, device 1 comprises actuating means of the slides 11, 12 which move each slide 11, 12 between said operating positions and lock each slide 11, 12 when one of said operating positions is reached. Therefore, the actuating means serve the function of obtaining the movement of the slides 11, 12 along the transverse direction 202 from said first operating position to said second operating position, and vice versa. At the same time, the actuating means are configured to lock the slides 11, 12 when the same reach one of the operating positions so that the abutment surfaces 51, 52, 53, 54 effectively counter the bending loads to which the movable element (bar 5—mandrel 6) is subjected.
Due to the effect of the movement of the slides 11, 12 along the transverse direction 202, device 1 advantageously allows movable elements having at least two different diameters to be guided without the need to perform any tooling or modify the configuration of the device.
The actuating means could be configured to allow the abutment surfaces 51, 52, 53, 54 to also reach further operating positions, each characteristic of a predefined diameter of the movable element 5-6 to be guided. The possibility also falls within the scope of the present invention, of configuring the actuating means so that the same allow the slides 11, 12 to be positioned in any position comprised between two limit positions which are characteristic of a maximum diameter and a minimum diameter of a movable element 5-6 to be guided. In other words, the possibility falls within the present, of continuously adjusting the position of the two slides 11, 12 when such a position is comprised between the two limit positions defined above.
According to a preferred embodiment of the invention, the at least two abutment surfaces 51-52 of the first slide 11 mirror the abutment surfaces 53-54 of the second slide 12 with respect to a vertical reference plane 200 containing the advancement axis 201.
According to a possible embodiment (clearly shown in
According to a possible alternative embodiment to the one above, with respect to the horizontal reference plane 500, the abutment surfaces 51, 53 arranged below the horizontal reference plane 500 might not mirror the abutment surfaces 52, 54 arranged above the same plane (α1≠α2). The inclination angle α2 of the planes of extension 501-503 of the abutment surfaces 51, 53 below the reference plane 500, for example could be less than the inclination angle α1 of the planes of extension 502-504 of the surfaces above the same reference plane 500. This arrangement could depend, for example, on the dimensions of head 280, which carries and pushes bar 5, as better indicated below. In any case, the possibility falls within the invention for the abutment surfaces 51-53, 52-54 to be arranged in substantially opposite manner to what is indicated above, i.e. angle α2 is greater than angle α1.
According to another embodiment, shown in
Therefore, not only do the embodiments described above for the abutment surfaces fall within the scope of the present invention, but so do combinations thereof or again, further alternative embodiments which are functional for the purpose. In this regard, the abutment surfaces arranged above the horizontal reference plane 500 may mirror or not mirror the ones below the same plane.
According to a possible embodiment, device 1, the actuating means comprise, for each of the slides 11, 12, a moving unit 301, 302 for moving a corresponding slide 11, 12 from the first operating position to the second operating position (or vice versa). In particular, according to the invention, such a moving unit 301, 302 comprises an articulated mechanism 21, 22 which takes on at least a first configuration which is characteristic of said first operating position and a second configuration which is characteristic of said second operating position of the corresponding slide 11, 12. The moving unit 301, 302 further comprises thrust means 88 for varying the configuration of the articulated mechanism 21, 22, in particular between the two configurations (first and second) described above. It is precisely the variation in configuration of the articulated mechanism 21, 22, induced by the thrust means 88, to translate into the movement of the corresponding slide 11, 12 along the transverse direction 202 between the two operating positions.
In this regard,
The articulated mechanism 21 of the first moving unit 301 comprises a first pair of levers 25, 26 and a second pair of levers 25′, 26′. For each pair of levers, a first lever 25, 25′ is hinged to the first part 10A of the support structure 10, while a second lever 26, 26′ is hinged to the corresponding first lever 25, 25′ and to the first slide 11. The articulated mechanism 21 also comprises a connecting rod 27 which connects the first lever 25 of the first pair of levers to the first lever 25′ of the second pair of levers. The connecting rod 27 serves the function of synchronizing the rotation of the two levers 25, 25′. Such a rotation translates into a translation of the first slide 11 along the transverse direction 202 due to the effect of the guide means which restrain the movement of the first slide 11. In the embodiment shown in the Figures, the thrust means 88 are connected to the connecting rod 27 and comprise an actuator, preferably of the hydraulic type. The body 88A of actuator 88 is anchored to the first support part 10A, while the end of the rod 88B thereof is restrained to the connecting rod 27. The related movement of rod 88B with respect to body 88A of the actuator itself causes a roto-translation of the connecting rod 27 and a subsequent rotation of the two levers 25, 25′. In an embodiment not shown in the Figures, the thrust means 88 could be connected to another lever of the articulated mechanism.
As shown in
According to a first possible embodiment, locking the slides 11, 12 in the first operating position or in the second operating position could be actuated directly by the thrust means 88. The hydraulic actuator mentioned above could therefore be configured so as to exert a sufficient force to keep the corresponding slide 11, 12 in the operating position reached previously due to the effect of the thrust exerted by the actuator itself.
According to a preferred embodiment of the invention, the related moving unit 301, 302 for each of the two slides 11, 12 comprises a first mechanical locking element 70A and a second mechanical locking element 70B which act on the articulated mechanism 21, 22, locking it in a corresponding operating configuration (i.e. locking the slide in the corresponding operating position) and therefore preventing any variation in configuration potentially caused by the forces acting on mandrel 6 or bar 5. In other words, each mechanical locking element 70A, 70B serves the function of preventing the corresponding slide 11, 12 from moving from the occupied operating position, unless such a movement is induced by the above-indicated thrust means 88.
In the embodiment shown in
In any case, each abutment surface 71A, 71B prevents the rotation of the corresponding second lever 26, 26′ which would be induced by the forces acting on the movable element 5-6. Such forces indeed would tend to move the corresponding slide 11, 12 away from the advancement axis 201, along the transverse direction 202, and therefore to vary the configuration of the articulated mechanism 21, 22. Advantageously, these forces are instead discharged onto the abutment surface 71A and therefore onto the support structure 10. In fact, due to the effect of the abutment surface 71A, the articulated mechanism 2122 is auto-locked in the second operating configuration. This condition increases the reliability of device 1 according to the invention because locking the slides 11, 12 in the operating position is of mechanical type and therefore is not designated to the means pushing the slides 11, 12 along the transverse direction 202 (i.e. to the thrust means 88). The guiding of the movable element 5-6 is thus ensured also in the event of the breakdown or failure of the thrust means 88. This results in the latter being sized only to vary the configuration of the articulated mechanism 21, 22, i.e. to push the corresponding slide 11, 12.
With reference again to
The actuation of actuator 88, i.e. the exit of rod 88B thereof, causes a movement of the connecting rod 27 and therefore a synchronized rotation of each pair of levers 25-26 and 25′-26′. With reference to
The variation of the existing distance (from T1 to T2) between the two slides 11, 12 (distance assessed along the transverse direction 201) following the movement from the second operating position to the first operating position may be noted from the comparison between
Advantageously, in the above-described embodiment shown in the Figures, device 1 according to the invention may be adapted to operate on movable elements 5-6 having a diameter which falls in a range (at least in the order of millimeters) around the nominal diameters which are characteristic of the mentioned operating positions. Such an adaptation may be completed by varying the thickness of the abutment surfaces 71A, 71B of the locking elements 70A, 70B, or more generally, by varying the position of the same abutment surface 71A, 71B (i.e. of plane 205 over which such a surface extends) along a direction which is parallel to the advancement axis 201. In essence, by modifying the position of the abutment surface 71A, 71B, the course of the broken line Z1-Z2 identified by the rotation axes of the levers may be varied when a corresponding operating position is reached.
It therefore is worth noting that the variation in thickness of the abutment surface 71A, 71B, or the variation of the longitudinal position thereof, in fact is the only operation required to adapt device 1, 1A to guide a movable element 5-6 having a nominal diameter close to the value of one of the nominal diameters. Therefore, with respect to the background art, device 1, 1A is much more adaptable and therefore easier to manage. Such a versatility results in a significant decrease in the dead times and therefore, in an increase of the plant productivity in which device 1, 1A itself operates.
According to a possible embodiment (shown also in
In the closed position, the first abutment surface 51 (carried by portion 13) is positioned in the position adapted to guide the movable element 5-6. Basically, in the closed position, the first abutment surface 51, with the other abutment surfaces 52, 53, 54, delimits the housing space SP (indicated in
According to a preferred embodiment, the movable portion 13 is rotatable between the closed position and the open one about a longitudinal axis 220 which is parallel to the advancement direction 201. In this regard, device 1 according to the invention comprises at least one rotation unit 401, 402 for rotating said first movable portion 13 between the closed position and the open position.
According to a possible embodiment shown in
Preferably, the two rotation units 401, 402 have the same configuration. According to a preferred embodiment shown in
The first rotation unit 401 also comprises an operating element 410 for varying the configuration of the kinematism from the first configuration to the second configuration, and vice versa. The operating element 410 preferably is an actuator of the hydraulic, pneumatic or electric type operatively connected to one of the members of the kinematism so as to vary the position thereof, thus inducing the configuration change. The operating element 410 is installed on the first slide 11 and remains integral with the slide itself, together with the whole kinematism, obviously during the movement along the transverse direction 202 from the first operating position to the second operating position, and vice versa.
With reference again to
The kinematism also comprises a lever 62 hinged to the movable portion 13 of the first slide 11 and hinged to body 61 at a third rotation axis 453 and a fourth rotation axis 454, respectively. A rotation, through lever 62, of body 61 about the first rotation axis 451, induced by the operating element 410, translates into a rotation of the movable portion 13 about the longitudinal axis 220, and therefore depending on the direction, into a passage from the closed configuration (
With reference to
With reference again to
As indicated above, the rotation of the movable portion 13 from the closed position to the open one is in order to allow the loading of mandrel 6 in the housing space SP. For this reason, it is carried out in the absence of a mandrel or during the dragging back of bar 5, i.e. under a condition which in any case also allows the initial rotation in clockwise direction towards the housing space.
Again, it is worth noting from
Again with reference to
Mandrel 6 is positioned on slide V (see
In a possible embodiment, slide V may be replaced by one or more mechanical arms which position mandrel 6 in the housing space SP. The employment of mechanical arms simplifies the design of the plant and protects the abutment surfaces 52, 53, 54 against impacts. Mandrel 6 may be accompanied in the housing space SP, and therefore in contact with the abutment surfaces 52, 53, 54, through the employment of mechanical arms.
The present invention therefore also relates to a unit 600 for guiding a driving bar 5 and a mandrel 6 for a rolling plant of tubular bodies. With reference to
According to a preferred embodiment, the devices (indicated by numeral 1A in
The second section 600B has a length (assessed along the advancement direction 201) which is greater than or equal to the length of mandrel 6. The employment is provided in the case shown, of mechanical arms which position mandrel 6 in the housing space SP defined by each guide device.
As indicated above, according to a known principle, the driving bar 5 is restrained to a head 280 moved along the advancement direction 201 through dragging means, preferably of the pinion-rack type (indicated by letters P and C in
According to a preferred embodiment, the devices (indicated by numeral 1 in
The guide device according to the invention allows the tasks and preset objects to be wholly absolved. In particular, the configuration of the device according to the invention allows the wear of the abutment surfaces to be recuperated, and therefore the production of the plant to be increased through a significant reduction of the dead times. Simultaneously, the device according to the invention operatively adapts to a possible variation of the diameter of the mandrel, to the benefit of a reduction of the machine setting times. In general, the device according to the invention allows the frequency of the tooling operations to be simplified and highly contained, and therefore the management costs of the rolling plant associated with guiding the bar and/or mandrel to be reduced.
Number | Date | Country | Kind |
---|---|---|---|
102019000014925 | Aug 2019 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/057824 | 8/20/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/033156 | 2/25/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1950929 | Olson | Mar 1934 | A |
2083698 | Engelbertz | Jun 1937 | A |
2263744 | Smith | Nov 1941 | A |
2837945 | Griffiths | Jun 1958 | A |
3118329 | Hendrickson | Jan 1964 | A |
4967579 | Haydo | Nov 1990 | A |
20210031316 | Weingärtner | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
101758075 | Jun 2010 | CN |
1082214 | May 1960 | DE |
3319809 | Dec 1983 | DE |
H0280108 | Mar 1990 | JP |
1765955 | Apr 1996 | RU |
2108176 | Apr 1998 | RU |
Entry |
---|
EP 2881218 A1, Maringer Jun. 2015. |
CN 108994083 A, Jun et al. Dec. 2018. |
CN 108838210 A, Dang et al. Nov. 2018. |
WO 2019006811 A1, Gu et al. Jan. 2019. |
JP 59-159205 A, Arai et al. Sep. 1984. |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/IB2020/057824, dated Nov. 27, 2020, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20220219213 A1 | Jul 2022 | US |