Guide wire locking mechanism for rapid exchange and other catheter systems

Information

  • Patent Grant
  • 9259305
  • Patent Number
    9,259,305
  • Date Filed
    Thursday, March 31, 2005
    19 years ago
  • Date Issued
    Tuesday, February 16, 2016
    8 years ago
Abstract
A guide wire locking mechanism for a catheter system includes a motion-limiting component adapted to contact a portion of a guide wire and limit the direction of motion that the guide wire can slide therethrough. The motion-limiting component allows the guide wire to slide in one direction when placed in the locking mechanism but prevents the guide wire from moving in the opposite direction. The motion-limiting component can be made from a row of movable teeth having contact surfaces or faces which come in contact with a portion of the guide wire. The teeth are bendable to allow the guide wire to move in one direction but will tighten against the guide wire if one attempts to move the guide wire in an opposite direction.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to catheters for use in conjunction with specialized medical devices, such as embolic filtering systems used when an interventional procedure is being performed in a stenosed or occluded region of a body vessel to capture embolic material that may be created and released into the vessel during the procedure. Additionally, the present invention can be used in conjunction with other medical delivery catheters utilized in body vessels.


Numerous procedures have been developed for treating occluded blood vessels to allow blood to flow without significant obstruction. Such procedures usually involve the percutaneous introduction of an interventional device into the lumen of the artery, usually through a catheter. One widely known and medically accepted procedure is balloon angioplasty in which an inflatable balloon is introduced within the stenosed region of the blood vessel to dilate the occluded vessel. Stents also are widely known devices which can be inserted into the patient's arterial system to provide scaffolding in the area of a stenosis in the artery. In these procedures, enhanced blood flow should resume in the dilated artery. Unfortunately, when a stenting or angioplasty procedure is performed in a highly vulnerable artery, such as the carotid artery, there is always a possibility that plaque could break away from the area of stenosis and enter the bloodstream. The deposits or plaque may also rupture and form blood clots or thrombi that can completely obstruct blood flow in the affected artery or break free and travel, emboli, to another part of the body. If either of these events occurs, the individual may suffer a myocardial infarction if the artery or arteries affected perfuse the heart or a stroke if the artery or arteries affected supply blood to the brain. If the artery or arteries affected supply blood to a limb or appendage, gangrene could possibly result. If the artery or arteries affected supply blood to the kidney or the kidneys, renal ischemia, infarction or renal failure could possibly result.


Medical devices have been developed to attempt to deal with the problem created when debris or fragments enter the circulatory system during vessel treatment. One technique which has had some success include the placement of a filter or trap downstream from the treatment site to capture embolic debris before it reaches the smaller blood vessels downstream. The placement of a filter in the patient's vasculature during treatment of the vascular lesion can reduce the presence of the embolic debris in the bloodstream. Some prior art expandable filters are attached to the distal end of a guide wire or guide wire-like member that allows the filtering device to be placed in the patient's vasculature. The guide wire allows the physician to steer the filter to a downstream location from the area of treatment. Once the guide wire is in proper position in the vasculature, the embolic filter can be deployed to capture embolic debris. These embolic filtering devices usually utilize a restraining sheath to maintain the expandable filter in its collapsed position. Once the proximal end of the restraining sheath is retracted by the physician, the expandable filter will move into its fully expanded position. The restraining sheath can then be removed from the guide wire allowing the guide wire to be used by the physician to deliver interventional devices, such as a balloon angioplasty catheter or a stent delivery catheter, into the area of treatment. After the interventional procedure is completed, a recovery sheath can be delivered over the guide wire using over-the-wire or rapid exchange techniques to collapse the expanded filter (with the trapped embolic debris) for removal from the patient's vasculature. Both the delivery sheath and recovery sheath should be relatively flexible to track over the guide wire and to avoid straightening the body vessel once in place.


While a filter can be effective in capturing embolic material, the filter still needs to be collapsed and removed from the vessel without causing any of the trapped embolic material from escaping from the filtering portion. During the recovery step, there is a possibility that trapped embolic debris can backflow through the inlet opening of the filter and enter the bloodstream as the filter is being collapsed. Additionally, as the recovery catheter and filter device are being simultaneously removed from the patient, the catheter must remain properly disposed over the filter to maintain it in the collapsed position. If the restraining sheath should somehow retract off of the expandable filter, it is possible that the filtering portion could re-deploy as the devices travel through the patient's vasculature. Such an occurrence is not desired and could cause unwanted trauma to the body vessel, release of captured emboli into the body vessel, and/or compromised filter basket integrity.


Various types of recovery catheters can be utilized to perform the recovery step. Some catheters are full-length which use a long restraining sheath that extends from the area of treatment to an area outside of the patient. These catheters, however, usually require a long length guide wire to be utilized. Moreover, when full-length sheaths are used for recovery, more time is usually needed to remove or advance the sheath along the guide wire. For this reason, recovery catheters utilizing rapid-exchange technology have been developed. A rapid-exchange recovery catheter only utilizes a short section of sheathing at its distal end to capture the deployed filter. The remaining proximal portion of recovery catheter can be made from an elongate component, such as a mandrel, a guide wire or tubing. This type of recovery catheter does not require a long length guide wire and is usually can be advanced much quicker along the guide wire than a full-length catheter. Removal of a rapid-exchange catheter is usually much faster as well.


Regardless of whether the recovery catheter is a rapid-exchange type or a full length sheath, the distal end of the recovery catheter must remain in place over the collapsed filter device to prevent backflow of captured embolic debris. Since both the recovery catheter and guide wire are usually being removed simultaneously during the recovery step, the recovery catheter cannot be retracted faster than the guide wire since such a movement could cause the recovery catheter to retract from the filter device which again can cause the problems addressed above. For this reason, it would be advantageous if the recovery catheter and guide wire could some how be locked together to permit only simultaneous movement of these components. What is needed then is a reliable recovery sheath that minimizes the risk that the restraining sheath can somehow be removed from the filtering portion during recovery. The recovery catheter should be relatively easy for a physician to use and should provide an effective means for retrieving the device without releasing any captured embolic debris into the body vessel. Moreover, it would be advantageous if the catheter can be advanced and removed from the guide wire in relatively quick fashion. The invention disclosed herein satisfies these and other needs.


SUMMARY OF THE INVENTION

The present invention provides a locking mechanism, which can be used in conjunction with a catheter used, for example, to collapse and recover an embolic filter device, mounted to a guide wire. The locking mechanism of the present invention allows the catheter to be locked to the guide wire to limit the movement of the catheter relative to the guide wire after, for example, the recovery catheter has collapsed and retrieved the filter device. In one aspect of the present invention, the locking mechanism will limit the direction of motion that the guide wire can take relative to the catheter. As such, the guide wire can move in one direction within the locking mechanism, but is prevented from moving in the opposite direction by components forming the locking mechanism. Thus, the locking mechanism allows the guide wire to move in one direction relative to the recovery catheter while preventing the guide wire from moving in the opposite direction to effectively prevent unwanted motion between the recovery catheter and guide wire.


The locking mechanism of the present invention is particularly useful when utilized in conjunction with a recovery catheter used to collapse and retrieve a filtering device attached to a guide wire. The locking mechanism will allow the recovery catheter to slide over the guide wire in one direction to allow the recovery catheter to collapse and retrieve the filtering device but will prevent the recovery catheter from moving in the opposite direction along the guide wire. This locking feature will prevent the recovery catheter from sliding away from the filter device once the filter device is collapsed and captured. In this manner, there is little chance that the filter device will be displaced from the recovery catheter as the guide wire and recovery catheter are being simultaneously removed from the patient's vasculature.


In another aspect of the present invention, a recovery catheter utilizing the features of the present invention includes a housing portion adapted to collapse and hold the filter device to allow the filter device to be removed with the recovery catheter from the patient. The housing portion can be attached to an intermediate section, formed by an elongate member, such as a mandrel or guide wire, which extends proximally from the housing portion. The proximal end of the catheter is designed to extend outside of the patient and is utilized by the physician to first move the housing portion along the guide wire to position where the housing portion is adjacent to the filter device. The proximal end of the recovery catheter includes a handle having an embodiment of the guide wire locking mechanism of the present invention attached thereto. The housing portion may include a lumen that serves as a rapid exchange port for receiving the guide wire of the embolic filtering device. The housing portion of the sheath can be made from a number of different materials and configurations to maintain the filter device in its collapsed position while the recovery catheter and filtering device are being removed from the patient's anatomy.


The housing portion has sufficient strength to impart an inward radial force that compresses the filtering device to its smaller diameter permitting the filter device to be subsequently removed from the patient. Once the filtering device is drawn into the housing portion of the catheter, it will be “encapsulated” to prevent emboli trapped in the filter basket from “back washing” into the body vessel, thus preventing the re-release of potentially damaging emboli into the patient's vasculature. The locking mechanism of the present invention prevents the guide wire and housing portion from moving relative to each other to maintain the filtering device “encapsulated” by the housing portion as the guide wire and catheter are simultaneously removed from the patient.


In another aspect of the present invention, the locking mechanism may include an opening which receives a portion of the guide wire. A motion-limiting component which allows the guide wire to move in only one direction relative to the recovery catheter is disposed along the opening. In one aspect of the present invention, the motion-limiting component can include a plurality of “teeth” aligned in a row or a pair of oppositely facing rows and adapted to contact the guide wire. The teeth can be angled back towards the proximal end of the handle to make it possible to pull the guide wire tight, since the teeth will easily move in the same direction that the guide wire is being moved. However, the teeth will prevent the guide wire from moving in the opposite direction since the teeth will “tighten” against the guide wire, preventing motion if one attempts to move the guide wire in the opposite direction. These teeth can be made from soft material that will allow them to slightly bend while still providing a contact surface with sufficient friction to hold the guide wire and prevent motion in one direction.


It is to be understood that the present invention is not limited by the embodiments described herein. Other features and advantages of the present invention will become more apparent from the following detailed description of the invention, when taken in conjunction with the accompanying exemplary drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a rapid exchange recovery catheter with a guide wire locking mechanism made in accordance with the present invention.



FIG. 2 is an elevational view, partially in cross section, of the proximal and distal end of the rapid exchange recovery catheter of FIG. 1, with an embolic filtering device housed within the distal housing of the catheter and shown placed within a body vessel.



FIG. 3 is a perspective view of the proximal end of the rapid exchange recovery catheter of FIG. 1 showing a guide wire disposed within one particular embodiment of a guide wire locking mechanism made in accordance with the present invention.



FIG. 4 is another perspective view of the particular embodiment of the guide wire locking mechanism of FIG. 3.



FIG. 5 is an end view, partially in cross-section, taken along line 5-5 of FIG. 4 showing the guide wire disposed within the guide wire locking mechanism.



FIG. 6 is a perspective view of another particular embodiment of a guide wire locking mechanism which can be used with a delivery or recovery catheter.



FIG. 7 is a plan view of the particular embodiment of the guide wire locking mechanism depicted in FIG. 6.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning now to the drawings, in which like reference numerals represent like or corresponding elements in the drawings, FIGS. 1 and 2 illustrate a locking mechanism 10 used with a recovery catheter 12 which incorporate features of the present invention. This recovery catheter 12 is adapted for use with a medical device such as an expandable embolic filter device 14 designed to capture embolic debris that may be created and released into a body vessel during an interventional procedure. The recovery catheter 12 and locking mechanism 10 can be used to recover the filtering portion 16 of the embolic filter device 14 while holding the guide wire 18 in place to prevent relative movement between the recovery catheter 12 and guide wire 18 as these devices are being simultaneously retrieved from the patient.



FIGS. 1 and 2 show a particular embodiment of a recovery catheter 12 that utilizes rapid-exchange technology to allow for quick advancement along the guide wire 18. The recovery catheter includes a housing portion 20 found at the distal end 22 of the recovery catheter. This housing portion 20 is a tube-like member having a lumen 24 through which the guide wire extends. This lumen also creates a space for receiving the filtering portion 16 of the embolic filter device 14 as is shown in FIG. 2. As can be seen in FIGS. 1 and 2, this housing portion 20 can include a flared distal end which creates additional volume for receiving the filtering portion 16 of the embolic filter device 14. The housing portion 20 includes a side port 26 through which the guide wire extends along with a distal opening 28 for receiving the filtering portion 16.


The recovery catheter 12 includes an intermediate section formed by an elongate member, such as mandrel 30. The distal end of the mandrel may be secured within a lumen formed in the housing portion 20 as is shown in FIG. 2. The recovery catheter 12 has a proximal end 32 which includes a handle 34. This handle 34 can be held by the physician when advancing and positioning the recovery catheter 12 along the guide wire 18 to position the housing portion 20 over the filtering portion 16. The handle 34 has the locking mechanism 10 affixed thereto for locking the guide wire to the recovery catheter after the filtering portion 16 is collapsed and retracted within the lumen 24 of the housing portion 20. Once the guide wire is placed in engagement with the locking mechanism, as is shown in FIG. 2, the recovery catheter 12 and guide wire 18 remain locked to prevent any accidental movement between catheter and guide wire that could cause the housing portion 20 from retracting from the collapsed filtering portion 16.


Referring now to FIGS. 3-5, one particular embodiment of a locking mechanism 10 made in accordance with the present invention is shown. The locking mechanism 10 is shown including an opening 36 adapted to receive a portion of the guide wire 18. A motion-limiting component 38, which allows the guide wire 18 to move in only one direction within the locking mechanism and relative to the recovery catheter, is disposed along this opening 36. In this particular embodiment of the present invention, the motion-limiting component 38 form a number of “teeth 40” aligned in rows and adapted to make contact the guide wire. Each tooth 40 has a contact surface or face 42 adapted to make contact with the guide wire 18 as it extends within the opening 36. Each tooth 40 also can be angled back towards the proximal end 44 of the handle 34 to make it possible to pull the guide wire 18 tight, since the teeth 40 will easily move in the proximal direction allowing the guide wire 18 to be pulled back. However, the teeth 40 will prevent the guide wire 18 from moving in the opposite direction since the teeth 40 will “tighten” against the guide wire 18, preventing motion. In this manner, the rows of teeth function somewhat like a “featherboard” used in wood working in that the teeth will move and allow movement of a component in one direction while preventing movement in an opposite direction. While two rows of teeth 40 are disclosed in FIGS. 3-5, it should be appreciated that only one row could be used provided that the other row is replaced with a structure, such as an abutting surface, which cooperatively form the opening 36 of the locking mechanism 10. Also, the number, size and shape of each tooth 40 could be varied as needed, as well as the spacing between teeth. It should be appreciated that the rows of teeth are aligned such that the opening 36 is formed therebetween. In this manner, all of the contact faces 42 of the teeth should be disposed relative to each other to form an opening which is sufficiently large to receive the diameter of the particular guide wire to be used in the procedure. It should also be appreciated by those skilled in the art that the teeth can be placed relative to each other to vary the size, length and position of the guide wire opening as may be desired.


These teeth 40 can be made from a material that will allow them to bend while still providing a contact surface with sufficient friction to hold the guide wire and prevent motion in one direction. It should be appreciated that in accordance with the present embodiment, if one should attempt to move the guide wire 18 in the opposite direction of motion, the teeth 40 will not move back to their original position, but rather, will maintain tightly abutted against the guide wire 18 to prevent it from being moved in the opposite direction. For this reason, the contact surface or face 42 of each of the teeth must allow the guide wire 18 to be moved in one direction, but sufficient rough to prevent the guide wire from being accidentally moved in the opposite direction. In this manner, the teeth and their associated contact surfaces cooperate to prevent the guide wire from moving in the undesired opposite direction. It also would be possible to utilize a different material for the contact face 42 on each tooth 40, if desired, in order to obtain the desired characteristics described above. In this regard, the contact face 42 could be easily bonded or affixed to each tooth in order to achieve the necessary frictional surface needed in order for the locking mechanism to function properly. Suitable materials for the teeth and contact surface include, but are not limited to, polymeric materials, such as PEBAX, rubber, and elastomers.


Another locking mechanism made in accordance with the present invention is shown in FIGS. 6 and 7. In this particular embodiment, the motion-limiting component 38 is shown as a number of rotating wheels 46 which perform substantially the same function as the teeth 40 in the previously described embodiment. Each wheel 46 is arranged relative to each other to create a guide wire opening 36 through which the guide wire 18 can extend. Each wheel 46 has a contact surface or face 48 that makes contact with the guide wire 18. Each wheel 46 is adapted to rotate in only one direction to create a composite set of wheel that allows the guide wire to move in only one direction while preventing movement in the opposite direction. Mechanisms allowing the wheel to rotate in only one direction are well known and any one could be used to achieve one-direction rotation of each wheel 46. The direction of rotation of each wheel 46 is shown by arrows in FIG. 7. Another arrow shows the direction in which the guide wire 18 can move within the locking mechanism and relative to the catheter. Any attempt to move the guide wire in an opposite direction will be prevented by the wheels since the wheels are designed not to rotate in an opposite fashion. The contact face 48 of each wheel 46 also should provide sufficient frictional contact to hold the guide wire 18 in place and prevent it from moving in the opposite direction.


The overall length of the recovery catheter 12 should be approximately 75 to 190 centimeters. The overall length of the catheter will depend, of course, upon the type of medical component being used in accordance with the recovery catheter, along with the location of the intended area of treatment and the area of access on the patient. These dimensions can vary accordingly. The housing portion 20 should be at least about 3 centimeters in length to properly hold the filtering portion 16. It should be appreciated that the size of the housing portion 20 would vary in accordance with the size and length of the medical component it is restraining. For example, as would be shown below, different medical devices can be used in conjunction with the present invention which may have a larger or smaller overall length that would change the size needed for the housing portion 20. It should be appreciated that the lengths of the various components forming the recovery catheter can vary depending upon any given application. It should be noted that although a mandrel is shown in the disclosed embodiment to form the intermediate section, the elongate member can be any one of a number of different structures including a guide wire, tubing such as hypo-tubing, polymeric tubing and the like.


The embolic filter device 14 shown in FIG. 2 is a conventional filtering device that includes the filtering portion 16 having a plurality of self-expanding struts 50 attached to a filtering element 52. The embolic filter device 14 also includes an obturator 54 affixed to the distal end of the filtering portion 16 to prevent possible “snowplowing” of the embolic filtering device during delivery to the vasculature. This obturator can be made from a soft polymeric material, such as PEBAX 40 D.


In use, the embolic filter device 14 would be delivered within a body vessel of the patient, such as an artery. The filtering portion 16 would be placed downstream from an area of treatment where an interventional procedure is to be performed. In this manner, the area of treatment might be an atherosclerotic stenosis in which plaque has built up against the inside wall of the artery. The therapeutic interventional procedure may comprise the implantation of a stent to increase the diameter of the occluded artery and increase the blood flow therethrough. In a typical procedure, the embolic filtering device is deployed in the area of treatment to collect embolic particles created during the procedure. Interventional devices are advanced over the guide wire to the area of treatment to perform the desired procedure. After the procedure is completed, the interventional device is retracted from the patient along the guide wire. Next, the recovery catheter is placed on the guide wire and advanced to the area of treatment. Once the housing portion 20 reaches the filtering portion of the embolic filtering device, the guide wire, which extends outside of the patient, can be placed within the locking mechanism by simply inserting the guide wire into the opening 36. Thereafter, the physician can further advance the recovery catheter 12 such that the housing portion 20 contacts the struts of the embolic filtering portion causing them to collapse and be withdrawn into the lumen of the housing portion. As the distal tip of the housing portion 20 extends over the struts 50 of the filtering portion 16, forces imparted by the housing portion 20 cause the struts to move back to the collapsed position. In this fashion, the filtering portion 16 is pulled back into the housing portion and is fully encapsulating to prevent any embolic debris that which may have been collected in the filter element 52 from backflowing into the body lumen. At this point, since the guide wire is in engagement with the locking mechanism, the only direction in which the recovery catheter can continue is in a distal direction in order to fully encapsulate the filtering portion. Any attempt to pull back on the recovery catheter in a proximal direction will be prevented by the motion-limiting component 38 of the locking mechanism 10. Once the filtering portion is placed within the housing portion of the recovery catheter, the entire recovery catheter 12 and guide wire 18 with filtering portion 16 can be removed from the patient's vasculature. Since the recovery catheter cannot move back since the guide wire is in engagement with the locking mechanism, the possibility that the housing portion of the recovery catheter can somehow become retracted is greatly diminished. Accordingly, the components can be simultaneously withdrawn from the patient without the chances of the filtering portion moving out of the housing portion of the recovery catheter. It should be appreciated that the guide wire could also be placed in engagement with the locking mechanism well before the housing portion is advanced over the guide wire. In this case, since the recovery catheter can move in a distal direction along the guide wire, there should be no impediment in the physician's ability to move the recovery catheter distally along the guide wire. These particular sequences are typical of the manner in which the embodiments disclosed and described herein would functions during usage. Other methods also could be developed. This is regardless of whether the housing portion is formed as a rapid exchange-type sheath or is incorporated into a full-length sheath. Accordingly, it should be appreciated that the locking mechanism could be used with a rapid exchange type catheter or a full-length catheter.


It should be appreciated that the embodiments of the present invention are illustrated and described herein by way of example only and not by way of limitation. Also, those skilled in the art will appreciate that the present invention can be used in other body vessels, such as the coronary arteries, carotid arteries, renal arteries, saphenous veins and other peripheral arteries. Additionally, the present invention can be utilized to recover an embolic filtering device when a physician performs any one of a number of interventional procedures, such as balloon angioplasty, laser-angioplasty or atherectomy, which requires the need for a filtering device to be located downstream from the area of treatment.


It should be appreciated that the locking mechanism of the present invention can be used with a number of other different types of catheter systems besides a recovery catheter for collapsing and recovering an embolic filtering device from a patient's vasculature. The present invention can be utilized with any catheter system which requires the use of a locking mechanism to lock a guide wire to the catheter system. Additionally, while the present invention is shown in conjunction with a recovery catheter, it could also be adapted for use with delivery catheters as well. Additionally, the medical device utilized with the catheter of the present invention can be a number of other medical devices which can be implanted in a patient, besides an embolic filtering device.


Friction between the recovery catheter and medical component can be reduced by applying a coat of silicone lubricant, such as Microglide®, to the inside surface of the housing portion of the recovery catheter before the catheter is placed over the guide wire. Additionally, the elongate member, i.e. the mandrel, can be coated with a polymeric coating, or PTFE (Teflon®) in order to provide a lubricious coating which helps when advancing the device through the guide catheter (not shown).


In view of the foregoing, it is apparent that the devices of the present invention substantially enhance the safety and efficiency of recovering embolic protection devices, and other medical devices, in a patient's vasculature. Further modifications and improvements may additionally be made to the system and method disclosed herein without departing from the scope of the present invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims
  • 1. A recovery catheter for collapsing and retrieving a filter device mounted on a distal portion of a guide wire, the recovery catheter comprising: a flexible housing portion adapted to collapse and maintain the filter device in a collapsed position on the guide wire, the flexible housing having a distal end and a proximal end;a flexible intermediate section having a distal end and a proximal end, the distal end of the intermediate section being fixedly attached to the proximal end of the housing portion; anda proximal section fixedly attached to the proximal end of the intermediate section, the proximal section having a locking mechanism which receives and engages a portion of the guide wire, the locking mechanism allowing the housing portion, intermediate portion and proximal section to slide distally along the guide wire in only one direction of motion, the locking mechanism engaging the guide wire to prevent the housing portion, intermediate section and proximal section from moving proximally along the guide wire, wherein the housing portion and intermediate section are adapted to be inserted into a body vessel and the guide wire includes a proximal portion that extends proximally from the proximal section when engaged therein.
  • 2. The recovery catheter of claim 1, wherein: the locking mechanism includes an opening adapted to receive a portion of the guide wire and a motion-limiting component which contacts the portion of the guide wire extending into the opening to allow the guide wire to move in only one direction within the opening.
  • 3. The recovery catheter of claim 2, wherein: the intermediate section is formed from an elongate member.
  • 4. The recovery catheter of claim 3, further including: a handle at the proximal section of the recovery catheter upon which the locking mechanism is attached.
  • 5. The recovery catheter of claim 4, wherein: the motion-limiting component includes a contact face which contacts the guide wire to allow only one-directional movement of the guide wire within the opening of the locking mechanism.
  • 6. The recovery catheter of claim 5, wherein: the motion-limiting component is a plurality of teeth aligned in a row, each tooth having a contact face which contacts the guide wire, each tooth being adapted to allow movement of the guide wire in one-direction within the opening while preventing movement in the opposite direction.
  • 7. The recovery catheter of claim 6, wherein the motion-limiting component further includes a second row of teeth, the second row of teeth being disposed opposite the first-mentioned row of teeth, each tooth of the second row having a contact face which contacts the guide wire.
  • 8. The recovery catheter of claim 7, wherein: the contact faces of each row of teeth are aligned relative to each other to form the opening which receives the guide wire.
  • 9. The recovery catheter of claim 8, wherein: the teeth of the motion-limiting component are made from a soft polymeric material.
  • 10. The recovery catheter of claim 9, wherein: the teeth of the motion-limiting component are adapted to move in the one direction of motion of the guide wire within the opening of the locking mechanism.
  • 11. The recovery catheter of claim 9, wherein: the teeth of the motion-limiting component are adapted to move in the one direction of motion of the guide wire within the opening of the locking mechanism but not in the opposite direction when the guide wire is disposed in the opening.
  • 12. The recovery catheter of claim 9, wherein: the motion-limiting component includes a plurality of wheels which rotate in only one direction about an axis, the wheels being aligned relative to each other to form the opening for receiving the guide wire, the wheels permitting movement of the guide wire in only one-direction.
  • 13. The recovery catheter of claim 9, wherein: the motion-limiting component forms the opening for receiving the guide wire.
  • 14. The recovery catheter of claim 9, wherein: the teeth of the motion-limiting component are adapted to partially move in the direction of permitted travel of the guide wire within the opening of the locking mechanism.
  • 15. The recovery catheter of claim 1, wherein the housing portion includes a lumen which houses the filter device.
  • 16. The recovery catheter of claim 15, wherein the lumen of the housing portion includes a distal opening for receiving the filter device and a proximal open through which the guide wire extends.
  • 17. A locking mechanism for a catheter which enables a guide wire to be locked to the catheter while permitting relative motion between the catheter and guide wire in only one direction, the locking mechanism comprising: a motion-limiting component forming a portion of a flexible catheter and having an opening for receiving a portion of the guide wire, the motion-limiting component having a contact face adapted to contact and engage the portion of the guide wire disposed within the opening, the motion-limiting component allowing the catheter to move in a distal direction along the guide wire while preventing the catheter from moving proximally along the guide wire, the guide wire including a proximal portion that extends proximally from the motion-limiting component when engaged therein, wherein the proximal portion of the guide wire is adapted to be manually held by the user and the catheter is adapted to be manually held and moved by the user along the guide wire in the distal direction only when the guide wire is engaged with the motion-limiting component.
  • 18. The locking mechanism of claim 17, wherein: the motion-limiting component is a plurality of teeth aligned in a row, each tooth having a contact face which contacts the guide wire, each tooth being adapted to allow movement of the guide wire in one-direction within the opening while preventing movement in the opposite direction.
  • 19. The locking mechanism of claim 18, wherein: the motion-limiting component further includes a second row of teeth, the second row of teeth being disposed opposite the first-mentioned row of teeth, each tooth of the second row having a contact face which contacts the guide wire, the contact faces of each row of teeth are aligned relative to each other to form the opening which receives the guide wire.
  • 20. The locking mechanism of claim 19 wherein: the teeth of the motion-limiting component are made from a soft polymeric material.
  • 21. The locking mechanism of claim 18, wherein: the teeth of the motion-limiting component are adapted to partially move in the one direction of motion of the guide wire within the opening of the locking mechanism.
  • 22. The locking mechanism of claim 17, wherein: the motion-limiting component includes a plurality of wheels which rotate in only one direction about an axis, the wheels being aligned relative to each other to form the opening for receiving the guide wire, the wheels permitting movement of the guide wire in only one-direction.
  • 23. The locking mechanism of claim 17, wherein: the catheter is attached to the locking mechanism and the guide wire is slidably disposed with the motion-limiting component of the locking mechanism.
  • 24. A recovery catheter for collapsing and retrieving a filter device mounted on a guide wire and located within a body vessel, the recovery catheter comprising: a catheter portion including a flexible housing portion and a flexible intermediate section, the catheter portion being adapted to be inserted into a body vessel, the housing portion being adapted to collapse and maintain the filter device in a collapsed position on the guide wire; anda handle coupled to the catheter portion, the handle including a locking mechanism which receives and engages a portion of the guide wire, the locking mechanism allowing the catheter portion and flexible housing portion to slide along the guide wire in only one direction of motion, the guide wire including a proximal portion that extends proximally from the handle when engaged with the locking mechanism, wherein the proximal portion of the guide wire is adapted to be manually held by the user and the handle portion is adapted to be manually held and moved by the user along the guide wire in the one-direction of motion when the guide wire engages the locking mechanism.
  • 25. The recovery catheter of claim 24, wherein the locking mechanism is located on an outside surface of the handle.
  • 26. The recovery catheter of claim 24, wherein the locking mechanism includes an opening adapted to receive a portion of the guide wire along with a motion-limiting component which contacts the portion of the guide wire extending into the opening to allow the guide wire to move in only one direction within the opening.
  • 27. The recovery catheter of claim 26, wherein: the motion-limiting component includes a contact face which contacts the guide wire to allow only one-directional movement of the guide wire within the opening of the locking mechanism.
  • 28. The recovery catheter of claim 24, wherein the housing portion includes a lumen which houses the filter device.
  • 29. The recovery catheter of claim 28, wherein the lumen of the housing portion includes a distal opening for receiving the filter device and a proximal open through which the guide wire extends.
US Referenced Citations (761)
Number Name Date Kind
3835854 Jewett Sep 1974 A
3952747 Kimmell, Jr. Apr 1976 A
4425908 Simon Jan 1984 A
4494531 Gianturco Jan 1985 A
4612931 Dormia Sep 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4650466 Luther Mar 1987 A
4662885 DiPisa, Jr. May 1987 A
4688553 Metals Aug 1987 A
4706671 Weinrib Nov 1987 A
4723549 Wholey et al. Feb 1988 A
4727873 Mobin-Uddin Mar 1988 A
4781177 Lebigot Nov 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4790813 Kensey Dec 1988 A
4794928 Kletschka Jan 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4921478 Solano et al. May 1990 A
4921484 Hillstead May 1990 A
4957117 Wysham Sep 1990 A
4969891 Gewertz Nov 1990 A
4990156 Lefebvre Feb 1991 A
4997435 Demeter Mar 1991 A
4998539 Delsanti Mar 1991 A
5053008 Bajaj Oct 1991 A
5064428 Cope et al. Nov 1991 A
5071407 Termin et al. Dec 1991 A
5092839 Kipperman Mar 1992 A
5100423 Fearnot Mar 1992 A
5100425 Fischell et al. Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5131406 Kaltenbach Jul 1992 A
5152777 Goldberg et al. Oct 1992 A
5158548 Lau et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5190050 Nitzsche Mar 1993 A
5192286 Phan et al. Mar 1993 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5330482 Gibbs et al. Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5421832 Lefebvre Jun 1995 A
5490859 Mische et al. Feb 1996 A
5496277 Termin et al. Mar 1996 A
5496330 Bates et al. Mar 1996 A
5501694 Ressemann et al. Mar 1996 A
5549626 Miller et al. Aug 1996 A
5601568 Chevillon et al. Feb 1997 A
5601595 Smith Feb 1997 A
5626605 Irie et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5649953 Lefebvre Jul 1997 A
5658296 Bates et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5681347 Cathcart et al. Oct 1997 A
5695518 Laerum Dec 1997 A
5695519 Summers et al. Dec 1997 A
5720764 Naderlinger Feb 1998 A
5725550 Nadal Mar 1998 A
5746767 Smith May 1998 A
5755790 Chevillon et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5772674 Nakhjavan Jun 1998 A
5776162 Kleshinski Jul 1998 A
5779716 Cano et al. Jul 1998 A
5792145 Bates et al. Aug 1998 A
5792156 Perouse Aug 1998 A
5792157 Mische et al. Aug 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5833650 Imran Nov 1998 A
5836868 Ressemann et al. Nov 1998 A
5846251 Hart Dec 1998 A
5846260 Maas Dec 1998 A
5848964 Samuels Dec 1998 A
5868708 Hart et al. Feb 1999 A
5868755 Kanner et al. Feb 1999 A
5876367 Kaganov et al. Mar 1999 A
5897567 Ressemann et al. Apr 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5935139 Bates Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5944728 Bates Aug 1999 A
5954745 Gertler et al. Sep 1999 A
5968071 Chevillon et al. Oct 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6013093 Nott et al. Jan 2000 A
6022336 Zadno-Azizi et al. Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6066158 Engelson et al. May 2000 A
6074357 Kaganov et al. Jun 2000 A
6086605 Barbut et al. Jul 2000 A
6090097 Barbut et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6117154 Barbut et al. Sep 2000 A
6129739 Khosravi Oct 2000 A
6136015 Kurz Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6152946 Broome et al. Nov 2000 A
6152947 Ambrisco et al. Nov 2000 A
6165198 McGurk et al. Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita et al. Jan 2001 B1
6168604 Cano Jan 2001 B1
6171234 White et al. Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6176849 Yang et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206868 Parodi Mar 2001 B1
6214026 Lepak et al. Apr 2001 B1
6224620 Maahs May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6264663 Cano Jul 2001 B1
6264672 Fisher Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6270477 Bagaoisan Aug 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290656 Boyle et al. Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6295989 Connors, III Oct 2001 B1
6306163 Fitz Oct 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6340364 Kanesaka Jan 2002 B2
6340465 Hsu et al. Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6355051 Sisskind et al. Mar 2002 B1
6358199 Pauker et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6361546 Khosravi Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6364896 Addis Apr 2002 B1
6371969 Tsugita et al. Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6383206 Gillick et al. May 2002 B1
6384062 Ikeda et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6394978 Boyle et al. May 2002 B1
6395014 Macoviak et al. May 2002 B1
6398756 Peterson et al. Jun 2002 B2
6402771 Palmer et al. Jun 2002 B1
6406471 Jang et al. Jun 2002 B1
6423032 Parodi Jul 2002 B2
6423086 Barbut et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6428559 Johnson Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436121 Blom Aug 2002 B1
6443926 Kletschka Sep 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma Sep 2002 B1
6443979 Stalker et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6458139 Palmer et al. Oct 2002 B1
6461370 Gray et al. Oct 2002 B1
6468291 Bates et al. Oct 2002 B2
6482222 Bruckheimer et al. Nov 2002 B1
6485456 Kletschka Nov 2002 B1
6485497 Wensel et al. Nov 2002 B2
6485500 Kokish et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6485507 Walak et al. Nov 2002 B1
6494895 Addis Dec 2002 B2
6499487 McKenzie et al. Dec 2002 B1
6500166 Zadno Azizi et al. Dec 2002 B1
6506203 Boyle et al. Jan 2003 B1
6506205 Goldberg et al. Jan 2003 B2
6511492 Rosenbluth et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511497 Braun et al. Jan 2003 B1
6511503 Burkett et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6517550 Konya et al. Feb 2003 B1
6517559 O'Connell Feb 2003 B1
6520978 Blackledge et al. Feb 2003 B1
6527746 Oslund et al. Mar 2003 B1
6527791 Fisher Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6530940 Fisher Mar 2003 B2
6533800 Barbut Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6537295 Petersen Mar 2003 B2
6537296 Levinson et al. Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6540767 Walak et al. Apr 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6544280 Daniel et al. Apr 2003 B1
6547759 Fisher Apr 2003 B1
6551268 Kaganov et al. Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6558401 Azizi May 2003 B1
6558405 McInnes May 2003 B1
6562058 Seguin May 2003 B2
6565591 Kelly et al. May 2003 B2
6569184 Huter May 2003 B2
6575995 Huter et al. Jun 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582447 Patel et al. Jun 2003 B1
6582448 Boyle et al. Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6592606 Huter et al. Jul 2003 B2
6592607 Palmer et al. Jul 2003 B1
6592616 Stack et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6599307 Huter et al. Jul 2003 B1
6599308 Amplatz Jul 2003 B2
6602269 Wallace et al. Aug 2003 B2
6602271 Adams et al. Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6602273 Marshall Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6605111 Bose et al. Aug 2003 B2
6607506 Kletschka Aug 2003 B2
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6616680 Thielen Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6616682 Joergensen et al. Sep 2003 B2
6620148 Tsugita et al. Sep 2003 B1
6620182 Khosravi Sep 2003 B1
6623450 Dutta Sep 2003 B1
6629953 Boyd Oct 2003 B1
6632236 Hogendijk Oct 2003 B2
6632241 Hancock et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638293 Makowner et al. Oct 2003 B1
6638294 Palmer Oct 2003 B1
6645220 Huter et al. Nov 2003 B1
6645221 Richter Nov 2003 B1
6645223 Boyle et al. Nov 2003 B2
6645224 Gilson et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6652505 Tsugita et al. Nov 2003 B1
6652554 Wholey et al. Nov 2003 B1
6652557 MacDonald Nov 2003 B1
6656202 Papp et al. Dec 2003 B2
6656203 Roth et al. Dec 2003 B2
6656204 Ambrisco et al. Dec 2003 B2
6656351 Boyle Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6663651 Krolik et al. Dec 2003 B2
6663652 Daniel et al. Dec 2003 B2
6673090 Root et al. Jan 2004 B2
6676666 Vrba et al. Jan 2004 B2
6676682 Tsugita et al. Jan 2004 B1
6676683 Addis Jan 2004 B1
6679902 Boyle et al. Jan 2004 B1
6679903 Kurz Jan 2004 B2
6682546 Amplatz Jan 2004 B2
6685722 Rosenbluth et al. Feb 2004 B1
6689151 Becker et al. Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695813 Boyle et al. Feb 2004 B1
6695858 Dubrul et al. Feb 2004 B1
6695864 Macoviak et al. Feb 2004 B2
6696666 Merdan et al. Feb 2004 B2
6699260 Dubrul et al. Mar 2004 B2
6702834 Boylan et al. Mar 2004 B1
6706055 Douk et al. Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6712835 Mazzocchi et al. Mar 2004 B2
6716231 Rafiee et al. Apr 2004 B1
6723085 Jang et al. Apr 2004 B2
6726701 Gilson Apr 2004 B2
6726702 Khosravi Apr 2004 B2
6726703 Broome et al. Apr 2004 B2
6740061 Oslund et al. May 2004 B1
6743247 Levinson et al. Jun 2004 B1
6746469 Mouw Jun 2004 B2
6752819 Brady et al. Jun 2004 B1
6755846 Yadav Jun 2004 B1
6758855 Fulton, III et al. Jul 2004 B2
6761727 Ladd Jul 2004 B1
6773448 Kusleika et al. Aug 2004 B2
6790219 Murphy Sep 2004 B1
6793666 Hansen et al. Sep 2004 B2
6793668 Fisher Sep 2004 B1
6800080 Bates Oct 2004 B1
6814739 Secrest et al. Nov 2004 B2
6818006 Douk et al. Nov 2004 B2
6837898 Boyle Jan 2005 B2
6840950 Stanford et al. Jan 2005 B2
6843798 Kusleika et al. Jan 2005 B2
6846316 Abrams Jan 2005 B2
6846317 Nigon Jan 2005 B1
6863696 Kantsevitcha et al. Mar 2005 B2
6866677 Douk et al. Mar 2005 B2
6872216 Daniel et al. Mar 2005 B2
6878151 Carrison et al. Apr 2005 B2
6878153 Linder et al. Apr 2005 B2
6887256 Gilson et al. May 2005 B2
6887257 Salahieh et al. May 2005 B2
6887258 Denison May 2005 B2
6888098 Merdan et al. May 2005 B1
6890340 Duane May 2005 B2
6890341 Dieck et al. May 2005 B2
6893450 Foster May 2005 B2
6893451 Cano et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6896691 Boylan May 2005 B2
6902540 Dorros et al. Jun 2005 B2
6908474 Hogendijk et al. Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6913612 Palmer et al. Jul 2005 B2
6918921 Brady et al. Jul 2005 B2
6929652 Andrews Aug 2005 B1
6932830 Ungs Aug 2005 B2
6932831 Forber Aug 2005 B2
6936058 Forde et al. Aug 2005 B2
6936059 Belef Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6939362 Boyle et al. Sep 2005 B2
6942673 Bates et al. Sep 2005 B2
6949103 Mazzocchi et al. Sep 2005 B2
6951570 Linder et al. Oct 2005 B2
6953471 Lilly et al. Oct 2005 B1
6953472 Palmer et al. Oct 2005 B2
6958074 Russell Oct 2005 B2
6960370 Monni et al. Nov 2005 B2
6962598 Linder et al. Nov 2005 B2
6964670 Shah Nov 2005 B1
6964672 Brady Nov 2005 B2
6964673 Tsugita et al. Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6969396 Krolik et al. Nov 2005 B2
6969397 Ginn Nov 2005 B2
6969402 Bales et al. Nov 2005 B2
6970730 Fuimaono et al. Nov 2005 B2
6972025 WasDyke Dec 2005 B2
6973340 Fuimaono et al. Dec 2005 B2
6974468 DoBrava et al. Dec 2005 B2
6974469 Broome et al. Dec 2005 B2
6979343 Russo et al. Dec 2005 B2
6979344 Jones et al. Dec 2005 B2
6986778 Zadno-Azizi Jan 2006 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6991641 Diaz et al. Jan 2006 B2
6991642 Petersen Jan 2006 B2
RE38972 Purdy Feb 2006 E
6994718 Groothuis et al. Feb 2006 B2
6997938 Wang et al. Feb 2006 B2
6997939 Linder et al. Feb 2006 B2
7001406 Eskuri et al. Feb 2006 B2
7001407 Hansen et al. Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7004964 Thompson et al. Feb 2006 B2
7011671 Welch Mar 2006 B2
7011672 Barbut et al. Mar 2006 B2
7014647 Brady et al. Mar 2006 B2
7018372 Casey Mar 2006 B2
7018385 Bates et al. Mar 2006 B2
7018393 Boyle et al. Mar 2006 B1
7029440 Broome et al. Apr 2006 B2
7033375 Mazzocchi et al. Apr 2006 B2
7037320 Brady et al. May 2006 B2
7041116 Goto et al. May 2006 B2
7044958 Douk et al. May 2006 B2
7048752 Mazzocchi May 2006 B2
7048758 Boyle et al. May 2006 B2
7056328 Arnott Jun 2006 B2
7060082 Goll et al. Jun 2006 B2
7077854 Khosravi Jul 2006 B2
7094243 Mulholland Aug 2006 B2
7094249 Broome et al. Aug 2006 B1
7097440 Papp et al. Aug 2006 B2
7097651 Harrison et al. Aug 2006 B2
7101379 Gregory, Jr et al. Sep 2006 B2
7101380 Khachin et al. Sep 2006 B2
7108707 Huter et al. Sep 2006 B2
20020042626 Hanson et al. Apr 2002 A1
20020091408 Sutton et al. Jul 2002 A1
20020091409 Sutton et al. Jul 2002 A1
20020095141 Belef et al. Jul 2002 A1
20020099407 Becker et al. Jul 2002 A1
20020103501 Diaz et al. Aug 2002 A1
20020107541 Vale et al. Aug 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020111649 Russo et al. Aug 2002 A1
20020115942 Stanford et al. Aug 2002 A1
20020120286 Dobrava et al. Aug 2002 A1
20020120287 Huter Aug 2002 A1
20020121472 Garner et al. Sep 2002 A1
20020123720 Kusleika et al. Sep 2002 A1
20020123755 Lowe et al. Sep 2002 A1
20020128679 Turovskiy et al. Sep 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020128681 Broome et al. Sep 2002 A1
20020133092 Oslund et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020143360 Douk et al. Oct 2002 A1
20020143361 Douk et al. Oct 2002 A1
20020151927 Douk et al. Oct 2002 A1
20020156456 Fisher Oct 2002 A1
20020156457 Fisher Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020161395 Douk et al. Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020169414 Kletschka Nov 2002 A1
20020169458 Connors, III Nov 2002 A1
20020169472 Douk et al. Nov 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020173815 Hogendijk et al. Nov 2002 A1
20020173817 Kletschka et al. Nov 2002 A1
20020177789 Ferry et al. Nov 2002 A1
20020188313 Johnson et al. Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20020193826 McGuckin et al. Dec 2002 A1
20020193827 McGuckin et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004537 Boyle et al. Jan 2003 A1
20030004539 Linder et al. Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030009188 Linder et al. Jan 2003 A1
20030009189 Gilson et al. Jan 2003 A1
20030015206 Roth et al. Jan 2003 A1
20030018354 Roth et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030028238 Burkett et al. Feb 2003 A1
20030032941 Boyle et al. Feb 2003 A1
20030032977 Brady Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030042186 Boyle et al. Mar 2003 A1
20030045898 Harrison et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030060782 Bose et al. Mar 2003 A1
20030060843 Boucher Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030065354 Boyle et al. Apr 2003 A1
20030069596 Eskuri Apr 2003 A1
20030069597 Petersen Apr 2003 A1
20030078519 Salahieh et al. Apr 2003 A1
20030078614 Salahieh et al. Apr 2003 A1
20030083692 Vrba et al. May 2003 A1
20030083693 Daniel et al. May 2003 A1
20030100917 Boyle et al. May 2003 A1
20030100918 Duane May 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030109824 Anderson et al. Jun 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20030120303 Boyle et al. Jun 2003 A1
20030130680 Russell Jul 2003 A1
20030130681 Ungs Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030130684 Brady et al. Jul 2003 A1
20030130685 Daniel et al. Jul 2003 A1
20030130686 Daniel et al. Jul 2003 A1
20030130687 Daniel et al. Jul 2003 A1
20030130688 Daniel et al. Jul 2003 A1
20030135162 Deyette, Jr. et al. Jul 2003 A1
20030135232 Douk et al. Jul 2003 A1
20030139764 Levinson et al. Jul 2003 A1
20030144685 Boyle et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030150821 Bates et al. Aug 2003 A1
20030153935 Mialhe Aug 2003 A1
20030153941 Rourke Aug 2003 A1
20030153942 Wang et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030158574 Esch et al. Aug 2003 A1
20030163064 Vrba et al. Aug 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030176885 Broome et al. Sep 2003 A1
20030176886 Wholey et al. Sep 2003 A1
20030176889 Boyle et al. Sep 2003 A1
20030176909 Kusleika et al. Sep 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030181943 Daniel et al. Sep 2003 A1
20030187474 Keegan et al. Oct 2003 A1
20030187475 Tsugita et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191493 Epstein et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030195555 Khairkhahan et al. Oct 2003 A1
20030195556 Stack et al. Oct 2003 A1
20030199819 Beck Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204168 Bosme et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030208222 Zadno-Azizi Nov 2003 A1
20030208224 Broome Nov 2003 A1
20030208225 Goll et al. Nov 2003 A1
20030208226 Bruckheimer et al. Nov 2003 A1
20030208227 Thomas Nov 2003 A1
20030208228 Gilson et al. Nov 2003 A1
20030208229 Kletschka Nov 2003 A1
20030212361 Boyle et al. Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212431 Brady et al. Nov 2003 A1
20030212434 Thielen Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030220665 Eskuri et al. Nov 2003 A1
20030225418 Eskuri et al. Dec 2003 A1
20030225435 Huter et al. Dec 2003 A1
20030229295 Houde et al. Dec 2003 A1
20030229374 Brady et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20030236545 Gilson Dec 2003 A1
20040002730 Denison et al. Jan 2004 A1
20040006361 Boyle et al. Jan 2004 A1
20040006364 Ladd Jan 2004 A1
20040006365 Brady et al. Jan 2004 A1
20040006366 Huter et al. Jan 2004 A1
20040006367 Johnson et al. Jan 2004 A1
20040006368 Mazzocchi et al. Jan 2004 A1
20040015184 Boyle et al. Jan 2004 A1
20040019363 Hanson et al. Jan 2004 A1
20040034385 Gilson et al. Feb 2004 A1
20040039411 Gilson et al. Feb 2004 A1
20040044359 Renati et al. Mar 2004 A1
20040044360 Lowe Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040059372 Tsugita Mar 2004 A1
20040059373 Shapiro et al. Mar 2004 A1
20040082697 R tzsch et al. Apr 2004 A1
20040082968 Krolik et al. Apr 2004 A1
20040088000 Muller May 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093009 Denison et al. May 2004 A1
20040093010 Gesswein et al. May 2004 A1
20040093011 Vrba May 2004 A1
20040093012 Cully et al. May 2004 A1
20040093013 Brady et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098026 Joergensen et al. May 2004 A1
20040098032 Papp et al. May 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040102806 Broome et al. May 2004 A1
20040102807 Kusleika et al. May 2004 A1
20040106944 Daniel et al. Jun 2004 A1
20040111111 Lin Jun 2004 A1
20040116960 Demond et al. Jun 2004 A1
20040122466 Bales Jun 2004 A1
20040127933 Demond et al. Jul 2004 A1
20040127934 Gilson et al. Jul 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040138693 Eskuri et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040138696 Drasler et al. Jul 2004 A1
20040147955 Beulke et al. Jul 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040153119 Kusleika et al. Aug 2004 A1
20040158275 Crank et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040158278 Becker et al. Aug 2004 A1
20040158279 Petersen Aug 2004 A1
20040158280 Morris et al. Aug 2004 A1
20040158281 Boylan et al. Aug 2004 A1
20040167564 Fedie Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040167566 Beulke et al. Aug 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040167568 Boyle et al. Aug 2004 A1
20040172055 Huter et al. Sep 2004 A1
20040176794 Khosravi Sep 2004 A1
20040193208 Talpade et al. Sep 2004 A1
20040199198 Beulke et al. Oct 2004 A1
20040199199 Krolik et al. Oct 2004 A1
20040199203 Oslund et al. Oct 2004 A1
20040204737 Boismier et al. Oct 2004 A1
20040210250 Eskuri Oct 2004 A1
20040220608 D'Aquanni et al. Nov 2004 A1
20040220609 Douk et al. Nov 2004 A1
20040220611 Ogle Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040225322 Garrison et al. Nov 2004 A1
20040236368 McGuckin, Jr. et al. Nov 2004 A1
20040236369 Dubrul Nov 2004 A1
20040249409 Krolik et al. Dec 2004 A1
20040254601 Eskuri Dec 2004 A1
20040254602 Lehe et al. Dec 2004 A1
20040260308 Gilson et al. Dec 2004 A1
20040260333 Dubrul et al. Dec 2004 A1
20040267301 Boylan et al. Dec 2004 A1
20040267302 Gilson et al. Dec 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050004595 Boyle et al. Jan 2005 A1
20050004597 McGuckin, Jr. et al. Jan 2005 A1
20050010245 Wasicek Jan 2005 A1
20050010246 Streeter et al. Jan 2005 A1
20050010247 Kusleika et al. Jan 2005 A1
20050021075 Bonnette et al. Jan 2005 A1
20050021076 Mazzocchi et al. Jan 2005 A1
20050055048 Dieck et al. Mar 2005 A1
20050070953 Riley Mar 2005 A1
20050075663 Boyle et al. Apr 2005 A1
20050080446 Gilson et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050090845 Boyd Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050090858 Pavlovic Apr 2005 A1
20050096691 Groothuis et al. May 2005 A1
20050096692 Linder et al. May 2005 A1
20050101986 Daniel et al. May 2005 A1
20050101987 Salahieh May 2005 A1
20050101988 Stanford et al. May 2005 A1
20050101989 Cully et al. May 2005 A1
20050113865 Daniel et al. May 2005 A1
20050119688 Bergheim Jun 2005 A1
20050119689 Mazzocchi et al. Jun 2005 A1
20050119690 Mazzocchi et al. Jun 2005 A1
20050119691 Daniel et al. Jun 2005 A1
20050124931 Fulton et al. Jun 2005 A1
20050125023 Bates et al. Jun 2005 A1
20050131450 Nicholson et al. Jun 2005 A1
20050131453 Parodi Jun 2005 A1
20050149110 Wholey et al. Jul 2005 A1
20050149112 Barbut Jul 2005 A1
20050149113 Douk et al. Jul 2005 A1
20050159772 Lowe et al. Jul 2005 A1
20050159773 Broome et al. Jul 2005 A1
20050159774 Belef Jul 2005 A1
20050171573 Salahieh et al. Aug 2005 A1
20050177187 Gray et al. Aug 2005 A1
20050182330 Brockway et al. Aug 2005 A1
20050182440 Bates et al. Aug 2005 A1
20050182441 Denison et al. Aug 2005 A1
20050192623 Mazzocchi et al. Sep 2005 A1
20050192624 Mazzocchi et al. Sep 2005 A1
20050203567 Linder et al. Sep 2005 A1
20050203568 Burg et al. Sep 2005 A1
20050203569 Kusleika et al. Sep 2005 A1
20050203570 Mazzocchi et al. Sep 2005 A1
20050203571 Mazzocchi et al. Sep 2005 A1
20050209634 Brady et al. Sep 2005 A1
20050209635 Gilson et al. Sep 2005 A1
20050216051 Mazzocchi et al. Sep 2005 A1
20050216052 Mazzocchi et al. Sep 2005 A1
20050216053 Douk et al. Sep 2005 A1
20050222583 Cano et al. Oct 2005 A1
20050222604 Schaeffer Oct 2005 A1
20050222607 Palmer et al. Oct 2005 A1
20050228437 Gilson et al. Oct 2005 A1
20050228438 Sachar et al. Oct 2005 A1
20050228439 Andrews et al. Oct 2005 A1
20050234502 Gilson et al. Oct 2005 A1
20050240215 Ellis Oct 2005 A1
20050245866 Azizi Nov 2005 A1
20050267517 Ungs Dec 2005 A1
20050283184 Gilson et al. Dec 2005 A1
20050283185 Linder et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288705 Gilson et al. Dec 2005 A1
20060004403 Gilson et al. Jan 2006 A1
20060004405 Salahieh et al. Jan 2006 A1
20060015138 Gertner et al. Jan 2006 A1
20060015139 Tsugita et al. Jan 2006 A1
20060015140 Tsugita et al. Jan 2006 A1
20060015141 Linder et al. Jan 2006 A1
20060020285 Niermann Jan 2006 A1
20060020286 Niermann Jan 2006 A1
20060025803 Mitelberg et al. Feb 2006 A1
20060025804 Krolik et al. Feb 2006 A1
20060025805 DoBrava et al. Feb 2006 A1
20060030876 Peacock, III et al. Feb 2006 A1
20060030877 Martinez et al. Feb 2006 A1
20060030878 Anderson et al. Feb 2006 A1
20060052817 Russo et al. Mar 2006 A1
20060074446 Gilson et al. Apr 2006 A1
20060095069 Shah et al. May 2006 A1
20060100659 Dinh et al. May 2006 A1
20060100662 Daniel et al. May 2006 A1
20060100663 Palmer et al. May 2006 A1
20060116715 Khosravi et al. Jun 2006 A1
20060122643 Wasicek Jun 2006 A1
20060122644 Brady et al. Jun 2006 A1
20060122645 Brady et al. Jun 2006 A1
20060129181 Callol et al. Jun 2006 A1
20060129182 Gilson et al. Jun 2006 A1
20060129183 Boyle et al. Jun 2006 A1
20060149312 Arguello et al. Jul 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060149314 Borillo et al. Jul 2006 A1
20060155322 Sater et al. Jul 2006 A1
20060161198 Sakai et al. Jul 2006 A1
20060167491 Wholey et al. Jul 2006 A1
20060184194 Pal et al. Aug 2006 A1
20060190025 Lehe et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060195138 Goll et al. Aug 2006 A1
20060200047 Galdonik et al. Sep 2006 A1
20060200191 Zadno-Azizi Sep 2006 A1
20060206139 Tekulve Sep 2006 A1
Foreign Referenced Citations (19)
Number Date Country
0427429 Sep 1991 EP
0 472 334 Feb 1992 EP
0533511 Mar 1993 EP
2580504 Oct 1986 FR
2020557 Nov 1979 GB
WO9203097 Mar 1992 WO
WO9601591 Jan 1996 WO
WO9717100 May 1997 WO
WO9802084 Jan 1998 WO
WO9833443 Aug 1998 WO
WO9923976 May 1999 WO
WO9944510 Sep 1999 WO
WO0067667 Nov 2000 WO
WO0110346 Feb 2001 WO
WO0145592 Jun 2001 WO
WO0187183 Nov 2001 WO
WO 02069844 Sep 2002 WO
WO 03086209 Oct 2003 WO
WO 2004071352 Aug 2004 WO
Non-Patent Literature Citations (1)
Entry
Dilitation of the Carotid Artery by a Temporary Carotid Filter by A. Beck, St. Milic, A.M. Spagnoli, November-December Issue of OPLITAI, An International Journal on Military Medicine and Health Emergencies, pp. 67-74.
Related Publications (1)
Number Date Country
20060224176 A1 Oct 2006 US