The present disclosure relates generally to peristaltic pumps, and more particularly to a guide element for a peristaltic pump.
Rotary-style peristaltic infusion pumps are often used to deliver fluid in a very controlled manner such as, for example, the intravenous delivery of medicine to a patient. These peristaltic pumps typically include a disposable pumping cassette and an assembly of radially arranged rollers received within a cavity of the cassette. The rollers revolve together in the cassette when rotationally driven by a drive shaft. A flexible tubing is disposed around a portion of the assembly of rollers and exerts a force against the rollers in contact therewith to generally hold the rollers against the drive shaft.
In response to rotational movement of the rollers, portions of the flexible tube that are in contact with the rollers compress or otherwise occlude against a wall of the cassette. As a result, fluid traveling through the tube is temporarily trapped in the tube between the occluded points. The trapped fluid is released from the tube when the occlusion force on the tube is released. In this manner, fluid is urged through the tube via peristaltic wave action.
In some instances, a roller may not directly contact the tubing. In this case, the roller(s) may undesirably move or shift and lose proper contact with the drive shaft, and/or a roller may undesirably contact an adjacent roller. These occurrences may cause errors in various pumping operations, thereby potentially diminishing the overall performance of the pump.
A guide element for a peristaltic pump including a plurality of rollers is disclosed. The guide element includes a base and a plurality of spindles established on a surface of the base. The plurality of spindles is positioned substantially normal to the surface of the base and projects outward from the surface of the base. Each of the plurality of spindles is configured to locate a journal formed in a respective one of the plurality of rollers.
Features and advantages of embodiment(s) of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though perhaps not identical components. Reference numerals having a previously described function may or may not be described in connection with other drawings in which they appear.
Example(s) of the guide element and the method of guiding a plurality of rollers for a peristaltic pump including the guide element as disclosed herein advantageously guide and/or locate a plurality of rollers during rotational movement of a drive shaft to thereby maintain contact of the rollers with the drive shaft, and/or prevent a roller from contacting an adjacent roller. The guide element may also improve the overall performance of the peristaltic pump and enable the pump to achieve higher precision in fluid volume delivery. The guide element is also advantageously simple to fabricate and to incorporate into the pump assembly. Further, unlike previous guide elements where the guide element is attached to the drive shaft and is the only part that carries the rollers around, the guide element of the present disclosure is actually carried around by the rollers, which in turn are moved by the drive shaft. As such, the guide element of the present disclosure generally only carries a roller when a roller loses contact with the drive shaft (e.g., when a roller is not in contact with the tubing, such as in or adjacent to the 6 o'clock position).
With reference now to the drawings,
As shown in
An assembly 36 of satellite rollers 38 is received within the cavity 26 of the cassette 12 and abuts a substantial portion of the tubing 28. Each roller 38 includes a generally cylindrically-shaped body 42 including an outer surface 40 and an inner surface 41, a cavity 44 defined by the inner surface 41, and opposed generally cylindrically-shaped ends. At least a portion of the outer surface, 40 of the roller 38 may be contoured (as best shown in
The rollers 38 are radially arranged in the cavity 26 around the drive shaft 18 that protrudes into the cavity 26 through the bore (not shown) formed into the base 22 of the cassette 12. As shown in
In an embodiment, e.g., as shown in
The drive shaft 18 is generally knurled, roughened, and/or etched, or otherwise configured to frictionally engage the outer surface 40 of each roller 38 upon rotation of the drive shaft 18. The roller assembly (e.g., a spider roller assembly) 36 (i.e., the rollers 38 operating as a single unit), thus rotates in response to rotational movement of the drive shaft 18.
When the pump 10 is operating, rotational movement of the roller assembly 36 pumps the liquid through the tubing 28 to create a pressurized flow thereof. The tubing 28 compresses or otherwise occludes at a number of points in contact with the rollers 38 when the roller assembly 36 and the individual rollers 38 are all rotating. Fluid is trapped in the tubing 28 between two points of occlusion (i.e., from one roller 38 to an adjacent roller 38). The trapped fluid is passed or moved through the tubing 28 via peristaltic wave action at a flow rate determined by the rotational rate (rpm) of the drive shaft 18, and released when the tubing 28 is no longer occluded by the rollers 38.
In every revolution of the roller assembly 36, each roller 38 disengages the tube 28 generally between the five o'clock and the seven o'clock positions (e.g., as shown in
As shown in
When the rollers 38, 38′ lose frictional contact with the drive shaft 18, the rollers 38, 38′ may also contact one another. Contact between two rollers 38, 38′ may lead to jamming of the rollers 38, 38′. In either situation (i.e., slipping or jamming), the overall performance of the peristaltic pump 10 may be deleteriously affected.
In accordance with the present disclosure, jamming or slipping of the rollers 38, 38′ may be corrected or lessened by including a guide element 50 into the cassette 12.
With reference now to
The base 52 of the guide element 50 may be a plate or disc including the first surface 56 (as shown in
The base 52 also includes an outer edge 60 and an inner edge 62, wherein the inner edge 62 defines a bore 64. It is to be understood that the bore 64 is not essential to the operative function of the guide element 50. In an embodiment, the bore 64 simply provides clearance for the drive shaft 18, as the drive shaft 18 may project higher than the rollers 38, 38′ and, thus, a spacing or bore 64 is necessary to accommodate the length of the drive shaft 18. In another non-limiting example, the guide element 50 does not include a bore 64.
The edge 60 of the base 52 may be formed in any geometric shape so that the guide element 50 can suitably be received within the cassette 12, and the spindles 54 can be arranged on the base 22 in any configuration to be operatively received within the cavity 44 of its respective roller 38, 38′. As a non-limiting example, and as shown in
The thickness of the base 52 includes any thickness that will suitably allow the guide element 50 to function properly when the pump 10 is operating. The base 52, however, should also be thin enough to fit within the cassette 12 and to provide suitable clearance between the guide element 50 and the cover of the cassette 12. If the cover touches the guide element 50, then the guide element 50 as well as the pump 10 may not work properly if such contact creates undesirable dragging, catching, or substantial amounts of friction. In an embodiment, the base 52 may have a thickness ranging from about 0.5 mm to about 1.5 mm.
The spindles 54 are established on the base 52 and radially distributed around the bore 64. The number of spindles 54 is determined based on the number of rollers 38, 38′ used in the cassette 12. As shown in
The spindles 54 are generally provided as projections positioned substantially normal to the first surface 56 of the base 52, and extend outwardly from the first surface 56. Spindles 54 may have a length about equal to or less than the length of the cylindrical body 42 of the rollers 38, 38′. As a non-limiting example, the spindles 54 may have a length ranging from about 4 mm to about 6 mm.
As shown in
The inner surface 68 of the spindle 54 has any suitable shape that will facilitate easy operation of the guide element 50 while operatively placed in the cassette 12. As shown in
The guide element 50 may be integrally formed. Such integral forming may be accomplished by any suitable molding techniques such as, for example, injection molding, machining or the like. The guide element 50 may also be formed from any suitable polymeric material, non-limiting examples of which include engineered polymeric materials (e.g., ABS), thermoplastic materials, or thermoset materials. In an embodiment, guide element 50 may be formed from polytetrafluoroethylene (PTFE), acetal, polypropylenes, and/or the like, and/or combinations thereof.
With reference now to
While several embodiments have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.