This invention relates generally to variable inlet guide vanes for gas turbine engines and more particularly to the mounting and configuration of such vanes.
Some gas turbine engines include stationary inlet guide vanes (“IGVs”) positioned in the inlet upstream of the fan or compressor. In many military gas turbine engines, the IGVs are configured as fan inlet strut/flap assemblies. The struts house various service leads such as oil tubes, and the flaps, which are positioned directly downstream of the struts, direct inlet flow to the downstream fan or compressor. The flaps are pivoted and have a variable effective angle in order to throttle mass flow through the engine as needed in different operating conditions.
One primary challenge with strut/flap design is optimizing the design to minimize aeromechanical stimulus of the downstream rotor. While the flap aerodynamic design can be created with aeromechanic considerations in mind, current state of the art design approaches result in several features necessary for assembly that exacerbate aeromechanics problems and reduce efficiency. In some applications, the assembly problems are compounded by the presence of an additional bypass stream from a fan-on-blade stage or “FLADE” stream. For example, a notch is frequently formed in the trailing edge of the strut at its tip, which promotes leakage between the strut and flap. Also, a typical prior art aerodynamic approach is to minimize the thickness of the strut and flap airfoils as much as possible. However, this results in a large discrepancy between the diameter of the flap leading edge and an adjacent flap button.
Accordingly, there is a need for a flap/strut assembly which minimizes aeromechanical effects while accommodating assembly procedures.
This need is addressed by the present invention, which provides an inlet strut/flap assembly configured with closely fitting mechanical features in combination with a flap button having notches that permit assembly.
According to one aspect of the invention, a guide vane assembly for a gas turbine engine includes: a strut having: a root, a tip, a leading edge, a trailing edge wall, and opposed sidewalls extending between the leading edge and the trailing edge wall; and a pair of spaced-apart prongs extending axially aft from the trailing edge wall, each prong having an outer wall that is flush with a respective one of the sidewalls; and a flap positioned axially aft of the strut, the flap having a root, a tip, a leading edge, a trailing edge, and opposed sides extending between the leading and trailing edge, wherein a portion of the leading edge is disposed between the prongs, and wherein a disk-like flap button is disposed at the tip of the flap adjacent its leading edge, the flap button including a pair of spaced-apart notches formed therein.
According to another aspect of the invention, a guide vane assembly for a gas turbine engine includes: an array of struts, each strut including: a root, a tip, a leading edge, a trailing edge wall, and opposed sidewalls extending between the leading edge and the trailing edge wall; and a pair of spaced-apart prongs extending axially aft from the trailing edge wall, each prong having an outer wall that is flush with a respective one of the sidewalls; an arcuate shroud surrounding the tips of the struts; an array of strut extensions extending radially outward from the shroud; an outer band surrounding the strut extensions; and a flap positioned axially aft of each strut, each flap having a root, a tip, a leading edge, a trailing edge, and opposed sides extending between the leading and trailing edge, wherein a portion of the leading edge is disposed between the prongs of the respective strut, and wherein a disk-like flap button is disposed at the tip of the flap adjacent its leading edge, the flap button including a pair of spaced-apart notches formed therein; and a ring of casing segments surrounding the flaps, each casing segment including an array of stationary outer flaps extending between annular inner and outer bands, each outer flap being aligned with a respective one of the strut extensions.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
A portion of the fan discharge flows through the compressor 16, combustor 18, and high-pressure turbine 20, which are collectively referred to as the “core” 28 of the engine 10. Another portion of the fan discharge flows through an annular bypass duct 30 which surrounds the core 28. The illustrated fan 14 includes, in flow sequence, a row of non-rotating fan guide vane assemblies 32 (described in greater detail below), a first stage of rotating fan blades 34, a row of non-rotating interstage vanes 36, and a second stage of rotating fan blades 38.
As described in more detail below, the guide vane assemblies 32 may have their angle of attack with respect to the airflow and their open flow area selectively changed by using an actuator 40 of a known type.
The engine 10 also includes a supplementary fan, referred to as a “FLADE” stage 44 (FLADE being an acronym for “fan on blade”), in the form of a ring of airfoils extending radially outwardly from an annular shroud 46 and driven by the fan 14 (in this case the second stage 36). The FLADE stage 44 is positioned in a fan outer duct 48 which surrounds the bypass duct 30. The FLADE stage 44 provides an additional flow stream at a different flow and pressure ratio that than of the fan 14. The FLADE stage flow is sized to provide sufficient bleed air pressure and flow for a selected aircraft bleed-air powered system of a known type (not shown). A row of variable-angle FLADE inlet guide vanes 50, operated by an actuator 52, are moveable between open and closed positions to vary the flow through the FLADE stage 44.
The fan outer duct 48 includes one or more bleed air outlets 54 which direct flow to the aircraft bleed air system. Bleed air valves 56 may also be provided to selectively close off the bleed air outlets 54 and direct the FLADE stage flow downstream through the fan outer duct 48.
An exhaust duct 58 is disposed downstream of the core 28, and receives the mixed air flow from both the core 28 and the bypass duct 30. A mixer 60 (for example a lobed or chute-type mixer) is disposed at the juncture of the core 28 and bypass duct 30 flow streams to promote efficient mixing of the two streams.
In operation, the engine 10 generates thrust for aircraft propulsion in a known manner, while the FLADE stage discharges bleed air flow through the bleed air outlets 54.
Each guide vane assembly 32 includes both a streamlined strut 62 and an airfoil-shaped flap 64. The struts 62 are spaced in an array about the circumference of a fan hub 66 (shown in
Referring to
As seen in
A disk-like flap button 102 is positioned at the tip 96, near the leading edge 92. The majority of the flap button 102 is generally circular in plan view, and the outer diameter of the flap button 102 is only slightly greater than the thickness of the airfoil portion of the flap 64. A pair of notches 104 are formed in the perimeter of the flap button 102.
It is noted that a typical aerodynamic approach in the prior art is to minimize the thickness of the flap as much as possible. However, this results in a large discrepancy between the diameter of the flap leading edge and an adjacent flap button The flap 64 described herein uses a relatively much thicker flap leading edge diameter in order to bring the button and flap diameters more in-line. The strut thickness is also increased accordingly.
A circular cross-section trunnion 106 extends radially outward from the flap button 102. A parallel-sided lug 108 is disposed near the outer end of the trunnion 106. A threaded stud 109 extends radially outward from the lug 108.
Referring to
Each outer flap 112 receives a bushing 118. The bushing 118 is a generally cylindrical structure with an annular flange 120 disposed at its radially outer end that abuts the exterior surface of the outer band segment 116. The bushing 118 may be press fit, threaded, or otherwise rigidly secured to the casing segment 116. The bushing 118 may be constructed of any material that will bear the operating loads on the trunnion 106 and allow it to rotate freely, and may be metallic or nonmetallic. Collectively each bushing 118 and the casing segment 110 it is installed in define a recess 122 shaped and sized to receive one of the flap buttons 102 described above. The bushing 118 is effective to react gasloads from the flap 64 transmitted through the trunnion 106, and the recess 122 restrains the flap 64 in the radial direction. This allows the flaps 64 to be selectively positionable during engine operation.
The flap 64 is assembled by inserting it radially outwardly so the trunnion 12 enters the bore of the respective bushing 118. During assembly, the flap 64 is pivoted to a position so that the notches 104 in the flap button 106 clear the prongs 80 of the upstream strut 62. Once the flap button 106 is in position in the recess 122, it will lie radially outboard of the prongs 80 and is free to pivot with the trunnion 102. An actuator arm 124 is then placed over the lug 108, and a nut 126 installed to the stud 109 to complete assembly. The actuator arm 124 is coupled to the actuator 40 depicted schematically in
The guide vane assembly described herein has several advantages over prior art configurations. Most of the mechanical loads are reacted out through the trunnion 102 itself, which spans through the FLADE duct 93 and eliminates the need for a control tube. Furthermore, eliminating or significantly reducing the notch found in prior art struts results in significantly less leakage flow and therefore better aerodynamics (lower loss) and less aeromechanical stimulus. This is especially important when the flap must turn down at high speed. The improved aerodynamics and reduced aeromechanics stimulus results in a more efficient engine with less inclination to rotor vibratory modes. Since the strut/flap is the very first component in the engine, improving its loss incrementally cascades through the entire engine and results in an even larger benefit to overall performance. Commercial advantages would manifest themselves via improved SFC and longer time on wing.
The foregoing has described a guide vane assembly for a gas turbine engine. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation, the invention being defined by the claims.
This application claims the benefit of Provisional Application No. 61/534,826, Filed Sep. 14, 2011.
The U.S. Government may have certain rights in this invention pursuant to contract number FA8650-07-C-2802 awarded by the Department of the Air Force.
Number | Date | Country | |
---|---|---|---|
61534826 | Sep 2011 | US |