The present invention relates to metal forming dies and the like, and in particular to a guide pin assembly incorporating a unique guide pin construction with a tapered head.
Metal forming dies, such as stamping dies and the like, are well known in the art. Progressive metal forming dies are unique, very sophisticated mechanisms which have multiple stations or progressions that are aligned longitudinally, and are designed to perform a specified operation at each station in a predetermined sequence to create a finished metal part. Progressive stamping dies are capable of forming complex metal parts at very high speeds, so as to minimize manufacturing costs.
Heretofore, the dies used in metal forming presses have typically been individually designed, one of a kind assemblies for a particular part, with each of the various components being handcrafted and custom mounted or fitted in an associated die set, which is in turn positioned in a stamping press. Not only are the punches and the other forming tools in the die set individually designed and constructed, but the other parts of the die set, such as stock lifters, guides, end caps and keepers, cam returns, etc., are also custom designed and installed in the die set. Current die making processes require carefully machined, precision holes and recesses in the die set for mounting the individual components, such that the same are quite labor intensive, and require substantial lead time to make, test and set up in a stamping press. Consequently, such metal forming dies are very expensive to design, manufacture, and repair or modify.
Recently, some components for metal forming dies have been pre-constructed using a modular design that is installed in a die set as a complete unit, instead of custom making each of the component parts and assembling them in the die set. One such modular die component is a guided keeper assembly, which is the subject of U.S. Pat. Nos. 7,730,757; 7,950,262; 8,074,486; 8,151,619; and 8,616,038 published U.S. Application Publication Nos. 2011/0302988, 2012/0055224, and 2012/0055226; and others, which are hereby incorporated herein by reference, and have met with substantial commercial success in reducing the overall cost of manufacturing metal forming dies. While such modular components are very advantageous, further improvements to reduce the manufacturing costs of metal forming dies generally, as well as such modular components, and improve quality and strength would clearly be advantageous. Hence, a guide pin assembly construction and associated method which simplifies the manufacturing process, reduces lead time and inventories, and minimize manufacturing costs, as well as improved performance, would clearly be advantageous.
One aspect of the present invention is a guide pin assembly for metal forming dies having first and second die members which mutually converge and diverge to form metal parts. The guide pin assembly includes a guide pin body having a generally cylindrical shape, with a first end portion configured for secure operable attachment with the first die member a second end portion disposed generally opposite said first end portion, and configured to be received into an associated aperture in the second die member. The guide pin body also has a medial portion disposed between the first and second end portions, having a generally hard, smooth finished exterior surface for precisely guiding the converging and diverging motion between the first and second die members. The guide pin body has a first groove extending circumferentially about the exterior surface at an axial location disposed generally adjacent to the second end portion of the guide pin body. The groove has a generally arcuate shape that opens radially outwardly. The guide pin assembly has a guide pin head with a first end portion having a tapered outer sidewall. The guide pin head has a second end portion with a first generally cylindrical outer sidewall having a first diameter and a second generally cylindrical sidewall having a second diameter that is larger than the first diameter, such that an annular shoulder is formed on the outside of the second end portion of the guide pin head. An aperture extends through the guide pin head. The aperture has a first generally cylindrical inner sidewall with a first diameter and a second generally cylindrical sidewall with a second diameter that is greater than the first diameter, such that an annular shoulder is formed on the inside of the guide pin head. The guide pin head has a groove extending circumferentially about the exterior surface of the first generally cylindrical outer sidewall of the second end portion of the guide pin head. The guide pin assembly includes a retainer ring closely received and retained in the first groove in the guide pin body, that contacts the annular shoulder on the inside of the guide pin head to retain the guide pin head on the guide pin body.
Yet another aspect of the present invention is a metal forming die having first and second die members which mutually converge and diverge to form metal part using a guide pin assembly. The guide pin assembly includes a guide pin body having a generally cylindrical shape, with a first end portion configured for secure operable attachment with the first die member a second end portion disposed generally opposite said first end portion, configured to be received into an associated aperture in the second die member. The guide pin body also has a medial portion disposed between the first and second end portions, having a generally hard, smooth finished exterior surface for precisely guiding the converging and diverging motion between the first and second die members. The guide pin body has a first groove extending circumferentially about the exterior surface at an axial location disposed generally adjacent to the second end portion of the guide pin body. The groove has a generally arcuate shape that opens radially outwardly. The guide pin assembly has a guide pin head with a first end portion having a tapered outer sidewall. The guide pin head has a second end portion with a first generally cylindrical outer sidewall having a first diameter and a second generally cylindrical sidewall having a second diameter that is larger than the first diameter, such that an annular shoulder is formed on the outside of the second end portion of the guide pin head. An aperture extends through the guide pin head. The aperture has a first generally cylindrical inner sidewall with a first diameter and a second generally cylindrical sidewall with a second diameter that is greater than the first diameter, such that an annular shoulder is formed on the inside of the guide pin head. The guide pin head has a groove extending circumferentially about the exterior surface of the first generally cylindrical outer sidewall of the second end portion of the guide pin head. The guide pin assembly includes a retainer ring closely received and retained in the first groove in the guide pin body, that contacts the annular shoulder on the inside of the guide pin head to retain the guide pin head on the guide pin body.
Yet another aspect of the present invention is a method for making a guide pin assembly for metal forming dies of the type having first and second die members which mutually converge and diverge to form metal parts. The method includes forming a guide pin body having a generally cylindrical shape. The guide pin body also has a first end portion configured for secure operable attachment with the first die member and a second end portion disposed generally opposite said first end portion, configured to be received into an associated aperture in the second die member. The guide pin body has a medial portion disposed between said first and second end portions, with a generally hard, smooth finished exterior surface for precisely guiding the converging and diverging motion between the first and second die members. The guide pin body forming step includes forming a first groove extending circumferentially about the exterior surface at an axial location disposed generally adjacent to the second end portion of the guide pin body, and having a generally arcuate shape that opens radially outwardly. The method also includes forming a guide pin head. The guide pin head has a first end portion with a tapered outer sidewall. The guide pin head also has a second end portion with a first generally cylindrical outer sidewall having a first diameter and a second generally cylindrical sidewall having a second diameter that is larger than the first diameter, such that an annular shoulder is formed on the outside of the second end portion. The guide pin head forming step includes forming an aperture that extends through the guide pin head, having a first generally cylindrical inner sidewall having a first diameter and a second generally cylindrical sidewall having a second diameter that is greater than the first diameter, such that an annular shoulder is formed on the inside of the guide pin head. The guide pin head forming step includes forming a groove extending circumferentially about the exterior surface of the first generally cylindrical outer sidewall of the second end portion of the guide pin head. The method includes providing a retainer ring to be closely received and retained in the first groove in the guide pin body. The method includes sliding the guide pin head over the guide pin body and the retainer ring such that the guide pin head is retained on the guide pin body.
These and other advantages of the invention will be further understood and appreciated by those skilled in the art by reference to the following written specification, claims, and appended drawings.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal” and derivatives thereof shall relate to the invention as oriented in
The reference numeral 2 (
The guide pin assembly 2 also includes a guide pin head 20. The guide pin head 20 has a first end portion 21 and a second end portion 25. The first end portion 21 has a generally tapered sidewall 24 that gives the guide pin head 20 a generally conical outside surface at the first end portion 21. The second end portion 25 has a first generally cylindrical outer sidewall 31 and a second generally cylindrical outer sidewall 26. The diameter of the second outer sidewall 26 is larger than the diameter of the first outer sidewall 31 forming an annular shoulder 28. The guide pin head 20 also has an aperture 22 that extends through the guide pin head 20. The aperture 22 has a first generally cylindrical inner sidewall 33 and a second generally cylindrical inner sidewall 23. The second inner sidewall 23 has a diameter that is greater than the diameter of the first inner sidewall 33 resulting in an inner annular shoulder 29 in aperture 22 in the guide pin head 20. The diameter of the first cylindrical inner sidewall 33 is also substantially similar to the outside diameter of the guide in body 8 so that the first inner sidewall 33 is closely received on the outside of the guide pin body 8 when the guide pin assembly 2 is fully assembled. A groove 30 extends circumferentially about the exterior surface of the first outer sidewall 31 of the second end portion 25 of the guide pin head 20.
The guide pin assembly 2 also includes a first O-ring 32. This O-ring can have a square cross section as shown in
The guide pin assembly 2 also has a retainer ring 40 that can be a split metal C-ring. The retainer ring 40 has an inner surface 39 with a diameter to be closely received in the first groove 16 in the guide pin body 8. The retainer ring 40 retains the guide pin head 20 on the guide pin body 8 by contacting the inner shoulder 29 of the guide pin head 20. The close fit between the retainer ring 40, the first groove 16, and the inner shoulder 29 prevents the guide pin head 20 from shearing off as the die members 5, 6 diverge and the guide pin assembly 2 contacts the base 50.
A base 50 can be used to secure the guide pin assembly 2 to one of the die members 5, 6. As illustrated in
In the illustrated example shown in
The first end portion 10 of the guide pin body 8 can have a generally flat surface 80. A plurality of threaded holes 74 can be formed or drilled into the guide pin body 8. As illustrated in
As will be appreciated by those having skill in the art of metal forming dies, metal forming dies typically incorporate multiple pairs of plates which converge and diverge relative to one another, and serve to either form the metal stock strip and/or advance the stock strip through the various stations of the metal forming dies. Various tools and/or components are normally mounted on these die plates to achieve the desired forming of the metal stock and/or advancement through the die. These pairs of metal plates are typically interconnected by guide pins, which serve not only to accurately align each plate in the pair for precise reciprocation, but also act as a retainer to positively limit to a predetermined amount the distance each pair of plates may be separated from one another, so as to ensure proper synchronization between the various stations and/or operations being performed in the metal forming die. Examples of such components are stock lifters, guided keepers, pressure plates, die shoes, die set pins, and the like. Consequently, it should be understood that the term “die member,” as used herein, refers to any portion of a metal forming die or die set, including, but not limited to, an upper die member or die shoe, a lower die member, all other die components, whether stationary or reciprocating, including a reciprocating pressure pad, or the like. In the example illustrated in
The illustrated guide pin body 8 has a rigid, one-piece construction, and can be machined from a solid bar or rod of metal or the like, such as steel. The illustrated guide pin body 8 has a flat, circularly shaped upper end 82, and an opposite, generally flat and circular lower end 80. As described above, in the example illustrated in
With reference to
The bushing 54 can be any conventional bushing, including a split bushing, as shown in
As illustrated in
A prior art design is shown in
As illustrated in
Guide pin assembly 2 has an uncomplicated construction which is economical to manufacture, very strong, and durable during use. Designed interferences between the various parts of the guide pin assembly 2 provide a secure locking function when the parts are fully assembled. The guide pin assembly 2 also includes a number of dampening features, including the tapered head and the O-rings.
In the foregoing description, it will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed herein, such modifications are to be considered as included in the following claims, unless these claims by their language expressly state otherwise.
The present application is related to commonly assigned, co-pending U.S. provisional patent application Ser. No. 61/907,421, filed Nov. 22, 2013, entitled GUIDE PIN HEAD, which is incorporated herein by reference, and claims priority thereto under 35 U.S.C. §119.
Number | Name | Date | Kind |
---|---|---|---|
2487233 | Gerke | Nov 1949 | A |
2663180 | Benedict | Dec 1953 | A |
3126922 | Randlett et al. | Mar 1964 | A |
3190703 | Thomson et al. | Jun 1965 | A |
3474656 | Kraft | Oct 1969 | A |
3514166 | Coley | May 1970 | A |
4036056 | Saunders | Jul 1977 | A |
4135770 | Doherty et al. | Jan 1979 | A |
4199313 | Bohnenberger | Apr 1980 | A |
4483173 | Duhamel | Nov 1984 | A |
4696180 | Zandel | Sep 1987 | A |
4732033 | Smedberg et al. | Mar 1988 | A |
4742746 | Olsson | May 1988 | A |
4796460 | Smedberg et al. | Jan 1989 | A |
4900017 | Bold, Jr. | Feb 1990 | A |
4926563 | Smith | May 1990 | A |
RE33940 | Matsuo | May 1992 | E |
5113736 | Meyerle | May 1992 | A |
5245904 | Meyerle | Sep 1993 | A |
5328276 | Linteau | Jul 1994 | A |
5397135 | Smith | Mar 1995 | A |
5722280 | Bodnar | Mar 1998 | A |
5758374 | Ronci | Jun 1998 | A |
5788903 | Allgaier | Aug 1998 | A |
6220946 | Arnold | Apr 2001 | B1 |
6408728 | Tsuji et al. | Jun 2002 | B1 |
6755104 | Grant | Jun 2004 | B2 |
6848290 | Pyper et al. | Feb 2005 | B2 |
6925922 | Manabe et al. | Aug 2005 | B2 |
6986273 | Rager | Jan 2006 | B2 |
7000446 | Nieschulz et al. | Feb 2006 | B2 |
7004007 | Kruger et al. | Feb 2006 | B2 |
7114365 | Rooney, Jr. et al. | Oct 2006 | B2 |
7152451 | Cotter | Dec 2006 | B1 |
7326092 | Fedder et al. | Feb 2008 | B2 |
7730757 | Pyper et al. | Jun 2010 | B2 |
7950262 | Pyper et al. | May 2011 | B2 |
8074486 | Pyper et al. | Dec 2011 | B1 |
8074515 | Van Kann et al. | Dec 2011 | B2 |
8151619 | Pyper et al. | Apr 2012 | B2 |
8291603 | Saegesser et al. | Oct 2012 | B2 |
8616038 | Breen et al. | Dec 2013 | B2 |
8939005 | Breen | Jan 2015 | B2 |
20090193865 | Pyper et al. | Aug 2009 | A1 |
20110192206 | Cotter | Aug 2011 | A1 |
20110296893 | Breen et al. | Dec 2011 | A1 |
20110302988 | Breen et al. | Dec 2011 | A1 |
20120055224 | Breen et al. | Mar 2012 | A1 |
20120055226 | Breen et al. | Mar 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150196947 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61907421 | Nov 2013 | US |