Guide system with suction

Information

  • Patent Grant
  • 10524814
  • Patent Number
    10,524,814
  • Date Filed
    Thursday, May 26, 2016
    8 years ago
  • Date Issued
    Tuesday, January 7, 2020
    4 years ago
Abstract
A guide catheter for use in treating sinuses, the catheter including a catheter shaft configured to provide suction about a balloon catheter and a distal portion shaped for navigating body anatomy. In one embodiment, the guide catheter includes a valve for sealing the balloon catheter and a vent for controlling suction.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical devices and methods and more particularly to devices, systems and methods for treating sinusitis.


BACKGROUND

Chronic sinusitis is a medical condition that affects the lives of millions of people every year. In fact, it has been estimated that chronic sinusitis results in 18 million to 22 million physician office visits per year in the United States. Chronic sinusitis refers to inflammation of the paranasal sinuses that lasts for three months or more or that occurs frequently. The condition can be very debilitating, often causing headaches, facial pain, excessive nasal drainage, difficulty breathing through the nose and other symptoms, and often making certain activities such as flying in an airplane very painful. The overall costs to society of chronic sinusitis are enormous, in terms of medical costs, missed days of work, etc.


The paranasal sinuses are air spaces behind the bones of the upper face, between the eyes and behind the forehead, nose and cheeks. On each side of the face there is one set of frontal sinuses (in the forehead), maxillary sinuses (in the cheek bones), ethmoid sinuses (between the eyes) and sphenoid sinuses (farther back behind the eyes). The frontal, maxillary and sphenoid sinuses are all connected to, and drain into, the nasal cavity via openings called ostia (“ostium” singular). The nasal cavity and paranasal sinuses are made of bone covered with mucous tissue, and the mucous tissue has small, hair-like projections called cilia, which move together to sweep mucus through and out of the sinuses as a kind of filter. When the mucosal tissue of the sinuses becomes inflamed, often due to infection, it sometimes swells and can block one or more ostia, thus preventing the movement of mucus from the sinuses to the nasal cavity and thus causing blockage, pressure build-up, and the symptoms of sinusitis. This blockage can sometimes last for long periods of time or recur again and again, causing a great deal of discomfort.


One of the ways to treat sinusitis is by restoring the flow of mucus through and out of the sinuses via the openings (ostia) into the nasal cavity. Typically, the initial therapy attempted in treating sinusitis is drug therapy and nasal sprays—anti-inflammatory agents to reduce inflammation of the mucosal tissue and antibiotics to treat infection. A large number of patients do not respond to nasal spray/drug therapy, however. Patients with chronic or recurring sinusitis may and do not respond to drug therapy may then decide to undergo a surgical procedure.


One form of surgical procedure for treating chronic sinusitis is a called Functional Endoscopic Sinus Surgery (“FESS”). In FESS, a rigid endoscope is inserted into the nose, and a surgeon uses one or more rigid instruments, such as shavers and graspers, to remove diseased or hypertrophic mucosal tissue and bone and in some cases enlarge the ostia of the sinuses to attempt to “open up” and restore normal drainage of the sinuses. These FESS procedures are successful in many cases but do have a number of significant drawbacks. For example, general anesthesia is required for a FESS procedure. Also, because significant amounts of soft tissue and bone are typically removed, FESS can cause significant bleeding and post-operative pain, and thus recovery from surgery can be painful and take many days or even weeks. Because FESS procedures are often associated with significant postoperative bleeding, nasal packing is frequently placed in the patient's nose for some period of time following the surgery. Such nasal packing can be uncomfortable and can interfere with normal breathing, eating, drinking etc. This packing often must be removed and replaced, which can be very uncomfortable. Scar tissue may also have to be removed in the physician's office, in a procedure called a “debridement,” which can also be very painful. Also, some patients remain symptomatic even after multiple FESS surgeries. Additionally, some FESS procedures are associated with risks of iatrogenic orbital, intracranial and sinonasal injury. Many otolaryngologists consider FESS an option only for patients who suffer from severe sinus disease (e.g., those showing significant abnormalities under CT scan). Thus, patients with less severe disease may not be considered candidates for FESS and may be left with no option but drug therapy. One of the reasons why FESS procedures can be bloody and painful relates to the fact that instruments having straight, rigid shafts are used. In order to target deep areas of the anatomy with such straight rigid instrumentation, the physician needs to resect and remove or otherwise manipulate any anatomical structures that may lie in the direct path of the instruments, regardless of whether those anatomical structures are part of the pathology.


As an alternative to traditional FESS procedures, the assignee of the present application has invented a number of less invasive/less traumatic systems, devices and methods for treating chronic sinusitis by expanding openings between the nasal cavity and the paranasal sinuses using an expandable dilation device. In some instances, these and other methods for treating sinusitis or other conditions may involve advancing one or more devices into the nasal cavity and/or a paranasal sinus via a guide device, such as a guide catheter. Because the anatomy of the nasal cavity, the paranasal sinuses and the openings between the two is very complex, small and tortuous, and because damage to mucosal tissue in the nasal cavity and sinuses may cause post-operative pain and bleeding, a need exists for guide devices that are relatively easy to use in this anatomy and are as atraumatic as possible. The present disclosure addresses these and other needs.


SUMMARY

Briefly and in general terms, the present disclosure is directed to a system and method for treating paranasal sinuses. In one particular aspect, the disclosed system and method is employed to treat sinusitis.


In one particular embodiment, the system for treating sinuses includes a guide catheter including a catheter shaft configured to receive a balloon catheter and to provide suction while the balloon catheter resides in the catheter shaft. The guide catheter can further include a proximal portion having a first stiffness and a distal portion having a second stiffness less than the first stiffness. The distal portion can be curved and have a diameter which is less than a diameter of the proximal portion. The system can additionally include a valve for sealing the balloon catheter as well as a suction port and vent.


In further embodiments, the system is contemplated to include a guidewire over which the balloon catheter can be advanced. It is also contemplated that the guidewire can be illuminating. Moreover, the distal tip of the guide catheter can be beveled in a manner to facilitate placement behind an ucinate process and can further embody a flexible material providing a less traumatic interface for engaging anatomy such as an ethmoid bulla. The flexibility of the distal tip can be chosen such that it expands to receive a balloon catheter. Additionally, the guide catheter can embody a tapered profile such that a distal portion thereof defines a smaller dimension than a proximal section.


The guide catheter can also include a proximally oriented flange providing a connection to other devices. The flange can be equipped with structure to register with such other devices as well as operator gripping surfaces. A vent is further contemplated to provide suction control.


Various different shapes of the distal end of the guide catheter are also contemplated. In particular, the distal tip can include various shaped flange structures intended to reduce trauma. The tip can also include structure providing visualization under fluoroscopy.


In related methods, treatment of the sinuses can include inserting a guide catheter within a head of a patient and advancing a flexible device through the guide catheter. A suction force is generated about the flexible device and the flexible device is advanced beyond a distal end of the guide catheter and into the patient's sinuses. In one particular aspect, the flexible device is a balloon catheter and the balloon catheter is employed to dilate an ostium of a paranasal sinus. The method can further involve employing a guidewire over which the interventional devices are placed.


Further aspects, details and embodiments of the present disclosure are set forth in the following detailed description of the invention and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic diagram of a system for catheter-based minimally invasive sinus surgery of the present invention being used to perform a sinus surgery procedure on a human patient.



FIG. 1A is an enlarged view of portion “1A” of FIG. 1.



FIGS. 2A through 2D are partial sagittal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using a guide and thereafter dilating or remodeling the ostial opening into a sphenoid paranasal sinus.



FIGS. 3A-3D are coronal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using a guide and thereafter dilating or remodeling the ostial opening into a maxillary paranasal sinus.



FIGS. 4A through 4D are partial coronal sectional views through a human head showing various steps of a method of accessing a maxillary paranasal sinus through an artificially created opening of the paranasal sinus and then dilating the artificially created opening, the natural paranasal sinus ostium or both.



FIG. 5A shows a perspective view of a tubular guide equipped for optional suctioning.



FIG. 5B shows a side view of an alternative embodiment of a tubular guide with a pinch tube.



FIG. 6 depicts a partial cross-sectional view of a guide catheter system including a balloon catheter and suction structure.



FIG. 7 shows a distal portion of the guide catheter system depicted in FIG. 6.



FIGS. 8-11 depict treating a sinus cavity with a guide catheter system.



FIG. 12 shows an alternative distal portion for a guide catheter.



FIG. 13 depicts a cross-section of a distal terminal end portion of a guide catheter system.



FIGS. 14A-C shows various views of a distal terminal end portion of a guide catheter system.



FIGS. 15A and B show a distal terminal end portion of an alternative guide catheter system.



FIG. 16 shows another alternative terminal end portion of a guide catheter.



FIGS. 17A and B depict another approach to a terminal end portion.



FIGS. 18A and B show a further approach to a terminal end.



FIGS. 19A-D depict yet further terminal end portions for a guide catheter system.



FIGS. 20A and B show views of an additional approach to a distal end portion of a guide catheter.



FIGS. 21A-C depict various views of a terminal end portion for guide catheter system which include an angled surface.



FIGS. 22A and B show another guide catheter system with an oval terminal end opening.



FIG. 23 depicts another alternative terminal end portion of a guide catheter system.



FIGS. 24A-1 through 24-C depict various configurations for a sealing structure for a guide catheter.



FIGS. 25A and B are partial cross-sectional views depicting alternative approaches to a hub assembly for a guide catheter.



FIG. 26 depicts a guide catheter hub including a suction connection.



FIGS. 27A and B show a partial cross-sectional view of an auxiliary device connecting with a guide catheter hub.





DETAILED DESCRIPTION

The following detailed description, the accompanying drawings and the above-set-forth Brief Description of the Drawings are intended to describe some, but not necessarily all, examples or embodiments of the invention. The contents of this detailed description do not limit the scope of the invention set forth in the claims.


A number of the drawings in this patent application show anatomical structures of the ear, nose and throat. In general, these anatomical structures are labeled with the following reference letters:


















Nasal Cavity
NC



Nasopharynx
NP



Frontal Sinus
FS



Sphenoid Sinus
SS



Sphenoid Sinus Ostium
SSO



Maxillary Sinus
MS











FIGS. 1 and 1A illustrate a patient on an operating table with a minimally invasive surgery system in position to perform a dilation procedure on one or more paranasal sinuses. The system shown includes a C-arm fluoroscope 1000, a first introducing device 1002 (e.g., a guide catheter or guide tube), a second introducing device 1004 (e.g., a guidewire or elongate probe) and a working device 1006 (e.g., a balloon catheter, other dilation catheter, debrider, cutter, etc.).


In some embodiments, the devices 1002, 1004, 1006 may be radiopaque and/or may incorporate radiopaque markers such that C-arm fluoroscope 1000 may be used to image and monitor the positioning of the devices 1002, 1004, 1006 during the procedure. In addition to, or as an alternative to, the use of radiographic imaging, the devices 1002, 1004, 1006 may incorporate and/or may be used in conjunction with one or more endoscopic devices, such as the typical rigid or flexible endoscopes or stereo endoscopes used by otolaryngologists during FESS procedures. Also, in addition to or as an alternative to radiographic imaging and/or endoscopic visualizations, some embodiments of the devices 1002, 1004, 1006 may incorporate sensors which enable the devices 1002, 1004, 1006 to be used in conjunction with image guided surgery systems or other electro-anatomical mapping/guidance systems including but not limited to: VectorVision (BrainLAB AG); HipNav (CASurgica); CBYON Suite (CBYON); InstaTrak, FluoroTrak, ENTrak (GE Medical); StealthStation Treon, iOn (Medtronic); Medivision; Navitrack (Orthosoft); OTS (Radionics); VISLAN (Siemens); Stryker Navigation System (Stryker Leibinger); Voyager, Z-Box (Z-Kat Inc.) and NOGA and CARTO systems (Johnson & Johnson). Commercially available interventional navigation systems can also be used in conjunction with the devices and methods. Further non-fluoroscopic interventional imaging technologies including but not limited to: OrthoPilot (B. Braun Aesculap); PoleStar (Odin Medical Technologies; marketed by Medtronic); SonoDoppler, SonoWand (MISON); CT Guide, US Guide (UltraGuide) etc. may also be used in conjunction with the devices and methods. Guidance under magnetic resonance is also feasible if the catheter is modified to interact with the system appropriately.


The devices and methods of the present invention relate to the accessing and dilation or modification of sinus ostia or other passageways within the ear nose and throat. These devices and methods may be used alone or may be used in conjunction with other surgical or non-surgical treatments, including but not limited to the delivery or implantation of devices and drugs or other substances as described in copending U.S. patent application Ser. No. 10/912,578 entitled Implantable Devices and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders filed on Aug. 4, 2004, issued as U.S. Pat. No. 7,361,168, on Apr. 22, 2008, the entire disclosure of which is expressly incorporated herein by reference.



FIGS. 2A-2D are partial sagittal sectional views through a human head showing various steps of a method of gaining access to and treating a paranasal sinus using a guide catheter. Although FIGS. 2A-2D demonstrate a method for accessing and treating a sphenoid paranasal sinus, in alternative embodiments this or analogous methods and devices may be used to access and treat any of the other paranasal sinuses (maxillary, frontal and/or ethmoid).


In FIG. 2A, a first introducing device in the form of a guide catheter 200 is introduced through a nostril and through a nasal cavity NC to a location close to an ostium SSO of a sphenoid sinus SS. The guide catheter 200 may be flexible. Flexible devices are defined as devices with a flexural stiffness less than about 200 pound-force per inch over a device length of one inch. The guide catheter 200 may be straight or it may incorporate one or more preformed curves or bends. In embodiments where the guide catheter 200 is curved or bent, the deflection angle of the curve or bend may be in the range of up to 135°. Examples of specific deflection angles formed by the curved or bent regions of the guide catheter 200 are 0°, 30°, 45°, 60°, 70°, 90°, 120° and 135°. Guide catheter 200 can be constructed from suitable elements like PEBAX, Polyimide, Braided Polyimide, Polyurethane, Nylon, PVC, Hytrel, HDPE, PEEK, metals like stainless steel and fluoropolymers like PTFE, PFA, FEP and EPTFE. Guide catheter 200 can have a variety of surface coatings e.g. hydrophilic lubricious coatings, hydrophobic lubricious coatings, abrasion resisting coatings, puncture resisting coatings, electrically or thermal conductive coatings, radiopaque coatings, echogenic coatings, thrombogenicity reducing coatings and coatings that release drugs.


In FIG. 2B, a second introduction device comprising a guidewire 202 is introduced through the first introduction device (i.e., the guide catheter 200) so that the guidewire 202 enters the sphenoid sinus SS through the ostium SSO. Guidewire 202 may be constructed and coated as is common in the art of cardiology.


In FIG. 2C, a working device 204, for example a balloon catheter, is introduced over guidewire 202 into the sphenoid sinus SS. Thereafter, in FIG. 2D, the working device 204 is used to perform a diagnostic or therapeutic procedure. In this particular example, the procedure is dilation of the sphenoid sinus ostium SSO, as is evident from FIG. 2D. However, the present invention may also be used to dilate or modify any other sinus ostium or other manmade or naturally occurring anatomical opening or passageway within the nose, paranasal sinuses, nasopharynx or adjacent areas, including but not limited to natural paranasal sinus ostia of the maxillary, frontal and/or ethmoid sinuses. After the completion of the procedure, guide catheter 200, guidewire 202 and working device 204 are withdrawn and removed. In this or any of the procedures described in this patent application, the operator may additionally advance other types of catheters or of the present invention, a guidewire 202 may be steerable (e.g. torquable, actively deformable) or shapeable or malleable. Guidewire 202 may comprise an embedded endoscope or other navigation or imaging modalities including but not limited to fluoroscopic, X-ray radiographic, ultrasonic, radiofrequency localization, electromagnetic, magnetic, robotic and other radiative energy based modalities. In this regard, some of the figures show optional scopes SC is dotted lines. Such optional scopes SC may comprise any suitable types of rigid or flexible endoscopes and such optional scopes SC may be separate from or incorporated into the working devices and/or introduction devices of the present invention.


Optionally, the methods disclosed herein may also comprise the step of cleaning or lavaging anatomy within the nose, paranasal sinus, nasopharynx or nearby structures including but not limited to irrigating and suctioning. The step of cleaning the target anatomy can be performed before or after a diagnostic or therapeutic procedure.


The methods of the present invention may also include one or more preparatory steps for preparing the nose, paranasal sinus, nasopharynx or nearby structures for the procedure, such as spraying or lavaging with a vasoconstricting agent (e.g., 0.025-0.5% phenylephyrine or Oxymetazoline hydrochloride (Neosynephrine or Afrin) to cause shrinkage of the nasal tissues, an antibacterial agent (e.g., provodine iodine (Betadine), etc. to cleanse the tissues, etc.


As shown in FIGS. 3A-3D, in one embodiment a maxillary sinus may be treated by dilating an ostium thereto. As shown in FIG. 3A, a guide catheter 290 may be advanced into a patient's nostril to position a distal end thereof adjacent the maxillary sinus ostium. As shown in FIG. 3B, a guidewire 294 may then be advanced through the guide 290 and through the maxillary sinus ostium, into the maxillary sinus. Next, as shown in FIG. 3C, a balloon catheter 302 may be advanced through the guide catheter 290 over the guidewire 294, to position an expandable balloon 304 of the balloon catheter 302 within the maxillary ostium. Then, as shown in FIG. 3D, the expandable balloon 304 may be inflated to dilate the natural paranasal sinus ostium of the maxillary sinus. When the dilation procedure is complete, the guide catheter 290, guidewire 294 and balloon catheter 302 may all be removed from the patient. In an alternative embodiment, the guide catheter 290 and/or the guidewire 294 may be left in the patient, the balloon catheter 302 may be removed, and another flexible device (not shown in the figures) may be advanced over and/or through the guide catheter and/the guidewire 294 into the maxillary sinus to perform an additional procedure. For example, in one embodiment, an irrigation catheter may be advanced through the guide catheter 290 and used to irrigate the sinus. Such an irrigation catheter may be advanced without a guidewire 294 or using a guidewire 294 in alternative embodiments.



FIGS. 4A-4D are partial coronal sectional views through a human head showing various steps of a method of accessing a maxillary paranasal sinus through an artificially created opening into the sinus and dilating the artificial opening, the natural paranasal sinus ostium or both. In some embodiments, rather than accessing a paranasal sinus via the natural sinus ostium, an artificial opening may be made into a sinus. In some embodiments, a guide may be used to then guide a balloon catheter or other dilator (with or without guidewire) through the artificial opening, into the sinus. The dilator may then be advanced to the natural paranasal sinus ostium and used to dilate the natural ostium, may be used to dilate the artificial opening, or both.


In FIG. 4A, a puncturing device 300 is inserted through a nostril and used to create an artificial opening in a maxillary sinus. Examples of such puncturing devices include but are not limited to straight needles, needles with bent shafts, dissectors, punches, drills, corers, scalpels, burs, scissors, forceps and cutters. In FIG. 4B, puncturing device 300 is withdrawn and a working device, for example a balloon catheter 302, is introduced through the artificial opening into the maxillary sinus. In FIG. 4C, balloon catheter 302 is used to dilate the artificially created opening in the maxillary sinus. After this step, the balloon catheter 302 is withdrawn. In another embodiment, as shown in FIG. 4D, the balloon catheter 302 may be advanced through the artificial opening into the maxillary sinus and then advanced farther into the maxillary sinus to position the balloon of the catheter 302 in the natural paranasal sinus ostium. In some embodiments, this advancement to the natural ostium may be performed after dilating the artificial opening. Alternatively, the balloon catheter 302 may be advanced in some embodiments without dilating the artificial opening.


In some embodiments, a balloon catheter 302 may be advanced over a guidewire to the natural paranasal sinus ostium. Alternatively, the balloon catheter 302 may be advanced without the use of a guidewire in other embodiments. In some embodiments, the puncturing device 300 may have a lumen through which an introduction device (e.g., a guidewire or other elongate probe or member), may be inserted into the maxillary sinus, and the puncturing device 300 may then be removed, leaving such introduction device (e.g., a guidewire or other elongate probe or member) in place. In such cases, the working device (e.g., balloon catheter 302) may incorporate a lumen or other structure that allows the working device (e.g., balloon catheter 300) to be advanced over the previously inserted introduction device (e.g., a guidewire or other elongate probe or member). In some embodiments, the piercing device may include a lumen, and the balloon catheter 302 may be advanced through the piercing device into the maxillary sinus, either with or without a guidewire in various embodiments. Again, similar methods and devices may be used to access and treat other paranasal sinuses in alternative embodiments.


In another alternative embodiment (not shown in FIGS. 4A-4D), a piercing device may be used to create an opening into a maxillary sinus at a different location, and a guide catheter may be used to access the sinus through the opening. For example, in one embodiment the artificial opening may be made through a canine fossa into a maxillary sinus. In another embodiment, a trephine incision may be made into a frontal paranasal sinus. In other embodiments, an artificial opening may be formed into an ethmoid or sphenoid sinus. In some embodiments, a guide may then be placed through the artificial opening and used to access the natural paranasal sinus ostium. In other embodiments, the guide catheter may remain outside the sinus, near the artificial opening, and used to guide a guidewire and/or other device(s) into the sinus. In alternative embodiments, the artificial opening may be dilated, the natural paranasal sinus ostium may be dilated, or both. These methods may be applied to any paranasal sinus. As will be described in greater detail below, any of these guide catheters, whether used to access a paranasal sinus via a natural or artificial opening, may be provided with suction capabilities according to various embodiments of the present invention.


Any of the guide catheters or other luminal devices disclosed herein may have suction capabilities and thus can comprise an arrangement for suctioning an anatomical region through the distal end of the guide catheter or device. In some embodiments, a guide catheter may be provided along with an adapter to attach the guide to a suction source. In another embodiment, a guide catheter may have an integrated or built-in suction attachment, so that an adapter is not necessary. Currently, physicians use a traditional suction device to clear the surgical field when using surgical devices in the nasal cavity and paranasal sinuses. This requires the surgeon to frequently exchange devices, picking up and putting down the traditional suction device many times per case. Allowing the surgeon to suction through the guide catheter while simultaneously passing guidewires, balloons, irrigation catheters and/or the like through the guide catheter can simplify the surgical procedure. A suction adapter can attach to a proximal end of the guide catheter. It can include a valve in-line with an axis of the guide catheter shaft, the valve allowing devices such as guidewires, balloons, and irrigation catheters to be passed through the suction adapter and guide catheter while maintaining suction through the lumen of the guide catheter. Extension tubing can be configured to run offset from the body of the suction adapter. The extension tubing may terminate in a stepped adapter and/or an on-off valve to improve ease of use.


To connect to the guide catheter, a male slip-fit luer can be used. This provides a mechanically secure and airtight seal while allowing for easy rotational adjustment of the guide catheter with respect to the suction adapter. Moreover, a hole through the body of the suction adapter allows for easy control of the amount of suction through the guide catheter. When the hole is not occluded, there is little or no vacuum at the distal end of the guide catheter. The surgeon can partially or fully occlude the hole with his finger to increase the vacuum at the tip of the guide catheter. An on/off switch can be further provided to control suction activation. The switch is placed to “on” and then the hole is occluded to initiate suctioning. Further, a silicone or polyisoprrene valve can be used to maintain a seal around guidewires, balloons or irrigation catheters. The valve is fully closed when no device is present. Extension tubing in the form of lightweight tubing can be used to connect the suction adapter to heavier gauge tubing used commonly in operating rooms. The tubing has sufficient wall thickness to prevent collapse under vacuum but does not add mass or ergonomic challenges to the guide catheter.


For example, FIG. 5A shows a guide with a proximal adapter for attaching to suction. More specifically, the guide catheter 500 can comprise an elongate tube 502 that may be made of suitable biocompatible materials, including but not limited to metals such as stainless steel, titanium, Nickel-titanium alloy (e.g., Nitinol), etc.; plastics such as PEBAX, PEEK, Nylon, polyethylene, etc. The distal region of elongate tube 502 may comprise a curved, bent or angled region. In some embodiments, the distal end of elongate tube 502 may comprise an atraumatic tip 504. Although various modes of construction may be used, in the example shown, an elongate hypotube 506 is disposed on the outer surface of elongate tube 502 and the proximal end of guide catheter 500 comprises a branched or Y-connector 508. The proximal region of Y-connector 508 comprises a straight arm 510 and a side arm 512. The proximal end of straight arm 510 comprises a suitable hub 514. In one embodiment, hub 514 is a female luer hub. In another embodiment, hub 514 comprises a rotating hemostasis valve such as a Touhy-Borst adapter. The proximal end of side arm 512 comprises a suitable hub 516. In one embodiment, hub 516 comprises a rotating hemostasis valve such as a Touhy-Borst adapter to adjust the amount of suction. Hub 516 is connected to a suction tube 518 that provides suction to guide catheter 500. Thus, guide catheter 500 can be used to provide suction as well as introduce one or more diagnostic, therapeutic or access devices into the anatomy.


In an alternative approach, the guide catheter can be further equipped with a pinch tube 550 (See FIG. 5B). The pinch tube is connected to a proximal end of the Y-connecter 508 and can be formed from silicone or another flexible material. Further, a proximal end of the elongate tube 502 can be configured with a female luer 552 which mates with a male luer 554 attached to the Y-connector 508. In use, the pinch tube 550 is pinched closed by a physician about a guidewire 551 or other device to occlude the lumen extending through the guide to thereby facilitate suctioning. As before, suction forces are applied through the side arm 512.


Turning now to FIGS. 6 and 7, in one embodiment, a guide catheter system 600 may include a guide catheter 601 having a shaft 610 and a hub assembly 604 disposed at the proximal end of the shaft 610. The shaft 610 may include a proximal portion 603 having a first diameter, a terminal end portion 602 having a second, smaller diameter, a tapering transition 614 between the two, and a lumen 608 extending through the length of the shaft 610 and through the hub assembly 604. (The internal portion of the hub assembly 604 may be a lumen, a chamber or the like in fluid communication with the lumen 608 of the catheter shaft 610.) In some embodiments, the guide catheter system 600 may further include a guidewire 612 and/or a balloon catheter 606, as shown in FIG. 6. In some embodiments, the guide catheter system 600 may further include a suction device, such as suction tubing 633.


The outer profile of the shaft 610 is configured for advancement into a nasal cavity so that one or more devices may be advanced through the lumen 608 into a paranasal sinus. The tapering transition 614 is provided between the shaft proximal portion 603 and the distal portion 602 such that the distal portion 602 has a smaller cross-section than the proximal portion 603. In this way, a balloon catheter 606 can reside in the proximal portion 603 while suction forces are passed through the lumen 608, around the balloon catheter 606 structure. This configuration may be useful, for example, in advancing the guide catheter system 600 into a nostril of a patient with the balloon catheter 606 preloaded into the guide lumen 608 and allowing for suction during advancement and positioning of the guide catheter 601. Suction during advancement and positioning of the guide catheter 601 is advantageous because it allows for the removal of blood and mucus from the field in which the surgeon is working, thus facilitating visualization of the area and access to a paranasal sinus.


The shaft distal terminal portion 602 of the guide catheter 601 defines a specific curved profile intended to direct one or more devices advanced through the lumen 608 into a natural or manmade opening of a paranasal sinus. In one embodiment, the most distal tip 616 of the terminal end portion 602 is more flexible than the rest of the shaft 610. Accordingly, PEBAX is one contemplated material for the distal tip 616. An intermediate portion 618 of the shaft 610, which may include the tapering transition 614, may be made of a flexible material as well, but in one embodiment this material may be less flexible than material used to form the distal tip 616. For example, in one embodiment, the intermediate portion 618 may be formed of a nylon material. The proximal portion 603 of the shaft 610 proximal to this intermediate portion 618 may be formed of a more rigid material, such as but not limited to a more rigid polymer and/or a stainless steel hypotube 619.


One advantage of the flexible distal tip 616 is that it causes less trauma to soft mucosal tissue lining the nasal cavity as the guide catheter 601 is advanced, manipulated and retracted. For example, when the guide catheter 601 is advanced into the nasal cavity, the tip 616 may often contact the ethmoid bulla, and a flexible tip 616 will cause less trauma than a rigid one. In some embodiments, the distal tip 616 may expand as a flexible device is advanced therethrough. In some embodiments, the distal tip 616 may also expand as a deflated balloon catheter 606 is drawn back into the guide catheter after a balloon dilation procedure has been performed. This expansion (or “give”) may reduce the amount of force required to pull the balloon catheter 606 back into the guide catheter 601 after a procedure, thus making use of the balloon catheter 606/guide catheter 601 system easier. This also allows the distal tip 616 diameter to be made smaller than it otherwise would, which further reduces trauma during use and also facilitates positioning of the distal tip 616 at a desired location in the anatomy. The tip 616 may also be provided with an expandable radiopaque band to aid in tracking positioning during an interventional procedure as well as to maintain an atraumatic profile.


Further, the PEBAX distal tip 616 is shaped relative to the adjacent proximal portion 618 for navigation through and about nasal cavity structures. For instance, in one embodiment, the curved shape of the tip portion 616 facilitates navigating about an ucinate process, so that one or more devices may be navigated into a maxillary sinus. In one embodiment, a junction between the distal tip 616 and the adjacent intermediate portion 618 is slanted. This slanted connection increases the area of the distal tip 616 portion relative to the intermediate portion 618, thus increasing the area of the most flexible portion of the shaft 610, which enhances the prevention of soft tissue trauma. The angled shape of the terminal end portion 602 is retained in part due to the more rigid nylon of the intermediate portion 618 and its slanted junction with the distal tip portion 616.


In various alternative embodiments, a guide device such as the one described above and below may have any suitable angled configuration. For example, embodiments may be provided with different angles to facilitate access to maxillary, frontal, sphenoid and ethmoid paranasal sinuses. In various embodiments, the distal tip 616 may be angled relative to the rest of the shaft 610 at angles from approximately 0° to approximately 180°. In some embodiments, a combination of guide catheters 601 having different angled configurations may be provided, such as a set of guide catheters 601 having angles of 0°, 30°, 70° and 110°. A surgeon may then select a guide catheter 601 with a desired angle for accessing a given paranasal sinus. In various embodiments, any angle or guides with any combination of angles may be provided.


In various embodiments, the outer an inner diameters of the shaft 610, including the terminal end portion 602, tapering transition 614 and proximal portion 603, may have a number of different sizes, as long as the shaft 610 is configured for advancement into the nasal cavity. The terminal end portion 602 and distal tip portion 616, in particular, may be sized to facilitate positioning near an opening to a paranasal sinus. In one embodiment, for example, the distal tip 616 can have an inner diameter of approximately 0.093 inches. This diameter structure can extend longitudinally from the tip 616 and to the catheter portion distal to the taper 614 and can define a relatively long dimension. A tip envelop 620 of the terminal end portion 602, however, can assume a relatively short dimension so that it can more easily pass through nasal anatomy and thus potentially engaging less structure as it is inserted, for example, past a middle turbinate. The “tip envelope,” for the purposes of this application, is defined as the length of a line drawn perpendicularly from the extreme distal end of the distal tip 616 to an oppositely facing surface of the straight portion of the terminal end portion 602, as shown in FIG. 7.


As shown in FIGS. 6 and 7, in one embodiment, the extreme distal end of the distal tip 616 may have a bevelled shaped. The bevelled shape also facilitates insertion and positioning relative to nasal cavity anatomy, such as directing the guide catheter 601 around the ucinate process to gain access to the maxillary sinus ostium. Moreover, the particular configuration of the beveled tip 616 permits an operator to view the opening of the tip when the device is placed within a nostril. This is due to the opening of the bevelled structure pointing back toward the operator. Such direct viewing of the opening of the tip 616 can aid in device manipulation and positioning.


In some embodiments, the lumen 608 in the terminal end portion 602 may have an inner diameter sized so that when the balloon catheter 606 is advanced within that portion of the lumen 608, suction is no longer possible, since an interference fit is created between the inner wall of the lumen 608 of the distal terminal end portion 602 and the outer surface of the balloon. In an alternative embodiment, it may still be possible to draw suction through the lumen 608 and around the balloon catheter 606, even in this advanced position, though the amount of suction force will be less when the balloon resides in the terminal end portion 602 compared with when it resides in the proximal shaft portion 603. Suction force may then be resumed again when the balloon catheter 606 is advanced distally beyond the tip 612 to perform an interventional procedure, although in some cases the primary use of suction may be during initial advancement and positioning of the guide catheter system 600 in the nasal cavity.


A proximal valve 624 is provided within the guide lumen 608 (or chamber of the hub 604). In one embodiment, the valve 624 forms a seal about the balloon catheter 606 to thereby facilitate the application of suction forces within the lumen 608. In one embodiment, the valve can be configured so that it also may form a seal around a guidewire 612. However, in an alternative embodiment, the valve does not form a seal about a guidewire 612, so that suction is only created when the balloon catheter 606 or another flexible device having a larger diameter than the guidewire 612 is positioned within the lumen 608.


The hub 604 of the guide catheter 601 further includes a vent 628 and a suction port 630. A most proximal portion is equipped with a flange 631 shaped for easy gripping by an operator. In one embodiment, for example, the flange 631 may be used by a surgeon to grip the guide catheter 601 like a syringe and advance the balloon catheter 606 through the guide catheter 601 with the same hand. In alternative embodiments, either standard or custom suction tubing 632 can be attached to the suction port 630 to create the desired suction force. Moreover, the suction port 630 is angled proximally so that a guidewire 612 advanced through the hub 604 will not exit the suction port 630.


The vent 628 is sized and positioned to accept an operator's finger, so that suction provided through the suction port 630 will be applied at the distal tip 616 of the guide catheter 601. In some embodiments, the vent 628 can define a short tubular path from an outer surface of the hub 604 to an inner wall of the hub 604 and can be directed proximally in a manner similar to the suction port 630, to prevent a guidewire 612 from passing through the vent 628. In one alternative embodiment, the vent 628 may also or alternatively be covered with a grate-like structure to prevent a guidewire 612 from passing therethrough.


With reference now to FIGS. 8-11, a method of using the guide catheter system 600 is described. Although FIGS. 8-11 show use of the guide catheter system 600 in accessing and treating a frontal paranasal sinus, this or other embodiments may be used to access and treat any of the other paranasal sinuses, including maxillary, sphenoid and ethmoid paranasal sinuses.


Referring to FIG. 8, in one embodiment of the method, a guide catheter 601 is first advanced into a nasal cavity and positioned so that the terminal end portion 602 of the guide catheter 601 is located at or near an opening into a paranasal sinus. In the example shown in FIG. 8, the terminal end portion 602 is positioned near the frontal recess, which is a pathway leading to the frontal sinus ostium (the natural opening into the frontal sinus). The guide catheter 601 may be positioned in a desired location using an endoscope for visualization and/or fluoroscopy, however, in most cases an endoscope alone will suffice. In some embodiments, the guide catheter 601 is advanced into the nasal cavity with a guidewire 612 and/or a balloon catheter 606 preloaded into the guide catheter lumen 608. During advancement and/or positioning of the guide catheter 601, suction may be applied by applying suction force through a suction tube coupled with the hub apparatus 604 and by placing a thumb or other finger over the vent 628 to remove blood, mucus and/or other fluids from the area of the terminal end portion 602. This use of suction will typically enhance a surgeon's ability to visualize the nasal cavity using an endoscope and thus facilitate location of a target paranasal sinus ostium.


Still referring to FIG. 8, once the guide catheter 601 is positioned in a desired location in the nasal cavity, the surgeon then advances the guidewire 612 out of the distal opening of the catheter 601 and through the natural ostium 650 of a paranasal sinus into the sinus cavity 652. In some embodiments, the guidewire 612 may be an illuminating guidewire. Such an illuminating guidewire may be used to create a transillumination spot on an external surface of the patient during and/or after advancement of the guidewire 612 to confirm that the distal end of the guidewire 612 has entered and resides in the desired paranasal sinus. (See, for example, U.S. patent application Ser. Nos. 11/522,497 , issued as U.S. Pat. No. 7,559,925 on Jul. 14, 2009 and 11/803,695, issued as U.S. Pat. No. 9,544,691 on Jan. 31, 2017, the full disclosures of which are hereby incorporated by reference.) In other embodiments, a non-illuminating guidewire 612 may be used. In either the illuminating or non-illuminating guidewire embodiment, fluoroscopy may be used to visualize the guidewire 612 in the paranasal sinus for further confirmation of its location.


Next, as shown in FIG. 9, the balloon catheter 606 is advanced over the guidewire 612 and is positioned and then expanded within the paranasal sinus ostium 650. (In the case of the frontal sinus, as in these Figures, the balloon of the balloon catheter 606 may be positioned and inflated within the ostium, the frontal outflow tract or both.) An inflation device (not shown) is provided to inflate the balloon. Thereafter, the balloon catheter is deflated and withdrawn within the distal terminal end portion 602. In one embodiment, rather than immediately withdrawing the balloon catheter 606, instead the balloon may be repositioned and inflated again to further expand the ostium, expand a portion of the frontal sinus outflow tract and/or the like. Optionally, the balloon catheter 606 may be further withdrawn into the guide catheter 601, and a suction force may be applied to remove substances from the paranasal sinus cavity or outflow tract or from the nasal cavity.


With reference now to FIG. 10, in an optional step, in some embodiments, the balloon catheter 606 may be removed from the patient via the guide catheter, and a flexible irrigation catheter 654 may then be passed through the guide catheter 601 (either over the guidewire 612 or without a guidewire, in alternative embodiments), into the paranasal sinus. Irrigation fluid 652, such as saline solution, may then be passed out of the irrigation catheter 654 to flush or irrigate the sinus. In some embodiments, the irrigation fluid 652 may simply be allowed to flow out of the sinus without applying suction force. In other embodiments, suction may be applied via the suction guide catheter 601 to assist in removal of the fluid 652.


At the end of a procedure, as in FIG. 11, the guide catheter 601 and any remaining devices are removed from the patient. The ostium 650 is left in a dilated state, which ideally will facilitate normal drainage of the sinus and help treat the patient's sinusitis.


As shown in FIG. 12, an alternate approach to a guide catheter 700 may include a distal terminal end portion 702 which includes multiple turns or bends. A first bend 704 can be positioned distally with respect to a second bend 706, where the first bend 704 defines a smaller angle than the second bend 706. This “double-bend” configuration may facilitate insertion of the guide catheter 700 into a nostril in a tip-down orientation and then allow the catheter 700 to be rotated to position its distal tip 716 at or near a maxillary sinus ostium.


In other alternative embodiments, the terminal end portion 702 of a guide catheter 700 may be configured to facilitate other processes or manipulations within the nasal cavity. For example, in one embodiment the terminal end portion 702 may be configured to facilitate pushing an ucinate process (or other anatomy) out of the way during an interventional procedure while a distal tip 716 is positioned as desired relative to the treatment site. The “double-bend” approach shown in FIG. 12 may help lower insertion and retraction forces required to advance and retract a balloon catheter through the guide 700. For example, double bends of fifty and sixty degrees can be subjected to less such forces than a single bend of one hundred ten degrees.


Turning now to FIGS. 13-23, a number of alternative embodiments of distal end configurations for guide catheters are shown. Each embodiment may have advantages in facilitating advancement and/or positioning of a guide catheter within a nasal cavity and/or advancement or retraction of a balloon catheter or other device(s) into and out of the guide catheter's distal end. As shown in FIG. 13, in one embodiment, a terminal end tip 750 of a guide catheter may embody an eye-shaped extrusion or molding 752, including a round inner diameter 754. Integrated wings 756 are provided to help gain access to and traverse nasal cavity anatomy. For example, the wings 756 may facilitate positioning the distal end of the guide catheter behind an uncinate process to access a maxillary sinus ostium. The wings 756 may allow a surgeon to tease the uncinate anteriorly, thus exposing an open pathway for guide access to the maxillary sinus ostium.


Some of the guide catheter distal ends in FIGS. 13-23 also include an oval cross-section. This oval shape may help to minimize the dimension of the guide in the orientation of anatomic restriction. Because the uncinate process can often be tight against the ethmoid bulla (in an anterior-posterior direction), the guide is ovalized such that the smaller dimension is oriented between the uncinate and the ethmoid bulla. Various embodiments may include such an oval cross-section with or without wings 756. The soft distal tip material of some embodiments of the guide catheters allow the cross-sectional shape of the guide tip to change relative to the forces it encounters. Therefore, a soft tip with a round cross-sectional shape may ovalize while it is being placed behind the uncinate, thereby reducing the force required to achieve a desired position.


In other approaches, distal terminal end portions of a guide catheter can include flanged wings of various configurations. Wings can be positioned at the top, midline or bottom of a tip and the wing can be short, long, flat or curved. Also, the wings can be flared to form a single price of material and can be made of any suitable flexible or non-flexible material in various embodiments, such as but not limited to any number of metals or polymers, such as aluminum foil, stainless steel, hard plastic or soft plastic. In one specific approach (FIGS. 14A-C), a distal terminal end portion 750 of a guide catheter can include wings 756 formed by aluminium foil. Such wings are again intended to facilitate navigation through sinus anatomy such as for the purpose of slipping behind an ucinate process. Similarly configured wings formed from PEBAX are shown in FIGS. 15A and B. Yet another approach to facilitating navigation is shown in FIG. 16 which depicts a hard plastic covering 758 formed about a portion the distal terminal end 750 of a guide catheter.


Moreover, as shown in FIGS. 17A-B, navigating wings 757 can also be formed of a stainless steel bar configured across the terminal end generally perpendicular to a distal opening formed therein. Another approach to a PEBAX wing structure 756 is shown in FIGS. 18A and B. Yet further different approaches are depicted in FIGS. 19A-D, 20A-B, 21A-C, 22A-B and 23, respectively. Of particular note are the angled tip approach with underside wings 756 shown in FIG. 19A and the angle cut tips of FIGS. 21A-C. Various shaped openings at the terminal ends of the guides are also contemplated such as those depicted in FIGS. 21A-C, 22A-B and 23.


As shown in FIGS. 24A-C, various different approaches to a valve 624 for sealing a balloon catheter 606 within a guide catheter system are contemplated. In a first approach, a flat circular gasket 800 with a center sealing through hole 802 (FIG. 24A). Alternatively, a valve 810 defined by a through hole with a double taper 812 can be employed within a guide catheter system. Further, as shown in FIG. 24C, the valve 624 can embody a one-way valve 820 with internal flap structure 822.


Turning now to FIGS. 25A and B, there are shown alternative approaches to a hub assembly 604 of a guide catheter system 600. By splitting the hub into first 830 and second 840 parts, an improved approach to attaching a valve seal 624 to a catheter shaft 610 is contemplated. In a first approach, the valve 624 is affixed to the shaft 610 and the two parts are positioned within the second part of the hub 604. The first part of the hub 830 is then inserted in the second part to complete the hub assembly. In an alternate approach (FIG. 25B), the valve 624 is captured in the second part 840 of the hub assembly and the end of the catheter shaft 610. The first part 830 of the hub is configured with flanges 842 which traps the valve 624 in place. Such approaches are intended for ease of assembly.


As shown in FIG. 26, the hub assembly 604 can further include a suction port 630 including barbs 850. The attachment for a suction tube must be one that allows for ease of attaching and removal, yet also from a tight seal to provide sufficient suction rates with little to no leakage. The barbs 850 facilitate such a desirable connection and also define a profile which does not interfere with an operator during use whether the suction feature is being employed or not.


Additionally, as shown in FIGS. 27A and B, the hub assembly 604 can include a proximal opening 860 which can be provided for connecting the hub 604 to other devices. A ridge 862 can be formed within the opening 860 and can be sized and shaped to lockingly engage within a cut-out formed on an end of an auxiliary device 866. In this way, an audible click can be created by the engagement of the ridge 862 to thereby confirm a proper register of the hub 604 with auxiliary devices. With the cut-out 864 to thereby identify a full engagement of the ports. Additionally, some resistance is also provided between the ports to help avoid incidental release.


Although the present invention has been illustrated and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.

Claims
  • 1. A method for advancing a flexible device into a paranasal sinus, the method comprising: (a) inserting a guide catheter into a head of a patient, wherein the flexible device is either preloaded into the guide catheter or advanced into the guide catheter during or after insertion of the guide catheter into the patient's head;(b) generating a suction force proximally through the guide catheter, around the flexible device, and within the head of the patient, via a suction source attached to the guide catheter, wherein the step of generating the suction force is performed while the guide catheter is being advanced into the head of the patient; and(c) advancing the flexible device out of a distal end of the guide catheter into the paranasal sinus.
  • 2. The method of claim 1, wherein the flexible device comprises a balloon dilation catheter.
  • 3. The method of claim 2, further comprising performing a balloon dilation procedure using the balloon catheter to dilate an opening of the paranasal sinus.
  • 4. The method of claim 3, wherein dilating the opening comprises dilating a natural ostium of the paranasal sinus.
  • 5. The method of claim 3, further comprising creating an artificial opening into the paranasal sinus, wherein dilating the opening comprises dilating at least one of the artificial opening or a natural ostium of the paranasal sinus.
  • 6. The method of claim 2, wherein the flexible device further comprises a guidewire, and wherein the method further comprises advancing the guidewire out of the distal end of the guide catheter into the paranasal sinus before the balloon catheter is advanced, wherein the balloon catheter is advanced over the guidewire.
  • 7. The method of claim 1, wherein a distal portion of the guide catheter is flexible, the method further comprising advancing the flexible device through the distal portion thereby expanding the distal portion.
  • 8. The method of claim 1, wherein the guide catheter includes a hub assembly including a proximal end portion, the method further comprising attaching an auxiliary device to the hub assembly.
  • 9. The method of claim 8, wherein the hub assembly further includes a suction port fluidly connected to the suction source and a collapsible sealing member positioned proximally relative to the suction port such that the flexible device extends through the collapsible sealing member, wherein the method further comprises collapsing the sealing member in order to form a seal about the flexible device.
  • 10. The method of claim 1, wherein the flexible device further comprises a balloon dilation catheter, wherein the method further comprises advancing a balloon of the balloon dilation catheter into a first portion of the guide catheter such that the balloon dilation catheter forms an interference fit with the first portion of the guide catheter in order to prevent suction via the suction force through the guide catheter and to the head of the patient.
  • 11. The method of claim 10, wherein the guide catheter includes a lumen extending therethrough and is configured to allow for passage of the balloon dilation catheter therealong, wherein the lumen includes the first portion having a first diameter, a second portion having a second diameter, wherein the second diameter is greater than the first diameter, and wherein advancing the balloon further includes positioning the balloon from the second portion to the first portion so as to prevent suction via the suction force through the guide catheter and to the head of the patient.
  • 12. The method of claim 1, further comprising suctioning debris from the head of the patient.
  • 13. The method of claim 1, wherein the distal end of the guide catheter includes a wing extending radially therefrom, and the method further comprises teasing a sinus tissue with the wing in order to open a pathway in which to introduce the guide catheter.
  • 14. The method of claim 13, wherein the sinus tissue is an uncinate process and teasing the uncinate process further includes positioning the distal end of the guide catheter behind the uncinate process in order to open the pathway to the maxillary sinus ostium.
  • 15. The method of claim 1, wherein the flexible device further comprises an illuminating guidewire, and wherein the method further comprises advancing the guidewire out of the distal end of the guide catheter in order to transilluminate the paranasal sinus.
  • 16. A method for advancing a flexible device into a paranasal sinus, wherein the flexible device includes a balloon dilation catheter and a guidewire, the method comprising: (a) inserting a guide catheter into a head of a patient, wherein the flexible device is either preloaded into the guide catheter or advanced into the guide catheter during or after insertion of the guide catheter into the patient's head;(b) generating a suction force proximally through the guide catheter, around the flexible device, and within the head of the patient, via a suction source attached to the guide catheter, wherein the step of generating the suction force is performed while the guide catheter is being advanced into the head of the patient;(c) suctioning debris from the head of the patient;(d) advancing the guidewire out of a distal end of the guide catheter into the paranasal sinus before the balloon dilation catheter is advanced;(e) advancing the balloon dilation catheter out of a distal end of the guide catheter into the paranasal sinus;(f) expanding a balloon of the balloon dilation catheter to an expanded state in order to prevent suction via the suction force through the guide catheter and to the head of the patient; and(g) dilating an opening of the paranasal sinus with the balloon dilation catheter.
  • 17. The method of claim 16, wherein the distal end of the guide catheter includes a terminal end with a wing extending radially therefrom, wherein the method further comprises teasing a sinus tissue with the wing in order to open a pathway in which to introduce the guide catheter.
  • 18. The method of claim 17, wherein the sinus tissue is an uncinate process and teasing the uncinate process further includes positioning the distal end behind the uncinate process in order to open the pathway to the maxillary sinus ostium.
  • 19. The method of claim 16, wherein the flexible device further comprises an illuminating guidewire, and wherein the method further comprises advancing the guidewire out of the distal end of the guide catheter in order to transilluminate the paranasal sinus.
  • 20. A method for advancing a flexible device into a paranasal sinus, wherein the flexible device includes a balloon dilation catheter, the method comprising: (a) inserting a guide catheter into a head of a patient, wherein the flexible device is either preloaded into the guide catheter or advanced into the guide catheter during or after insertion of the guide catheter into the patient's head;(b) generating a suction force proximally through the guide catheter, around the flexible device, and within the head of the patient, via a suction source attached to the guide catheter, wherein the step of generating the suction force is performed while the guide catheter is being advanced into the head of the patient;(c) opening a pathway to a maxillary sinus ostium behind an uncinate process with a distal end of the guide catheter;(d) introducing the guide catheter along the pathway to the maxillary sinus ostium;(e) advancing the flexible device out of a distal end of the guide catheter into the paranasal sinus toward the maxillary sinus ostium; and(f) dilating the maxillary sinus ostium with the balloon dilation catheter.
Parent Case Info

This application is a divisional application of U.S. Nonprovisional patent application Ser. No. 12/408,524, entitled “Guide System with Suction” filed Mar. 20, 2009, now abandoned.

US Referenced Citations (803)
Number Name Date Kind
446173 Hancock Feb 1891 A
504424 De Pezzer Sep 1893 A
513667 Buckingham Jan 1894 A
705346 Hamilton Jul 1902 A
798775 Forsyte Sep 1905 A
816792 Green Apr 1906 A
1080934 Shackleford Dec 1913 A
1200267 Sunnergren Oct 1916 A
1650959 Pitman Nov 1927 A
1735519 Vance Nov 1929 A
1828986 Stevens Oct 1931 A
2201749 Vandegrift May 1940 A
2493326 Trinder Jan 1950 A
2525183 Robison Oct 1950 A
2847997 Tibone Aug 1958 A
2899227 Jeanrenaud Aug 1959 A
2906179 Bower Sep 1959 A
2995832 Alderson Aug 1961 A
3009265 Bexark Nov 1961 A
3037286 Bower Jun 1962 A
3173418 baran Mar 1965 A
3347061 Stuemky Oct 1967 A
3376659 Asin et al. Apr 1968 A
3384970 Avalear May 1968 A
3393073 Reutenauer et al. Jul 1968 A
3435826 Fogarty Apr 1969 A
3469578 Bierman Sep 1969 A
3469582 Jackson Sep 1969 A
3481043 Esch Dec 1969 A
3486539 Jacuzzi Dec 1969 A
3506005 Gilio et al. Apr 1970 A
3509638 Macleod May 1970 A
3515888 Lewis Jun 1970 A
3527220 Summers Sep 1970 A
3531868 Stevenson Oct 1970 A
3552384 Pierie et al. Jan 1971 A
3595234 Jackson Jul 1971 A
3624661 Shebanow et al. Nov 1971 A
3731963 Pond May 1973 A
3792391 Ewing Feb 1974 A
3802096 Matern Apr 1974 A
3804081 Kinoshita Apr 1974 A
3800788 White Jul 1974 A
3834394 Hunter et al. Sep 1974 A
3850176 Gottschalk Nov 1974 A
3856000 Chikama Dec 1974 A
3859993 Bitner Jan 1975 A
3871365 Chikama Mar 1975 A
3894538 Richter Jul 1975 A
3903893 Scheer Sep 1975 A
3910617 Scalza et al. Oct 1975 A
3921636 Zaffaroni Nov 1975 A
3948254 Zaffaroni Apr 1976 A
3948262 Zaffaroni Apr 1976 A
3967618 Zaffaroni Jul 1976 A
3993069 Buckles et al. Nov 1976 A
3993072 Zaffaroni Nov 1976 A
3993073 Zaffaroni Nov 1976 A
4016251 Higuchi et al. Apr 1977 A
4052505 Higuchi et al. Oct 1977 A
4053975 Olbrich et al. Oct 1977 A
4069307 Higuchi et al. Jan 1978 A
4102342 Akiyama et al. Jul 1978 A
4138151 Nakao Feb 1979 A
4184497 Kolff et al. Jan 1980 A
4198766 Camin et al. Apr 1980 A
4207890 Mamajek et al. Jun 1980 A
4209919 Kirikae et al. Jul 1980 A
4213095 Falconer Jul 1980 A
4217898 Theeuwes Aug 1980 A
4268115 Slemon et al. May 1981 A
4287889 Stupar Sep 1981 A
4299226 Banka Nov 1981 A
4299227 Lincoff Nov 1981 A
4338941 Payton Jul 1982 A
D269204 Trepp May 1983 S
4388941 Riedhammer Jun 1983 A
RE31351 Falconer Aug 1983 E
4435716 Zandbergen Mar 1984 A
4437856 Valli Mar 1984 A
4450150 Sidman May 1984 A
4459977 Pizon et al. Jul 1984 A
4464175 Altman et al. Aug 1984 A
4471779 Antoshkiw et al. Sep 1984 A
4499899 Lyons, III Feb 1985 A
4554929 Samson et al. Nov 1985 A
4564364 Zaffaroni et al. Jan 1986 A
4571239 Heyman Feb 1986 A
4571240 Samson et al. Feb 1986 A
4581017 Sahota Apr 1986 A
4585000 Hershenson Apr 1986 A
D283921 Dyak May 1986 S
4589868 Dretler May 1986 A
4596528 Lewis et al. Jun 1986 A
D284892 Glassman Jul 1986 S
4603564 Kleinhany et al. Aug 1986 A
4606346 Berg et al. Aug 1986 A
4607622 Fritch et al. Aug 1986 A
4637389 Heyden Jan 1987 A
4639244 Rizk et al. Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4669469 Gifford, III Jun 1987 A
4672961 Davies Jun 1987 A
4675613 Naegeli et al. Jun 1987 A
4691948 Austin, Jr. et al. Sep 1987 A
4708434 Tsuno Nov 1987 A
4708834 Cohen et al. Nov 1987 A
4726772 Amplatz Feb 1988 A
4736970 McGourty et al. Apr 1988 A
4737141 Spits Apr 1988 A
4748869 Ohtsuka Jun 1988 A
4748969 Wardle Jun 1988 A
4748986 Morrison et al. Jun 1988 A
4755171 Tennant Jul 1988 A
4771776 Powell et al. Sep 1988 A
4793359 Sharrow Dec 1988 A
4796629 Grayzel Jan 1989 A
4803076 Ranade Feb 1989 A
4811743 Stevens Mar 1989 A
4815478 Buchbinder et al. Mar 1989 A
4819619 Augustine et al. Apr 1989 A
4846186 Box et al. Jul 1989 A
4847258 Sturm et al. Jul 1989 A
4851228 Zenter et al. Jul 1989 A
4854330 Evans, III et al. Aug 1989 A
4862874 Kellner Sep 1989 A
4867138 Kubota et al. Sep 1989 A
4883465 Brennan Nov 1989 A
4897651 DeMonte Jan 1990 A
4898577 Badger et al. Feb 1990 A
4917419 Mora, Jr. et al. Apr 1990 A
4917667 Jackson Apr 1990 A
4919112 Siegmund Apr 1990 A
4920967 Cottonaro et al. May 1990 A
4925445 Sakamoto et al. May 1990 A
4940062 Hampton et al. Jul 1990 A
4943275 Stricker Jul 1990 A
4946466 Pinchuk et al. Aug 1990 A
4961433 Christian Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4984581 Stice Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
4998917 Gaiser et al. Mar 1991 A
5001825 Halpern Mar 1991 A
5002322 Fukumoto Mar 1991 A
5019075 Spears et al. May 1991 A
5019372 Folkman et al. May 1991 A
5020514 Heckele Jun 1991 A
5021043 Becker et al. Jun 1991 A
5024650 Hagiwara et al. Jun 1991 A
5024658 Kozlov et al. Jun 1991 A
5026384 Farr et al. Jun 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5041089 Mueller et al. Aug 1991 A
5044678 Detweiler Sep 1991 A
5053007 Euteneuer Oct 1991 A
5055051 Duncan Oct 1991 A
5060660 Gamble et al. Oct 1991 A
5067489 Lind Nov 1991 A
5069226 Tamauchi et al. Dec 1991 A
5083561 Russo Jan 1992 A
5087244 Wolinsky et al. Feb 1992 A
5087246 Smith Feb 1992 A
5090595 Vandeninck Feb 1992 A
5090910 Narlo Feb 1992 A
5112228 Zouras May 1992 A
5116311 Lofstedt May 1992 A
5127393 McFarlin et al. Jul 1992 A
5127626 Hilal Jul 1992 A
5137517 Loney et al. Aug 1992 A
5139510 Goldsmith, III et al. Aug 1992 A
5139832 Hayashi et al. Aug 1992 A
D329496 Wotton Sep 1992 S
5152747 Olivier Oct 1992 A
5156595 Adams Oct 1992 A
5163989 Campbell et al. Nov 1992 A
5167220 Brown Dec 1992 A
5168864 Skockey Dec 1992 A
5169386 Becker et al. Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5196043 Catania Dec 1992 A
5180368 Garrison Jan 1993 A
5183470 Wettermann Feb 1993 A
5189110 Ikematu et al. Feb 1993 A
5195168 Yong Mar 1993 A
5197457 Adair Mar 1993 A
5207695 Trout, III May 1993 A
5211952 Spicer et al. May 1993 A
5215105 Kizelshteyn et al. Jun 1993 A
5221260 Burns et al. Jun 1993 A
5226302 Anderson Jul 1993 A
5230348 Ishibe et al. Jul 1993 A
5236422 Eplett, Jr. Aug 1993 A
5243996 Hall Sep 1993 A
D340111 Yoshikawa Oct 1993 S
5250059 Andreas et al. Oct 1993 A
5251092 Brady et al. Oct 1993 A
5252183 Shaban et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263926 Wilk Nov 1993 A
5264260 Saab Nov 1993 A
5267965 Deniega Dec 1993 A
5270086 Hamlin Dec 1993 A
5273052 Kraus et al. Dec 1993 A
5275593 Easley et al. Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5295694 Levin Mar 1994 A
5300085 Yock Apr 1994 A
5304123 Atala et al. Apr 1994 A
5308326 Zimmon May 1994 A
5313967 Lieber et al. May 1994 A
5314417 Stephens et al. May 1994 A
5315618 Yoshida May 1994 A
5333620 Moutafis et al. Aug 1994 A
5334167 Cocanower Aug 1994 A
5336163 DeMane et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5342296 Persson et al. Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5346075 Nichols et al. Sep 1994 A
5346508 Hastings Sep 1994 A
5348537 Wiesner et al. Sep 1994 A
5350396 Eliachar Sep 1994 A
5356418 Shturman Oct 1994 A
5368049 Raman et al. Nov 1994 A
5368566 Crocker Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5372584 Zink et al. Dec 1994 A
D355031 Yoshikawa Jan 1995 S
5386817 Jones Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391179 Mezzoli Feb 1995 A
5402799 Colon et al. Apr 1995 A
5409444 Kensey Apr 1995 A
5411475 Atala et al. May 1995 A
5411476 Abrams et al. May 1995 A
5411477 Saab May 1995 A
5415633 Lazarus May 1995 A
5425370 Vilkomerson Jun 1995 A
5439446 Barry Aug 1995 A
5441494 Ortiz Aug 1995 A
5441497 Narciso, Jr. Aug 1995 A
5447503 Miller Sep 1995 A
5450853 Hastings et al. Sep 1995 A
5451221 Cho et al. Sep 1995 A
5454817 Katz Oct 1995 A
5458572 Campbell et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5465733 Hinohara et al. Nov 1995 A
5478565 Geria Dec 1995 A
5486181 Cohen et al. Jan 1996 A
5496338 Miyagi et al. Mar 1996 A
5497783 Urick et al. Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507725 Savage et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5512055 Domb et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5519532 Broome May 1996 A
5527292 Adams Jun 1996 A
5531676 Edwards et al. Jul 1996 A
5533985 Wang Jul 1996 A
5538008 Crowe Jul 1996 A
5546964 Stangerup Aug 1996 A
5549542 Kovalcheck Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5558652 Henke Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5568809 Ben-Haim Oct 1996 A
5578007 Imran Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5584827 Korteweg et al. Dec 1996 A
5591194 Berthiaume Jan 1997 A
5599284 Shea Feb 1997 A
5599304 Shaari Feb 1997 A
5599576 Opolski Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5601594 Best Feb 1997 A
5603698 Roberts et al. Feb 1997 A
5607386 Flam Mar 1997 A
5617870 Hastings et al. Apr 1997 A
5626374 Kim May 1997 A
5633000 Grossman et al. May 1997 A
5634908 Loomas Jun 1997 A
5638819 Manwaring et al. Jun 1997 A
5643251 Hillsman et al. Jul 1997 A
5645789 Roucher, Jr. Jul 1997 A
5647361 Damadian Jul 1997 A
5656030 Hunjan et al. Aug 1997 A
5662674 Debbas Sep 1997 A
5664567 Linder Sep 1997 A
5664580 Erickson et al. Sep 1997 A
5665052 Bullard Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5673707 Chandrasekaran Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5682199 Lankford Oct 1997 A
5685838 Peters et al. Nov 1997 A
5685847 Barry Nov 1997 A
5690373 Luker Nov 1997 A
5693065 Rains, III Dec 1997 A
5694945 Ben-Haim Dec 1997 A
5697159 Linden Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707389 Louw et al. Jan 1998 A
5708175 Loyanagi et al. Jan 1998 A
5711315 Jerusalmy Jan 1998 A
5713839 Shea Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5718702 Edwards Feb 1998 A
5720300 Fagan et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5722415 Rom et al. Mar 1998 A
5722984 Fischell et al. Mar 1998 A
5729129 Acker Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5733248 Adams et al. Mar 1998 A
5752513 Acker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5766158 Opolski Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776158 Chou Jul 1998 A
5779699 Lipson Jul 1998 A
5789391 Jacobus et al. Aug 1998 A
5792100 Shantha Aug 1998 A
5797878 Bleam Aug 1998 A
5803089 Ferre et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5819723 Joseph Oct 1998 A
5820568 Willis Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5824048 Tuch Oct 1998 A
5824173 Fontirroche et al. Oct 1998 A
5827224 Shippert Oct 1998 A
5830188 Abouleish Nov 1998 A
5833608 Acker Nov 1998 A
5833645 Lieber et al. Nov 1998 A
5833650 Imran Nov 1998 A
5833682 Amplatz et al. Nov 1998 A
5836638 Slocum Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843113 High Dec 1998 A
5846259 Berthiaume Dec 1998 A
5857998 Barry Jan 1999 A
5862693 Myers et al. Jan 1999 A
5865767 Frechette et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5873835 Hastings Feb 1999 A
5887467 Butterweck et al. Mar 1999 A
5902247 Coe et al. May 1999 A
5902333 Roberts et al. May 1999 A
5904701 Daneshvar May 1999 A
5908407 Frazee et al. Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5928192 Maahs Jul 1999 A
5931811 Haissaguerre et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5932035 Koger et al. Aug 1999 A
5935061 Acker et al. Aug 1999 A
5941816 Barthel et al. Aug 1999 A
D413629 Wolff et al. Sep 1999 S
5947988 Smith Sep 1999 A
5949929 Hamm Sep 1999 A
5954693 Barry Sep 1999 A
5954694 Sunseri Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5968085 Morris et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5979290 Simeone Nov 1999 A
5980503 Chin Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984945 Sirhan Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5997562 Zadno-Azizi et al. Dec 1999 A
6006126 Cosman Dec 1999 A
6006130 Higo et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6007991 Sivaraman et al. Dec 1999 A
6010511 Murphy Jan 2000 A
6013019 Fischell et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6016439 Acker Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6019777 Mackenzie Feb 2000 A
6021340 Randolph et al. Feb 2000 A
6022313 Ginn et al. Feb 2000 A
6027461 Walker et al. Feb 2000 A
6027478 Katz Feb 2000 A
6039699 Viera Mar 2000 A
6042561 Ash et al. Mar 2000 A
6045531 Davis Apr 2000 A
6048299 von Hoffmann Apr 2000 A
6048358 Barak Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6059752 Segal May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6079755 Chang Jun 2000 A
6080190 Schwartz Jun 2000 A
6083148 Williams Jul 2000 A
6083188 Becker et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6092846 Fuss et al. Jul 2000 A
6093150 Chandler et al. Jul 2000 A
6093195 Ouchi Jul 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113567 Becker Sep 2000 A
6122541 Cosman et al. Sep 2000 A
6123697 Shippert Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6148823 Hastings Nov 2000 A
6149213 Sokurenko et al. Nov 2000 A
6159170 Borodulin et al. Dec 2000 A
6171298 Matsuura et al. Jan 2001 B1
6171303 Ben-Haim et al. Jan 2001 B1
6174280 Oneda et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6183433 Bays Feb 2001 B1
6183461 Matsuura et al. Feb 2001 B1
6183464 Sharp et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6193650 Ryan, Jr. Feb 2001 B1
6195225 Komatsu et al. Feb 2001 B1
6200257 Winkler Mar 2001 B1
6206868 Parodi Mar 2001 B1
6206870 Kanner Mar 2001 B1
6213975 Laksin Apr 2001 B1
6221042 Adams Apr 2001 B1
6231543 Hegde et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6238364 Becker May 2001 B1
6238391 Olsen et al. May 2001 B1
6241519 Sedleemayer Jun 2001 B1
6249180 Maalej et al. Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6268574 Edens Jul 2001 B1
6293957 Peters et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450382 Nestenborg Nov 2001 S
6322495 Snow et al. Nov 2001 B1
6328564 Thurow Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332891 Himes Dec 2001 B1
6340360 Lyles et al. Jan 2002 B1
6348041 Klint Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375629 Muni et al. Apr 2002 B1
6379329 Naglreiter et al. Apr 2002 B1
6383146 Klint May 2002 B1
6386197 Miller May 2002 B1
6389313 Marchitto et al. May 2002 B1
6390993 Cornish et al. May 2002 B1
6394093 Lethi May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6423012 Kato et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6432986 Levin Aug 2002 B2
6440061 Wenner et al. Aug 2002 B1
6443947 Marko et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6450975 Brennan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6464650 Jafari et al. Oct 2002 B2
6468202 Irion et al. Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6485475 Chelly Nov 2002 B1
6491940 Levin Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500130 Kinsella et al. Dec 2002 B2
6500189 Lang et al. Dec 2002 B1
6503087 Eggert et al. Jan 2003 B1
6503185 Waksman et al. Jan 2003 B1
6511418 Shahidi et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6517478 Khadem Feb 2003 B2
6524129 Cote et al. Feb 2003 B2
6524299 Tran et al. Feb 2003 B1
6524323 Nash et al. Feb 2003 B1
6526302 Hassett Feb 2003 B2
6527753 Sekine et al. Mar 2003 B2
6529756 Phan et al. Mar 2003 B1
6533754 Hisamatsu et al. Mar 2003 B1
6536437 Dragisic Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6543452 Lavigne Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6568388 Kent May 2003 B2
6569146 Werner et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6571131 Nguyen May 2003 B1
6572538 Takase Jun 2003 B2
6572590 Stevens et al. Jun 2003 B1
6579285 Sinofsky Jun 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6585717 Wittenberger et al. Jul 2003 B1
6585794 Shimoda et al. Jul 2003 B2
6591130 Shahidi Jul 2003 B2
6596009 Jelic Jul 2003 B1
6607546 Murken Aug 2003 B1
6612999 Brennan et al. Sep 2003 B2
6613066 Fukaya et al. Sep 2003 B1
6616601 Hayakawa Sep 2003 B2
6616659 de la Torre et al. Sep 2003 B1
6616678 Nishtala et al. Sep 2003 B2
6616913 Mautone Sep 2003 B1
6619085 Hsieh Sep 2003 B1
6634684 Spiessl Oct 2003 B2
6638233 Corvi et al. Oct 2003 B2
6638268 Niazi Oct 2003 B2
6638291 Ferrera et al. Oct 2003 B1
6645193 Mangosong Nov 2003 B2
6652472 Jafari et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6656166 Lurie et al. Dec 2003 B2
6663589 Halevy Dec 2003 B1
6669689 Lehmann et al. Dec 2003 B2
6669711 Noda Dec 2003 B1
6672773 Glenn et al. Jan 2004 B1
6673025 Richardson et al. Jan 2004 B1
6679871 Hahnen Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6689096 Loubens et al. Feb 2004 B1
6689146 Himes Feb 2004 B1
6702735 Kelly Mar 2004 B2
6712757 Becker et al. Mar 2004 B2
6714809 Lee et al. Mar 2004 B2
6716183 Clayman et al. Apr 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716813 Lim et al. Apr 2004 B2
6719749 Schweikert et al. Apr 2004 B1
6726701 Gilson et al. Apr 2004 B2
6755812 Peterson et al. Jun 2004 B2
6776772 de Vrijer et al. Aug 2004 B1
6780168 Jellie Aug 2004 B2
6783522 Fischell Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6796960 Cioanta et al. Sep 2004 B2
6811544 Schaer Nov 2004 B2
6817364 Garibaldi et al. Nov 2004 B2
6817976 Rovengo Nov 2004 B2
6827683 Otawara Dec 2004 B2
6827701 MacMahon et al. Dec 2004 B2
6832715 Eungard et al. Dec 2004 B2
D501677 Becker Feb 2005 S
6851290 Meier et al. Feb 2005 B1
6860264 Christopher Mar 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6890329 Carroll et al. May 2005 B2
6899672 Chin et al. May 2005 B2
6902556 Grimes et al. Jun 2005 B2
6913763 Lerner Jul 2005 B2
6927478 Paek Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6939374 Banik et al. Sep 2005 B2
6955657 Webler Oct 2005 B1
6966906 Brown Nov 2005 B2
6971998 Rosenman et al. Dec 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6991597 Gellman et al. Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997941 Sharkey et al. Feb 2006 B2
7004173 Sparks et al. Feb 2006 B2
7008412 Maginot Mar 2006 B2
7011654 Dubrul et al. Mar 2006 B2
7022105 Edwards Apr 2006 B1
7043961 Pandey May 2006 B2
7052474 Castell et al. May 2006 B2
7056284 Martone et al. Jun 2006 B2
7056303 Dennis et al. Jun 2006 B2
7074197 Reynolds et al. Jul 2006 B2
7074426 Kochinke Jul 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7108677 Courtney et al. Sep 2006 B2
7108706 Hogle Sep 2006 B2
7128718 Hojeibane et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7140480 Drussel et al. Nov 2006 B2
D534216 Makower et al. Dec 2006 S
7160255 Saadat Jan 2007 B2
7169140 Kume Jan 2007 B1
7169163 Becker Jan 2007 B2
7172562 McKinley Feb 2007 B2
7174774 Pawar et al. Feb 2007 B2
7182735 Shireman et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7214201 Burmeister et al. May 2007 B2
7233820 Gilboa Jun 2007 B2
7235099 Duncavage et al. Jun 2007 B1
7237313 Skujins et al. Jul 2007 B2
7252677 Burwell et al. Aug 2007 B2
7282057 Surti et al. Oct 2007 B2
7294345 Haapakumpu et al. Nov 2007 B2
7294365 Hayakawa et al. Nov 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7316168 van der Knokke et al. Jan 2008 B2
7316656 Shireman et al. Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7338467 Lutter Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7359755 Jones et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7366562 Dukesherer Apr 2008 B2
7371210 Brock et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7410480 Muni et al. Aug 2008 B2
7419497 Muni et al. Sep 2008 B2
7438701 Theeuwes et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7452351 Miller et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
7462175 Chang et al. Dec 2008 B2
7471994 Ford et al. Dec 2008 B2
7481218 Djupesland Jan 2009 B2
D586465 Faulkner et al. Feb 2009 S
D586916 Faulkner et al. Feb 2009 S
7488313 Segal et al. Feb 2009 B2
7488337 Saab et al. Feb 2009 B2
7493156 Manning et al. Feb 2009 B2
7500971 Chang et al. Mar 2009 B2
D590502 Geisser et al. Apr 2009 S
7520876 Ressemann et al. Apr 2009 B2
7532920 Ainsworth et al. May 2009 B1
7544192 Eaton et al. Jun 2009 B2
7559925 Goldfarb et al. Jul 2009 B2
7615005 Stefanchik et al. Nov 2009 B2
7625335 Deichmann et al. Dec 2009 B2
7632291 Stephens et al. Dec 2009 B2
7634233 Deng et al. Dec 2009 B2
7641644 Chang et al. Jan 2010 B2
7641668 Perry et al. Jan 2010 B2
7645272 Chang et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7654997 Makower et al. Feb 2010 B2
7680244 Gertner et al. Mar 2010 B2
7686798 Eaton et al. Mar 2010 B2
7717933 Becker May 2010 B2
7720521 Chang et al. May 2010 B2
7727186 Makower et al. Jun 2010 B2
7727226 Chang et al. Jun 2010 B2
7736301 Webler et al. Jun 2010 B1
7740642 Becker Jun 2010 B2
7753929 Becker Jul 2010 B2
7753930 Becker Jul 2010 B2
7771409 Chang et al. Aug 2010 B2
7775968 Mathis Aug 2010 B2
7799048 Hudson et al. Sep 2010 B2
7803150 Chang et al. Sep 2010 B2
7833282 Mandpe Nov 2010 B2
7837672 Intoccia Nov 2010 B2
7840254 Glossop Nov 2010 B2
7854744 Becker Dec 2010 B2
D630321 Hamilton, Jr. Jan 2011 S
7875050 Samson et al. Jan 2011 B2
D632791 Murner Feb 2011 S
7883717 Varner et al. Feb 2011 B2
7896891 Catanese, III et al. Mar 2011 B2
7951132 Eaton et al. May 2011 B2
7988705 Galdonik et al. Aug 2011 B2
7993353 Roßner et al. Aug 2011 B2
8002740 Willink et al. Aug 2011 B2
8014849 Peckham Sep 2011 B2
8016752 Armstrong et al. Sep 2011 B2
8025635 Eaton et al. Sep 2011 B2
8080000 Makower et al. Dec 2011 B2
8088063 Fujikura et al. Jan 2012 B2
8088101 Chang et al. Jan 2012 B2
8090433 Makower et al. Jan 2012 B2
8104483 Taylor Jan 2012 B2
8114062 Muni et al. Feb 2012 B2
8114113 Becker Feb 2012 B2
8123722 Chang et al. Feb 2012 B2
8142422 Makower et al. Mar 2012 B2
8147545 Avior Apr 2012 B2
8167821 Sharrow May 2012 B2
8277386 Ahmed et al. Oct 2012 B2
8317816 Becker Nov 2012 B2
8337454 Eaton et al. Dec 2012 B2
8337518 Nance et al. Dec 2012 B2
8388642 Muni et al. Mar 2013 B2
8403954 Santin et al. Mar 2013 B2
8535707 Arensdorf et al. Sep 2013 B2
8715169 Chang et al. May 2014 B2
8747389 Goldfarb et al. Jun 2014 B2
8764729 Muni et al. Jul 2014 B2
8828041 Chang et al. Sep 2014 B2
8900214 Nance et al. Dec 2014 B2
8932276 Morriss et al. Jan 2015 B1
9220879 Chang et al. Dec 2015 B2
9241834 Chang et al. Jan 2016 B2
9399121 Goldfarb et al. Jul 2016 B2
20010034530 Malackowski et al. Oct 2001 A1
20020006961 Katz et al. Jan 2002 A1
20020010476 Mulholland et al. Jan 2002 A1
20020055746 Burke et al. May 2002 A1
20020090388 Humes et al. Jul 2002 A1
20030013985 Saadat Jan 2003 A1
20030017111 Rabito Jan 2003 A1
20030040697 Pass et al. Feb 2003 A1
20030083608 Evans et al. May 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030163154 Miyata et al. Aug 2003 A1
20040015150 Zadno-Azizi Jan 2004 A1
20040018980 Gurney et al. Jan 2004 A1
20040034311 Mihakcik Feb 2004 A1
20040043052 Hunter et al. Mar 2004 A1
20040058992 Marinello et al. Mar 2004 A1
20040064105 Capes et al. Apr 2004 A1
20040116958 Gopferich et al. Jun 2004 A1
20040127820 Clayman et al. Jul 2004 A1
20040158229 Quinn Aug 2004 A1
20040181175 Clayman et al. Sep 2004 A1
20040193073 DeMello et al. Sep 2004 A1
20040230156 Schreck et al. Nov 2004 A1
20040236231 Knighton et al. Nov 2004 A1
20040249243 Kleiner Dec 2004 A1
20040267347 Cervantes Dec 2004 A1
20050027249 Reifart et al. Feb 2005 A1
20050055077 Marco Mar 2005 A1
20050059930 Garrison et al. Mar 2005 A1
20050089670 Large Apr 2005 A1
20050107738 Slater et al. May 2005 A1
20050113687 Herweck et al. May 2005 A1
20050113850 Tagge May 2005 A1
20050119590 Burmeister et al. Jun 2005 A1
20050131316 Flagle et al. Jun 2005 A1
20050143687 Rosenblatt et al. Jun 2005 A1
20050149096 Hilal Jul 2005 A1
20050182319 Glossop Aug 2005 A1
20050234507 Geske et al. Oct 2005 A1
20050244472 Hughes et al. Nov 2005 A1
20050283221 Mann et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060063973 Makower et al. Mar 2006 A1
20060173382 Schreiner Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060210605 Chang Sep 2006 A1
20060211752 Kohn et al. Sep 2006 A1
20060271024 Gertner et al. Nov 2006 A1
20070020196 Pipkin et al. Jan 2007 A1
20070112358 Abbott May 2007 A1
20070129751 Muni et al. Jun 2007 A1
20070135789 Chang et al. Jun 2007 A1
20070167682 Goldfarb et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208252 Makower Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070249896 Goldfarb Oct 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070282305 Goldfarb et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070293946 Gonzales et al. Dec 2007 A1
20080015544 Keith et al. Jan 2008 A1
20080033519 Burwell et al. Feb 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080103521 Makower et al. May 2008 A1
20080119693 Makower et al. May 2008 A1
20080188870 Andre et al. Aug 2008 A1
20080228085 Jenkins et al. Sep 2008 A1
20080275483 Makower et al. Nov 2008 A1
20080281156 Makower et al. Nov 2008 A1
20080287908 Muni et al. Nov 2008 A1
20080319424 Muni et al. Dec 2008 A1
20090030274 Goldfarb et al. Jan 2009 A1
20090088728 Dollar et al. Apr 2009 A1
20090156980 Eaton et al. Jun 2009 A1
20090163890 Clifford et al. Jun 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187098 Makower et al. Jul 2009 A1
20090240112 Goldfarb et al. Sep 2009 A1
20090240237 Goldfarb et al. Sep 2009 A1
20100087811 Herrin et al. Apr 2010 A1
20100114066 Makower et al. May 2010 A1
20100198191 Clifford et al. Aug 2010 A1
20100198247 Chang et al. Aug 2010 A1
20100198302 Shalev Aug 2010 A1
20100241155 Chang et al. Sep 2010 A1
20110166190 Anderson et al. Jul 2011 A1
20140200444 Kim et al. Jul 2014 A1
20140296898 Chang et al. Oct 2014 A1
20140330074 Morriss et al. Nov 2014 A1
20140336575 Muni et al. Nov 2014 A1
20140350465 Muni et al. Nov 2014 A1
20140364725 Makower Dec 2014 A1
Foreign Referenced Citations (102)
Number Date Country
668188 Dec 1988 CH
2151720 Jan 1994 CN
2203154 Jul 1995 CN
2352818 Dec 1999 CN
3202878 Aug 1983 DE
4032096 Apr 1992 DE
4406077 Sep 1994 DE
8810044 Nov 1998 DE
29923582 Dec 2000 DE
10104663 Aug 2002 DE
10105592 Aug 2002 DE
129634 Jan 1985 EP
257605 Mar 1988 EP
355996 Feb 1990 EP
418391 Mar 1991 EP
427852 May 1991 EP
623582 Nov 1994 EP
624349 Nov 1994 EP
744400 Nov 1996 EP
585757 Jun 1997 EP
893426 Jan 1999 EP
1042998 Oct 2000 EP
1166710 Jan 2002 EP
1413258 Apr 2004 EP
1944053 Jul 2008 EP
2859377 Mar 2005 FR
2916144 Nov 2008 FR
2125874 Mar 1984 GB
2305174 Apr 1997 GB
53-67935 Jun 1978 JP
10-24098 Jan 1989 JP
3-503011 Jul 1991 JP
3-504935 Oct 1991 JP
4-221313 Aug 1992 JP
5-211985 Aug 1993 JP
6-277296 Oct 1994 JP
7-327916 Dec 1995 JP
8-317989 Dec 1996 JP
11-507251 Jun 1999 JP
2000-501634 Feb 2000 JP
2001-501846 Feb 2001 JP
2001-095815 Apr 2001 JP
2001-526077 Dec 2001 JP
2002-028166 Jan 2002 JP
2002-508214 Mar 2002 JP
2002-537908 Nov 2002 JP
2002-538850 Nov 2002 JP
2003-062080 Mar 2003 JP
2003-521327 Jul 2003 JP
2004-357728 Dec 2004 JP
2005-532869 Nov 2005 JP
2006-026089 Feb 2006 JP
2007-537784 Dec 2007 JP
2009-505691 Feb 2009 JP
2213530 Oct 2003 RU
1662571 Jul 1991 SU
WO 90011053 Oct 1990 WO
WO 90014865 Dec 1990 WO
WO 91017787 Nov 1991 WO
WO 92015286 Sep 1992 WO
WO 92022350 Dec 1992 WO
WO 94012095 Jun 1994 WO
WO 96029071 Sep 1996 WO
WO 97021461 Jun 1997 WO
WO 99024106 May 1999 WO
WO 99030655 Jun 1999 WO
WO 99032041 Jul 1999 WO
WO 00009192 Feb 2000 WO
WO 00023009 Apr 2000 WO
WO 00051672 Sep 2000 WO
WO 00053252 Sep 2000 WO
WO 01045572 Jun 2001 WO
WO 01054558 Aug 2001 WO
WO 01056481 Aug 2001 WO
WO 01070325 Sep 2001 WO
WO 01074266 Oct 2001 WO
WO 01097895 Dec 2001 WO
WO 02062269 Aug 2002 WO
WO 03049603 Jun 2003 WO
WO 03063703 Aug 2003 WO
WO 03105657 Dec 2003 WO
WO 04006788 Jan 2004 WO
WO 04018980 Mar 2004 WO
WO 04026391 Apr 2004 WO
WO 04082525 Sep 2004 WO
WO 04082525 Sep 2004 WO
WO 05018730 Mar 2005 WO
WO 05077450 Aug 2005 WO
WO 05089670 Sep 2005 WO
WO 05117755 Dec 2005 WO
WO 06034008 Mar 2006 WO
WO 06078884 Jul 2006 WO
WO 06107957 Oct 2006 WO
WO 06116597 Nov 2006 WO
WO 06118737 Nov 2006 WO
WO 06135853 Dec 2006 WO
WO 07111636 Oct 2007 WO
WO 07124260 Nov 2007 WO
WO 08036149 Mar 2008 WO
WO 08045242 Apr 2008 WO
WO 08051918 May 2008 WO
WO 08134382 Nov 2008 WO
Non-Patent Literature Citations (245)
Entry
International Preliminary Report on Patentability and Written Opinion dated Sep. 20, 2011 for Application No. PCT/US2010/027837, 9 pgs.
Argon Medical. Maxxim Medical. Ad for Sniper EliteTM Hydrophilic Ni-Ti Alloy Guidewire (2001).
Aust, R., et al. ‘The Functional Size of the Human Maxillary Ostium in Vivo’ Acta. Otolaryn. (9178) vol. 78 pp. 432-435.
Baim, D.S., MD ‘Grossman's Cardiac Catheterization, Angiography, and Intervention’ (2000) Lippincott Williams & Wilkins pp. 76, 84 & 214.
Barrett, S. ‘Be Wary of Neurocranial Restructuring (NCR)’ Chirobase; Jul. 2003; www.chirobase.org/06DD/ncr.html.
Bartal, N. ‘An Improved stent for Use in the Surgical Management of Congential Posterior Choanal Atresia’ J. Laryngol. Otol (1988) vol. 102 pp. 146-147.
Becker, A.E. ‘Restenosis After Angioplasty’ The Lancet (1988) vol. 331, No. 8584 p. 532.
Bellis, M. History of the Catheter—Balloon Catheter—Thomas Fogarty. www.inventors.about.com/library/inventors/blcatheter.htm?p=1.
Benninger et al.; Adult Chronic Rhinosinusitis: Definitions, Diagnosis, Epidemiology, and Pathophysilogy Arch Otolarygol Head and Neck Surg. vol. 129 (Sep. 2003) pp. A1-S32.
Bent et al. ‘The Frontal Cell as a Cause of Frontal Sinus Obstruction’ American Journal of Rhinology, vol. 8, No. 4 (1994) pp. 185-191.
Binner et al. ‘Fibre-Optic Transillunination Value of the Sinuses: A Comparison of the Value of Radiography and Transillumination in Antral Disease’ Clinical Otolaryngology. vol. 3 (1978) pp. 1-11.
Brown, C.L. et al., ‘Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation’ Annals of Otology, Rhinology & Laryngology (2006) vol. 115, No. 4 pp. 293-299.
Casiano et al. ‘Endoscopic Lothrop Procedure: the University of Miami Experience’ American Journal of Rhinology, vol. 12, No. 5 (1998) pp. 335-339.
Casserly, I.P. et al., Chapter 7. ‘Guides and Wires in Percutaneous Coronary Intervention’ Strategic Approaches in Coronary Intervention (2006) Lippincott Williams & Wilkins pp. 91-99.
Chien, Y.W. et al. ‘Nasal Systemic Drug Delivery’ Drugs and Pharmaceutical Sciences, vol. 39, pp. 60-63.
Cohen et al. ‘Endoscopic Sinus Surgery: Where we are and where we're going’ Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 13, (2005) pp. 32-38.
Colla, A. et al., ‘Trihaloacetylated Enol Ethers—General Synthetic Procedure and Heterocyclic Ring Closure Reactions with Hydroxylamine’ Synthesis, (Jun. 1991) pp. 483-486.
Costa, M.N. et al. ‘Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Flurorouracil’ Clinics (2007) vol. 62, Issue1, pp. 41-46.
Cussler, E.L. ‘Diffusion: Mass transfer in Fluid Systems’ Cambridge University Press (1996).
Davis, G.E. et al. ‘A Complication from Neurocranial Restructuring’ Arch Otolaryngol Head Neck Surg. vol. 129 (Apr. 2003) pp. 472-474.
Deutschmann, R. et al. ‘A Contribution to the Topical Treatment of [Maxillary] Sinusitis Preliminary Communication’ Stomat DDR 26, (1976) pp. 585-592.
Domb, A. et al. ‘Handbook of Biodegradable Polymers’ Harwood Academic Publishers (1997).
Doyle Nasal Splints, Jan. 25, 2007; www.doylemedical.com/nasalsplints.htm.
Draf, W. ‘Endonasal Micro-Endoscopic Frontal Sinus Surgery: the Fulda Concept’ Op Tech Otolaryngol Head Neck Surg. vol. 2 (1991) pp. 234-240.
Edmond, C. et al. ‘ENT Surgical Stimulator’ Nov. 1989.
ENT Checklist; Physical Examination Performance Checklist [date of publication unknown].
Eremychev, V.A. ‘Needles for Puncture and Drainage of the Maxillary Sinus’ Meditsinskaya Tekhnika, No. 5 (1974) pp. 54.55.
Feldman, R.L. et al., ‘New Steerable, Ultra-Low-Profile, Fixed Wire Angioplasty Catheter: Initial Experience With the Cordis OrionTM Steerable PTCA Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1990) vol. 19, No. 2 pp. 142-145.
Ford, C.N. ‘A Multipurpose Laryngeal Injector Device’ Otolaryngol. Head Neck Surg. (1990) vol. 103, No. 1 pp. 135-137.
Friedman, M., M.D., et al. ‘Frontal Sinus Surgery: Endoscopic Technique’ Operative Techniques in Otolarynology—Head and Neck Surgery. vol. 12, No. 2 (Jun. 2001) pp. 60-65.
Friedman, et al. ‘Intraoperative and Postoperative Assessment of Frontal Sinus Patency by Transillumination’ Laryngoscope. vol. 110 (Apr. 2000) pp. 683-684.
Friedman, et al ‘Middle Turbinate Medialization and Preservation in Endoscopic Surgery’ Otolaryngology—Head and Neck Surgery. (2000) vol. 123, No. 1, part 1, pp. 76-80.
Fung, M.K.T. ‘Template for Frontal Osteoplastic Flap’ Laryngoscope. vol. 96 (1986) pp. 578-579.
Gatot, A. et al. ‘Early treatment of Orbital Floor Fractures with Catheter Balloon in Children’ Int J. Pediatric Otorhinolaryngol (1991) vol. 21 pp. 97-101.
Gerus, I.I. et al. ‘β-Ethoxyvinyl Polyfluroroalkyl Ketones—Versatile Synthones in Fluoroorganic Chemistry’ Journal of Fluorine Chemistry. vol. 69 (1994) pp. 195-198. Elesvier Science S.A.
Good, R.H. ‘An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage’ Laryngoscope. vol. 18 (1908) pp. 266-274.
Gopferich ‘Polymer Degradation and Erosion: Mechanisms and Application’ Eur. J. Parm. Biophar. vol. 42 (1996) pp. 1-11.
Gorlov, D.V. et al ‘Acylation of 2-Methoxypropene with Anhydrides and Halides of Perflurocarboxylic Acids in the Presence of Teriary Amines’ Russian Chemical Bulletin. vol. 48 No. 9 (Sep. 1999) pp. 1791-1792. Kluwer Academis/Plenum Publishers.
Gottmann, et al. ‘Balloon Dilatation in the Nasal Cavity and Paranasal Sinuses’ CIRSE. (Sep. 25, 2004) pp. 1-27.
Gottmann, et al. ‘Balloon Dilatation of Recurrent Ostial Occlusion of the Frontal Sinus’ CIRSE Abstract (Mar. 2001) B-04353.
Gottman, et al., Balloon Dilatation of Recurrent Ostial Occlusion of the Front Sinus Oasis-Online Abstract Submission and Invitation System, 1996-2006, Coe Truman Technologies, Inc.
Gottmann, et al. ‘Successful Treatment of Recurrent Post-Operative Frontal Sinus Stenoses by Balloon Dilatation’ CIRSE. (Oct. 5, 2002).
Gottmann, D. ‘Treatment of Stenoses of Upper Air Routes by Balloon Dilation’ Proceeding of the 83rd Annual Convention of Association of West German ENT Physicians (1999).
Gupta, D. et al., ‘Dacrystitis Secondary to an Iatrogenic Foreign Body in the Lacrimal Apparatus’ Ear, Nose & Throat Journal (2009). www.findarticles.com/p/articles/mi_m0BUM/is_7_88/ai_n32428620/.
Hashim, et al. ‘Balloon Compression of the Intermaxillary Sinus for Intractable Post Traumatic Bleeding from the Maxillary Artery’ Scandinavian Journal of Plastic and reconstruction Sergery and Hand Surgery (1999) vol. 33 pp. 321-324.
Hojo, M. et al, ‘Electrophilic Substiutions of Olefinic Hydrogens II. Acylation of Vinyle Ethers and N Vinyl Amides Chemistry Letters’ (1976) pp. 499-502. Chemical Society of Japan.
Hopf, J.U.G. et al. ‘Minature Endoscopes in Otorhinolaryngologic Applications’ Min Invas Ther & Allied Technol. (1998) vol. 7, No. 3 pp. 209-218.
Hosemann, W. et al. A Dissection Course on Endoscopic Endonasal Sinus Surgery (2005) Endo-Press, Tuttlingen pp. 4-37.
Hosemann, W. et al. ‘Endonasal Frontal Sinusotomy in Surgical Management of Chronic Sinusitis: A Critical Evaluation’ American Journal of Rhinology. vol. 11, No. 1 (1997) pp. 1-9.
Hosemann, M.E. et al. ‘Experimentelle Untersuchungen sur Wundheilung in den Nasennebenholhlen. II. Spontaner Wundschluss und medikamentose Effekte im standardisierten Wundmodell.’ HNO 39 (1991) pp. 48-54. ‘Experimental investigations on wound healing of the paranasal sinuses. II. Spontaneous wound closure and pharmacological effects in a standardized animal model’ HNO 39 (1991) pp. 48-54.
Hosemann, W.G. et al. ‘Minimally Invasive Endonasal Sinus Surgery’ Thieme, Stuttgart, New York (2000).
Hosemann, M.E. et al. ‘Normal Wound Healing of the Paranasal Sinuses—Clinical and Experimental Investigations’ Eur Arch Otorhinolarygol. vol. 248, (1991) pp. 390-394.
Hosemann, W. et al. ‘Behandlung nach Nasennebenhohleneingriffen, part 2: Theapeutische Maßnahem’ HNO akutell 7 (1999) pp. 291-302.
Hospital Corpsman Sickcall Screener's Handbook. Naval Hospital Great Lakes (Apr. 1999) www.brooksidepress.org/Products/Operationa.Medicine/DATA. 2001 pp. 1-6.
Hybels, R.L. ‘Transillumination Durning Osteoplastic Frontal Sinusotomy’ The Laryngoscope. vol. 91 (Sep. 1981) pp. 1560.
Ijaduola, T.G.A. ‘Use of a Foley Catheter for Short-Term Drainage in Frontal Sinus Surgery’ Ther Journal of Laryngology and Otology. (1989) vol. 103. pp. 375.378.
Ingals, E.F. ‘New Operation and Instruments for Draining the Frontal Sinus’ Ann. Otol. Rhinol. Layyngol. vol. 14 (1905) pp. 644-649.
Iro, H. et al., ‘A New Device for Frontal Sinus Endoscopy: First Clinical Report’ Otolaryngol. Head Neck Surg. (2001) vol. 125 No. 6 pp. 613-616.
Jacobs, J.B. ‘100 Years of Frontal Sinus Surgery’ Laryngoscope. vol. 107 (1997) pp. 1-36.
K-Splint Internal Nasal Splints; Jan. 25, 2007; www.invotec.net/rhinology/ksplint.html.
Kaiser, H. et al ‘Cortizontherapie, Corticoide in Klinik and Praxis’ Thieme, Stuggart (1992) pp. 390-401.
Kennedy, D.W., M.D. et al. ‘Diseases of the Sinuses: Diagnosis and Management’ (Copyright 2001) by B.C. Decker Inc.
Khomutov, S.M. et al. ‘Dissolution of a Mixture of Steroids in Cyclodextrin Solutions: a Model Description’ Pharmaceutical Chemistry Journal. vol. 35, No. 11 (Nov. 2001) pp. 627-629.
Kingdom, T.T. et al. ‘Image-Guided Surgery of the Sinuses: Current Technology and Applications’ Otolaryngol. Clin. North Am. vol. 37, No. 2 (Apr. 2004) pp. 381-400.
Klossek, J.M. et al. ‘Local Safety of Intranasal Trimcinolone Acentonide: Clinical and Histological Aspects of Nasal Mucosa In the Long-Term Treatment of Perennial Allergic Rhinitis’ Rhinology. vol. 39, No. 1 (2001) pp. 17-22.
Kozlov et al. ‘Diagnosis and Treatment of Sinusitis by YAMIK Sinus Catheters’ Rhinology (1996) vol. 34, pp. 123-124.
Kuhn, et al. ‘The Agger Nasi Cell in Frontal Recess Obstruction: An Anatomic, Radiology and Clinical Correlation’ Operative Techniques in Otolaryngology—Head and Neck Surgery. vol. 2, No. 4 (1991) pp. 226-231.
Laliberte, F. et al. ‘Clinical and Pathologic Methods to Assess the Long-Term Safety of Nasal Corticosteroids’ Allergy. vol. 55, No. 8 (2000) pp. 718-722.
Lang, E.V., et al., ‘Access Systems for Puncture at an Acute Angle’ J. Vasc. Interv. Radiol. (1995) vol. 6, No. 5 pp. 711-713.
Lanza, D.C. ‘Postoperative Care and Avoiding Frontal Recess Stenosis’ Internatinal Advanced Sinus Symposium (1993) Jul. 21-24.
Large, G.C. ‘Crystalline Tetracycline Hydrochloride in the Treatment of Acute and Chronic Maxillary Sinusitis’ Canad. M.A. J. (1958) vol. 79 pp. 15-16.
Lund, V.J. ‘Maximal Medical Therapy for Chronic Rhinosinusitis’ Otolaryngol Clin N. Am. vol. 38 (2005) pp. 1301-1310.
Maran, A.G.D. et al. ‘The Use of the Foley Balloon Catheter in the Tripod Fracture’ J. Laryngol. Otol. (1971) vol. 85, Issue 9, pp. 897-902.
May, M. et al. ‘Frontal Sinus Surgery: Endonasal Drainage Instead of an External Osteopolstic Approach’ Op Tech Otolaryngo Head Neck Surgery. 6 (1995) pp. 184-192.
Medtronic, xomed.com-MicroFrance Catalog Browser. www.xomcat.com/xomfrance/index.php?zone=both&cat=18&sub=58&prodline=1272 (Dec. 31, 2003) pp. 1-2.
Mehan, V.K. et al., ‘Coronary Angioplasty through 4 French Diagnostic Catheters’ Cathet. Cardiovasc. Diagn. (1993) vol. 30, No. 1 pp. 22-26.
Mellor, J.M. et al ‘Synthesis of Trifluromethylnaphthalenes’ Tetrahedron. vol. 56 (2000) pp. 10067-10074. Elsevier Science Ltd.
Metson, R., et al., ‘Endoscopic Treatment of Sphenoid Sinusitis’ Otolaryngol. Head Neck Surg. (1996) vol. 114, No. 6 pp. 736-744.
Metson, R. ‘Holmium: YAG Laser Endoscopic Sinus Surgery: A Randomized Controlled Study’ Laryngoscope. vol. 106, Issue 1, Supplement 77 (Jan. 1996) pp. 1-18.
Miller, et al. ‘Management of Fractures of the Supraorbital Rim’ Journal of Trauma. vol. 18, No. 7 (Jul. 1978) pp. 507-512.
Min, Y-G et al. ‘Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxilary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer’ Laryngoscope. vol. 105 (Aug. 1995) pp. 835-842.
Mols, B. ‘Movable Tool Tip for Keyhole Surgery’ Delft Outlook, vol. 3 (2005) pp. 13-17.
Mooney, M.R., et al., ‘Monorail™ Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System’ Cathet. Cardiovasc. Diagn. (1990) vol. 20, No. 2 pp. 114-119.
Moriguchi, T. et al. ‘Additional-Elimination Reaction in the Trifluoroacetylation of Electron-Rich Olefins’ J. Org. Chem. vol. 60, No. 11 (1995) pp. 3523.3528. American Chemical Society.
Park, K. et al. ‘Biodegradable Hydrogels for Durg Delivery’ (1993) Technomic Publishing Inc. Lancaster.
Piccirillo, J.F. et al. ‘Physchometric and Clinimetric Validity of the 20-Item Sino-Nasal Outcome test (SNOT-20)’ Copyright 1996 Washington University, St. Louis, MO.
Piers, et al. ‘A Flexible Distal Tip with Two Degrees of Freedon for Enhanced Dexterity in Endoscopic Robot Surgery’ Proceedings 13th Micromechanics Europe Workshop (2002) pp. 271-274.
Podoshin, L et al. ‘Balloon Technique for Treatment of Frontal Sinus Fractures’ The journal of Larygology & Otology (1967), vol. 81. pp. 1157-1161.
Pownell, P.H. et al., ‘Diagnostic Nasal Endoscopy’ plastic & Reconstructive Surgery (1997) vol. 99, Iss5 pp. 1451-1458.
Prince, et al. ‘Analysis of the Intranasal Distribution of Ointment’ J Otolaryngol. vol. 26 (1997) pp. 357-360.
Ramsdale, D.R., Illustrated Coronary Intervention: A case-oriented approach, (2001) Martin Dunitz Ltd. pp. 1-5.
Ritter, F.N. et al., Atlas of Paranasal Sinus Surgery (1991) Igaku-Shoin Medical Pub. pp. 1-81.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Maxillary Sinusitis’ J.A.M.A. (May 31, 1952) pp. 436-440.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Purulent Maxillary Sinusitis’ Texas State Journal of Medicine (May 1952) pp. 281-288.
St. Croix et al. ‘Genes Expressed in Human Tumor Endothelium’ Science, vol. 289 (May 15, 2000) pp. 1197-1202.
Sama, A., et al., ‘Current Opinions on the Surgical Management of Frontal Sinus Disease’ ENT News. www.pinpointmedical.com/ent-news (2009) vol. 17, No. 6 pp. 60-63.
Sanborn, T.A. et al., ‘Percutaneous Endocardial Transfer and Expression of Genes to the Myocardium Utilizing Fluropscopic Guidance’ Catheter Cardiovasc. Interv. (2001) vol. 52, No. 2 pp. 260-266.
Sawbones Catalog 2001, Pacific Research Laboratories, Inc., Vashon Washington 98070 USA.
Saxon, R.R. et al., ‘Technical Aspects of Accessing the Portal Vein During the TIPS Procedure’ J. Vasc. Interv. Radiol. (1997) vol. 8, No. 5 pp. 733-744.
Schaefer, S.D., M.D. ‘Rhinology and Sinus Disease: A Problem-Oriented Approach’ (Copyright 1988) by Mosby, Inc.
Schneider. Pfizer Ad for Softip [date of publication unknown].
Shah, N.J. et al., ‘Endoscopic Pituitary Surgery—A Beginner's Guide’ Indian Journal of Otolaryngology and Head and Neck Surgery (2004) vol. 56, No. 1 pp. 71-78.
Shah, N.J. ‘Functional Endoscopic Sinus Surgery’ (1999); found at bhj.org/journal/1999_4104_oct99/sp_659.htm.
Single-pole and Multi-pole Lightguides for UV Spot Light Curing Systems.
Sinusitis, Maxillary, Acute Surgical Treatment. http://www.emedicine.com/ent/topic340.htm. Aug. 29, 2006. pp. 1-11.
Sobol, et al. ‘Sinusitis, Maxillary, Acute Surgical Treatment.’ eMedicine. Retrieved from the Internet: <<http://emedicine.medscape.com/article/862030-print>> (Nov. 16, 2010) pp. 1-11.
Stammberger, H. ‘Komplikationen entzundlicher Nasennebenhohlenerkrankungen eischließ iatrogen bedingter Komplikationen’ Eur Arch Oti-Rhino-Laryngol Supple. (Jan. 1993) pp. 61-102.
Stammberger, et al. Chapter 3 ‘Special Endoscopic Anatomy of the Lateral Nasal Wall and Ethmoidal Sinuses’ Functional Endoscopic Sinus Surgery. (1991) Ch. 3, pp. 49-87.
Strohm, et al. Die Behandlung von Stenosen der oberen Luftwege mittels rontgenologisch gesteuerter Ballondiliation (Sep. 25, 1999) pp. 1-4.
Strohm, et al ‘Le Traitenment Des Stenoses Voies Aeriennes Superieures Par Dilation Ay Balloon’ Sep. 25, 1999.
Strohm, et al. ‘Treatment of Stenoses of the Upper Airways by Balloon Dilation’ Sudwestdeutscher Abstract 45 (Sep. 25, 1999) pp. 1-3.
SurgTrainer Product Information ‘Incisive Human Nasal Model for ESS Training’ Surg Trainer, Ltd. Ibaraki, Japan (2004) www1.accsnet.ne.jp/˜juliy/st/en/partslist.html.
Tabor, M.H. et al., ‘Symptomatic Bilateral Duct Cysts in a Newborn—Rhinoscopic Clinic’ Ear, Nose & Throat Journal (2003) www.findarticles.com/p/articles/mi_m0BUM/is_2_82/ai_98248244 pp. 1-3.
Tarasov, D.I. et al. ‘Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis’ Vestn Otorinoloaringol. vol. 6 (1978) pp. 45-47.
http://www.technologyforlife.com.au/ent/nasal.html; Nasal Surgery and Accessories; Jan. 25, 2007.
Terumo. Medi-Tech. Boston Scientific. (1993) Ad of Glidewire.
The Operating Theatre Journal (www.otjonline.com) ‘Disposable Medical Device for Wound Disclosure/The Tristel Purple Promotion—A Collaboration between Tristel PLC and Karl Storz Ednoscopy (UK) Ltd.’ p. 4.
Weber, R. et al. ‘Endonasale Stirnhohlenchirugie mit Langzeiteinlage eines Platzhalters’ Laryngol. Rhinol. Otol. vol. 76 (1997) pp. 728-734. (English Abstract).
Weber, R. et al., ‘Videoendoscopic Analysis of Nasal Steriod Distribution’ Rhinology. vol. 37 (1999) pp. 69-73.
Weiner, R.I., D.O., et al., ‘Development and Application of Transseptal Left Heart Catheterization’ Cathet. Cardiovasc. Diagn. (1988) vol. 15, No. 2, pp. 112-120.
Wiatrak, B.J., et al., ‘Unilateral Choanal Atresia: Initial Presentation and Endoscopic Repair’ International Journal of Pediatric Otorhinolaryngology (1998) vol. 46, pp. 27-35.
Woog, et al. ‘Paranasal Sinus Endoscopy and Orbital Fracture Repair’ Arch Ophthalmol. vol. 116 (May 1998) pp. 688-691.
Wormald, P.J., et al., ‘The ‘Swing-Door’ Technique for Uncinectomy in Endoscopic Sinus Surgery’ The Journal of Laryngology and Otology (1998) vol. 112, pp. 547-551.
Xomed-Treace. Bristol-Myers Squibb. Ad for Laser Shield II. Setting the Standards for Tomorrow. [date of publication unknown].
Yamauchi, Y. et al., ‘Development of a Silicone Model for Endoscopic Sinus Surgery’ Proc International Journal of Computer Assisted Radiology and Surgery vol. 99 (1999) p. 1039.
Yamauchi, Y., et al., ‘A Training System for Endoscopic Sinus Surgery with Skill Evaluation’ Computer Assisted Radiology and Surgery (2001) with accompanying copy of poster presentation.
Yanagisawa et al. ‘Anterior and Posterior Fontanelles.’ Ear, Nose & Throat Journal (2001) vol. 80. pp. 10-12.
Zimarino, M., M.D., et al., ‘Initial Experience with the EuropassTM: A new Ultra-Low Profile monorail Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1994) vol. 33, No. 1, pp. 76-79.
Australian Office Action, Examiners First Report dated Apr. 8, 2010 for Application No. AU 2005274794.
European Communication dated Jun. 19, 2009 for Application No. EP 05773189.
European Communication dated Sep. 4, 2008 for Application No. EP 05773189.
European Exam Report dated Feb. 8, 2007 for Application No. EP 02716734.5.
European Exam Report dated Feb. 22, 2006 for Application No. EP 02716734.5.
European Search Report and Written Opinion dated Sep. 11, 2009 for Application No. EP 06815174.
European Search Report dated Sep. 27, 2011 for Application No. EP 10182961.
International Preliminary Report on Patentability dated Aug. 7, 2006 for Application No. PCT/US2005/25371.
International Preliminary Report on Patentability and Written Opinion dated Sep. 25, 2007 for Application No. PCT/US2006/02004.
International Preliminary Report on Patentability and Written Opinion dated Apr. 7, 2009 for Application No. PCT/US2007/021170.
International Preliminary Report on Patentability and Written Opinion dated May 5, 2009 for Application No. PCT/US2006/036960.
International Preliminary Report on Patentability dated Feb. 15, 2008 for Application No. PCT/US2005/013617.
International Preliminary Report on Patentability and Written Opinion dated Nov. 18, 2008 for Application No. PCT/US2007/011449.
International Preliminary Report on Patentability and Written Opinion dated Oct. 13, 2009 for Application No. PCT/US2008/059786.
International Preliminary Report on Patentability and Written Opinion dated Oct. 27, 2009 for Application No. PCT/US2008/061343.
International Search Report and Written Opinion dated Apr. 10, 2006 for Application No. PCT/US2005/25371.
International Search Report and Written Opinion dated Jul. 21, 2008 for Application No. PCT/US2005/033090.
International Search Report and Written Opinion dated Sep. 12, 2008 for Application No. PCT/US2007/16214.
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US2008/059786.
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US2008/061343.
International Search Report and Written Opinion dated Oct. 1, 2008 for Application No. PCT/US2007/011449.
International Search Report and Written Opinion dated Oct. 6, 2010 for Application No. PCT/US2010/040548.
International Search Report dated Jun. 3, 2002 for Application No. PCT/EP2002/01228.
International Search Report dated May 8, 2007 for Application No. PCT/US2006/016026.
International Search Report dated Aug. 29, 2007 for Application No. PCT/US2006/002004.
International Search Report dated Sep. 25, 2007 for Application No. PCT/US2006/037167.
International Search Report dated Oct. 19, 2007 for Application No. PCT/US2007/003394.
International Search Report dated May 29, 2008 for Application No. PCT/US2007/021170.
International Search Report dated May 29, 2008 for Application No. PCT/US2007/021922.
International Search Report dated Jul. 1, 2008 for Application No. PCT/US2006/022745.
International Search Report dated Jul. 3, 2008 for Application No. PCT/US2006/029695.
International Search Report dated Jul. 7, 2008 for Application No. PCT/US2007/016213.
International Search Report dated Jul. 8, 2008 for Application No. PCT/US2007/011474.
International Search Report dated Jul. 17, 2008 for Application No. PCT/US2006/036960.
International Search Report dated Aug. 25, 2008 for Application No. PCT/US2008/000911.
International Search Report dated Sep. 10, 2008 for Application No. PCT/US2007/016212.
International Search Report dated Oct. 15, 2008 for Application No. PCT/US2008/061048.
International Search Report dated Nov. 30, 2009 for Application No. PCT/US2009/057203.
International Search Report dated Dec. 10, 2009 for Application No. PCT/US2009/052236.
International Search Report dated Dec. 16, 2009 for Application No. PCT/US2009/050800.
International Search Report dated Mar. 31, 2010 for Application No. PCT/US2009/069143.
International Search Report dated Jul. 8, 2010 for Application No. PCT/US2010/027837.
International Search Report dated Mar. 25, 2011 for Application No. PCT/US2010/062161.
International Search Report dated Mar. 28, 2011 for Application No. PCT/US2010/061850.
International Search Report dated Mar. 31, 2011 for Application No. PCT/US2010/060898.
International Search Report dated Aug. 9, 2011 for Application No. PCT/US2011/038751.
Partial European Search Report dated Sep. 20, 2007 for Application No. EP 07252018.
Partial European Search Report dated Mar. 25, 2008 for Application No. EP 07252018.
Partial International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/052321.
Supplemental European Search Report dated Jan. 29, 2010 for Application No. EP 07836108.
Supplemental European Search Report dated Feb. 2, 2010 for Application No. EP 07836109.
Supplemental European Search Report dated Feb. 17, 2010 for Application No. EP 07836110.
Supplemental European Search Report dated Mar. 1, 2010 for Application No. EP 05778834.
Supplemental European Search Report dated Mar. 16, 2010 for Application No. EP 06718986.
Supplemental European Search Report dated Jun. 22, 2010 for Application No. EP 06784759.
Supplemental European Search Report dated Sep. 23, 2010 for Application No. EP 08746715.
Supplemental European Search Report dated Jan. 28, 2011 for Application No. EP 07777004.
Supplemental European Search Report dated Mar. 31, 2011 for Application No. EP 05798331.
Supplemental European Search Report dated Aug. 30, 2011 for Application No. EP 06800540.
Supplemental European Search Report dated Sep. 29, 2011 for Application No. EP 07750248.
Supplemental Partial European Search Report dated Jun. 2, 2008 for Application No. EP 05773189.
Supplemental Partial European Search Report dated Jul. 1, 2009 for Application No. EP 06815285.
Supplemental Partial European Search Report dated Nov. 19, 2010 for Application No. EP 06751637.
USPTO Office Action dated Sep. 16, 2005 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jul. 7, 2006 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Feb. 13, 2007 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 9, 2007 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jan. 24, 2008 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 6, 2008 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated May 29, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Nov. 14, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Dec. 10, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Oct. 18, 2007 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Dec. 6, 2007 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Apr. 9, 2008 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Nov. 28, 2007 for U.S. Appl. No. 11/234,395.
USPTO Office Action dated Sep. 12, 2008 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Mar. 18, 2009 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 9, 2009 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Oct. 29, 2008 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Feb. 4, 2009 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Nov. 7, 2008 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Jan. 28, 2009 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Apr. 21, 2009 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Mar. 3, 2009 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Mar. 4, 2009 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Jul. 30, 2009 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Nov. 25, 2008 for U.S. Appl. No. 12/117,961.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,961.
USPTO Office Action dated Dec. 5, 2008 for U.S. Appl. No. 12/120,902.
USPTO Office Action dated Oct. 21, 2009 for U.S. Appl. No. 12/120,902.
USPTO Office Action dated Mar. 17, 2009 for U.S. Appl. No. 11/690,127.
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/804,309.
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/926,326.
USPTO Office Action dated Aug. 28, 2009 for U.S. Appl. No. 11/150,847.
U.S. Appl. No. 11/789,705, filed Apr. 24, 2007.
U.S. Appl. No. 11/804,308, filed May 16, 2007.
U.S. Appl. No. 60/844,874, filed Sep. 15, 2006.
U.S. Appl. No. 60/922,730, filed Apr. 9, 2007.
U.S. Appl. No. 61/052,413, filed May 12, 2008.
U.S. Appl. No. 61/084,949, filed Jul. 30, 2008.
Australian Office Action dated Nov. 12, 2014 for Application No. 2010226594, 4 pages.
Australian Office Action dated Oct. 22, 2015 for Application No. 2010226594, 5 pages.
Canadian Office Action dated Apr. 4, 2016 for Application No. 2,755,321, 6 pages.
Chinese Office Action dated Feb. 5, 2013 for Application No. 201080013878.9, 11 pages.
Chinese Office Action dated Oct. 30, 2013 for Application No. 201080013878.9, 9 pages.
Chinese Office Action dated Jan. 14, 2014 for Application No. 201080013878.9, 7 pages.
European Office Action dated Feb. 27, 2015 for Application No. 10710518.1, 3 pages.
Japanese Office Action dated Jan. 23, 2014 for Application No. 2012-500966, 2 pages.
Japanese Office Action dated Sep. 30, 2014 for Application No. 2012-500966, 3 pages.
Mexican Office Action dated Mar. 20, 2014 for Application No. MX/a/2011/009837, 4 pages.
Mexican Office Action dated Jul. 2, 2015 for Application No. MX/a/2011/009837, 3 pages.
Russian Office Action dated Apr. 14, 2014 for Application No. 2011142301, 19 pages.
Related Publications (1)
Number Date Country
20160324535 A1 Nov 2016 US
Divisions (1)
Number Date Country
Parent 12408524 Mar 2009 US
Child 15165209 US