The present invention relates to medical devices for oncotherapy, and more particularly to a guide for radioactive particle implantation in oncotherapy. The present invention also relates to a method of making the guide for radioactive particle implantation in oncotherapy.
Percutaneous puncture is a surgical method often used in tumor interventional therapy to achieve the purpose of killing the tumor cells by injecting drugs into the tumor or implanting the radioactive particles or magnetic heat seeds into the tumor through the needles. Accurately positioning during puncture plays a decisive role in the success rate of puncture. The operations of finding puncturing points by the experiences of the surgeons and punching directly the needles into the lesion in the past are inaccurate and easily affect the treatment effect caused by the deviations of the implanting positions and the uneven distribution of the radioactive particles or magnetic heat seeds due to the reasons such as the deviation of the positions and directions of the needles going into the lesion and the mistakes generated by repeated puncture during the implantation.
With the continuous development of the medical imaging technology, a method of percutaneous puncture under the guidance of the CT scanning equipment, or the ultrasound scanning equipment or the magnetic resonance image scanning equipment is already appeared. The method includes following steps: firstly determining the puncturing points and the puncturing depths by the imaging equipment such as a CT scanner; secondly carrying out the tumor puncture based on the puncturing points and the puncturing depths through the experience of the surgeon; and lastly implanting the radioactive particles or magnetic heat seeds into the tumor. The method can greatly improve the accuracy and safety of the puncture, however the defects of inaccurate positioning which is caused by the deviations of the position and direction of the surgeon's hand and the depths accurately determined through repeatedly puncturing are existing because the guidance of the CT scanner is not a real-time guide.
Another method for percutaneous puncture through conventional template interpolation under the guidance of the CT scanner or ultrasound scanning equipment includes following steps: firstly determining the punching points and the punching depths through the guidance of the CT scanner; then placing the conventional template onto the surface of the implanted portion according to the punching points and the punching depths; lastly carrying out the implantation of the radioactive particles or magnetic heat seeds into the implanted portion by the needle or implanting gun held by a surgeon and passing through the equal-spaced holes of the conventional template. The accuracy of the particle implantation is improved, however, the deviations of the positions or the angle between the conventional template and the patient easily appear in the complicated anatomical structure and results in the needle inserting paths and the inserting positions during the implantation being inconsistent with that in plan, so as to reduce the accuracy of treatment and the radiation dose of the tumor, and increase the radiation dose of the normal tissue and the complications, and affect the treatment.
Accordingly, there is a need in the art for improved guide for radioactive particle implantation in oncotherapy and method thereof.
Accordingly, an object of the present invention is to provide a guide for a surgeon to carry out radioactive particle implantation in oncotherapy, so as to improve the accuracy of the implanting positions of the radioactive particles. The object of the present invention is also to provide a method of making the guide for radioactive particle implantation.
In order to achieve the object set forth, a method of making a guide for radioactive particle implantation in oncotherapy comprises following steps: scanning a predetermined portion of the patient through a scanner to obtain a medical image of the predetermined portion; obtaining an image of an interest region from the medical image, the interest region including a lesion portion and tissue portions associated with the lesion portion; reconstructing the image data of the interest region to obtain a 3D model of the interest region; determining virtual paths which allow the needle going to the lesion portion based on the 3D model of the interest region; determining virtual positions, virtual directions and virtual depths based on the virtual paths; obtaining a 3D model of a guide for radioactive particle implantation based on the 3D model of the interest region, the virtual paths, the virtual positions and the virtual directions; and obtaining the guide for radioactive particle implantation in oncotherapy through manufacturing the 3D model by the rapid prototyping technology.
In order to achieve the object set forth, a guide making by the method described above comprises a base having a plurality of through holes extending along the thickness direction thereof and a plurality of guiding portions extending from a peripheral portion of the through hole.
Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Reference is now made to the drawings to describe the invention in detail.
Step 11: scanning a predetermined portion of the patient through a scanner to obtain a medical image of the predetermined portion;
Step 12: obtaining an image of an interest region from the medical image, the interest region including a lesion portion and tissue portions associated with the lesion portion;
Step 13: reconstructing the image data of the interest region to obtain a 3D model of the interest region;
Step 14: determining virtual paths which allow the needle going to the lesion portion based on the 3D model of the interest region;
Step 15: determining virtual positions, virtual directions and virtual depths based on the virtual paths;
Step 16: obtaining a 3D model of a guide for radioactive particle implantation based on the 3D model of the interest region, the virtual paths, the virtual positions and the virtual directions; and
Step 17: obtaining the guide for radioactive particle implantation in oncothreapy through rapid prototyping technology from the 3D model.
Specifically, in step 11, the scanner is a computed tomography scanning equipment or a magnetic resonance imaging equipment or a PET-CT scanning equipment. Referring to
In step 13, the image data of the interest region is obtained by segmenting the image data of the predetermined portion according to tissue portions, and the 3D model of the interest region is obtained through respectively reconstructing the image data of the interest region which are segmented from the image of the predetermined portion according to tissue portions. The 3D model of the interest region including the 3D model of the lesion portion and the 3D model of the tissue portions associated with the lesion portion. In step 14, the virtual paths are determined by the shape and size of the 3D model of the lesion portion, and the total dose of the implanted radioactive particles which is determined by the shape and size of the 3D model of the lesion portion.
In step 15, the virtual directions and the virtual positions are obtained according to the virtual paths which allow the needle going to the lesion portion and the outer surface of the 3D model of the interest region. The virtual depths are obtained according to the virtual paths and the distribution locations of the radioactive particles. The distribution locations of the radioactive particles are determined through uniformly distributing the total implanted radioactive particles in the 3D model of the lesion portion.
Step 21: segmenting the image of the interest region to obtain image data of tissue portions, the tissue portions including the lesion portion and other tissue portions associated with the lesion portion; and
Step 22: obtaining the 3D model of the interest region through reconstructing the image data of tissue portions.
Step 31: segmenting the 3D model of the lesion portion into multiple segmented section according to the shape and size of the lesion portion, referring to
Step 32: determining the center of each segmented section;
Step 33: emitting outwardly rays from the center of each segmented section;
Step 34: filtering the rays to obtain filtered rays; and
Step 35: obtaining the virtual paths according to the filtered rays, the 3D model of the lesion portion, the total does of the implanted radioactive particles, and the absorbed does of the radioactive particles implanted in different tissue portions of the interest region.
Specifically, in step 34, the rays are filtered base on whether the rays fall within the range of the operating orientation in surgery and pass through the 3D model of the important tissue portion in the interest region. The operating orientation is determined by the patient position. The ray passing through the 3D model of the important tissue portion is deleted. The important tissue portion is an important organ, or a blood vessel or a nerve. The ray falling a portion out of the range of the operating orientation is deleted. The filtered rays are the virtual paths.
Step 41: selecting the surface of the portion including all positions where the virtual paths intersect the 3D model of the interest region;
Step 42: thickening the surface to form a 3D model of a guide prototype; and
Step 43: drilling and drawing the 3D model of the guide prototype to form the 3D model of the guide having through holes and guiding portions.
Specifically, in step 43, the through holes of the 3D model of the guide are formed through drilling the portions of the 3D model of the guide prototype corresponding to the virtual positions. The extending direction of each through hole is consistent with the corresponding virtual direction. The size of each through hole is determined by the size of the corresponding needle for implanting radioactive particles during the radioactive particle implantation. The distance between adjacent through holes is set based on the distance between corresponding virtual paths along which the needles go to the lesion portion. The guiding portions of the 3D model of the guide are formed through drawing the portions around the through holes. The guiding portions respectively extend along the corresponding virtual directions.
The guide made according to the method of the present invention can guide radioactive particles accurately into the lesion portions of the patient through the needles, so as to ensue radioactive particles evenly distributed in the lesion portion and avoid the therapeutic effect which is resulted in uneven distribution of the radioactive particles caused by the deviations of the directions and positions of the needles during the traditional oncology treatment surgery. The guide made by the method of the present invention also can avoid the problem of repeatedly punching the needles resulted by the different size, different shape of different tumor in traditional surgery and improve the precision rate of the radioactive particle implanting positions and the radioactive particle distribution, so as to achieve the purpose of personalized medicine. In addition, the guiding portions of the guide integrated through the rapid prototyping technology are determined by the directions of the needle, so as to simplify the operation process during the radioactive particle implantation for saving the time of the surgery and reducing the risk of inflection during operation. Furthermore, the guide for radioactive particle implantation in oncotherapy according to the method of the present invention is configured with a simple construction and easily manufactured.
Furthermore, although the present invention has been described with reference to particular embodiments, it is not to be construed as being limited thereto. Various alterations and modifications can be made to the embodiments without in any way departing from the scope or spirit of the present invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201510995138.4 | Dec 2015 | CN | national |