This Nonprovisional application claims priority under 35 U.S.C. § 119(a) on patent application Ser. No(s). 2,407,368 and 2,437,157 filed in Canada on Oct. 7, 2002 and Aug. 8, 2003, respectively, the entire contents of which are hereby incorporated by reference.
This invention relates to a guide for facilitating the adjustment of a piece of stock on a workbench and more particularly to a guide for adjusting the position of a piece of stock on a workbench in order to control the angle of cut into the stock by a power tool. The power tool may be a router, a power saw and the like.
A piece of stock which is cut on a workbench usually contacts a fence along one of its sides. Along its oppositely facing side, the stock contacts a guide which serves to control the movement of the stock across the working surface. The guide is usually fitted with a tongue which slides in a groove. The groove conventionally extends laterally across the working surface. By means of the tongue, the stock can travel on a path which is parallel to the groove.
Many problems are encountered in controlling the stock in this manner. For the tongue to move smoothly in the groove, it cannot be too tight-fitting. The looser it is, however, the more subject the tongue is to vibration or oscillation. Such movement causes a like movement of the guide with a resulting loss in precision of the cut made by the power tool. Such movement also causes fatigue since the operator will feel the movement when his hands are on the guide.
Another problem which is frequently encountered is that the stock tends to bind in the cutter of the power tool as the stock is being moved across the working surface. The reason is that the groove in which the tongue of the guide travels is spaced apart from the cutter a significant distance to prevent it from interfering with the cutting operation. The guide, being attached to the tongue, is spaced apart an equal distance. The further the guide is from the point at which the stock is cut, the less effective it is in preventing unintended movement of the stock at that point. Such movement is usually the cause of binding.
A further problem is that as the cutter rotates, it urges the stock away from the fence and toward the guide. Because of the significant spacing between the cutter and the guide, the stock is difficult to control and unintended movement of the stock may occur.
I have invented a guide for controlling a piece of stock in a way that substantially overcomes these problems. The guide does not move in a groove but moves along a guide rod. Very little if any vibration or oscillation occurs as the guide moves. Moreover, the guide can be moved until it is very close to the cutter. In fact it can be moved over the cutter. Being so close, very little if any unintended movement of the stock occurs as it is being cut.
A further advantage of my guide is that as the stock is being cut, the cutter urges the stock into the fence and not into the guide. Since a fence is stationary during cutting, very little unintended movement of the stock is caused by the cutter.
The guide of my invention controls the angle of stock on a workbench equipped with a fence. Briefly, the guide includes: a base and a slider connected to the base and movable along the fence. A rotary element is mounted for rotation to the base and a backing block is mounted to the rotary element for supporting the stock while it is on the working surface. There is means for releasably clamping the rotary element to the base to prevent the rotary element from rotating relative to the base.
The guide is described with reference to the accompanying drawings in which:
Like reference characters refer to like parts throughout the description of the drawings.
With reference to
A circular opening 18 is formed in the working surface through which the cutter 19 (
A guide rod 20 is supported above the fence by brackets 22a,b which are attached to the rear wall of the fence. The guide rod extends horizontally along the length of the fence and supports a slider, generally 24. The slider has a sliding tube 26 having an internal passageway in which the guide rod is received. The sliding tube is freely slidable along the guide rod.
A stop 27 for the slider is mounted for sliding along the guide rod. With reference to
As illustrated in
The base supports a rotary plate or element 36. The plate has an outer edge which is curved in part and otherwise is straight 46. The plate has an opening 38 for receipt of a fastener composed of threadably interconnected stud 40 and pin 42. The fastener serves to interconnect the plate and base so that the plate is rotatable relative to the base.
An upstanding rail 44 is attached to the plate adjacent to the straight part of the plate. The rail is connected to a backing block 48 by means of two or more pairs of threadably inter-connected bolts 50 and nuts 52. The nuts are received in a groove 56 in the backing block.
The groove has an interior large enough to allow the nuts to slide freely but the front opening of the groove is constricted so that the nuts cannot pass through the opening. The nuts thus hold the block to the rail but allow the block to slide relative to it. If, however, the studs are tightened to the nuts, the nuts will frictionally engage the walls of the groove which define the opening. The nuts will then prevent the block from sliding.
When the rail is attached to the backing block, the downwardly facing lower wall of base 34 is preferably spaced above the working surface 14 of the workbench. As such, movement of the base will not be impeded by dust, sawdust and chips which collect on the working surface. More preferably, the lower base wall is spaced above the cutter of the power tool so that the cutter will not damage the base when the plate moves over the cutter.
A scale 60 is etched or painted onto the upper surface of the plate adjacent to its curved edge. The scale cooperates with line 62 on the base and acts as a gauge to measure the angle of the plate relative to some line of reference. In
An arcuate groove 64 is formed in the plate. A handle 66 has at its lower end a threaded shank 68 which passes through the groove and into a threaded aperture 70 in the base. The handle serves as means for releasably clamping the plate to the base so that the position of the plate on the block is adjustable. Thus, by means of the handle, the piece of stock may be clamped in a fixed angular position relative to the fence.
With reference to
The operation of the adjusting guide of the invention is as follows: With reference first to
The stock can be moved longitudinally forward in the direction of arrow 78 by loosening knobs 16 to allow the fence to carry the guide forward.
When the cutting operation is complete, the guide can be moved out of the way by lifting handle 66. By so doing, tube 26 of the guide will rotate about rod 20 and the guide will swing over the fence and away from the working surface where it will not hinder any operation being carried out on the surface.
With reference to
With reference to
Fixed to the upper wall of the rotary plate is a clamp 94. The clamp serves to attach rail 96 to the rotary plate and to prevent it from sliding relative to the plate. It does so by the following means. The rail has a T-slot 98 for sliding receipt of an elongated flat bar (not illustrated). The bar has threaded openings for receipt of threaded stems attached to knobs 100.
Rotation of the knobs in one direction causes the bar to rise into frictional contact with the upper wall of the T-slot and thereby immobilize the rail relative to the rotary plate. Rotation of the knobs in the opposite direction causes the bar to descend thereby allowing the bar to slide in the T-slot.
The rail is bolted to backing block 102. The block is movable in three ways. It is movable forward and back, it swivels clockwise and counterclockwise, and it slides to the right and to the left. The first movement occurs when slider 82 moves on the guide rod as previously described. The second movement occurs when handle 92 is loosened to allow the rotary plate to swivel and the third movement occurs when clamp 94 is loosened.
With reference to
The central area of the insert has inner and outer holes 112, 114 formed in it. The outer hole has a cylindrical wall defined at the top by a raised annular lip 116. The lower portion of the hole receives a metallic ball or ball bearing 118, and immediately below it, a coil spring 120. The ball rests on the spring and is urged upwardly by the bias of the spring.
The inner hole 112 in the insert has a threaded inner wall for threadable receipt of a threaded pin 124 for pivotally attaching a detent-disengaging plate 126 to the insert. A threaded locking key 128 holds the pin in position.
With reference to
With reference to
A cavity 140 is formed in the lower wall of the plate. The side walls of the cavity engage annular lip 116 when the slot is over the ball as illustrated in
The ball cooperates with the rotary plate and together they act as a detent to cause the rotary plate to swivel in predetermined increments on the base.
With reference to
When the detent is engaged as illustrated in
When the detent is disengaged as illustrated in
It will be understood, of course, that modifications can be made in the structure of the guide which is described herein without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2407368 | Oct 2002 | CA | national |
2437157 | Aug 2003 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
2056552 | Yerk | Oct 1936 | A |
2169517 | Biro | Aug 1939 | A |
2196371 | Berkel | Apr 1940 | A |
2237556 | Hedgpeth | Apr 1941 | A |
2785709 | Shepp | Mar 1957 | A |
3083744 | Vold | Apr 1963 | A |
3240244 | Biro | Mar 1966 | A |
3512563 | Sorensen | May 1970 | A |
4485711 | Schnell | Dec 1984 | A |
4887653 | Thomas | Dec 1989 | A |
5038486 | Ducate, Sr. | Aug 1991 | A |
5205198 | Foray et al. | Apr 1993 | A |
5662019 | Denman | Sep 1997 | A |
5735054 | Cole | Apr 1998 | A |
6688202 | Parks et al. | Feb 2004 | B2 |
6691423 | Fontaine | Feb 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040065387 A1 | Apr 2004 | US |