All of the aforementioned applications are also incorporated herein by reference.
The present invention pertains to modes for controlling a powered transporter and more particular to modes for control of a powered transporter by a user not carried by the transporter.
“Dynamically stabilized transporters” refer, in this application, to devices for personal locomotion having a control system that actively maintains the stability of the transporter during operation of the transporter. The control system maintains the stability of the transporter by continuously sensing the orientation, and/or changes in the orientation, of the transporter, determining the corrective action to maintain stability, and commanding the wheel motors to make the corrective action. Such a transporter is described, for example, in U.S. Pat. No. 5,971,091 (Kamen et al., issued Oct. 26, 1999), which is incorporated herein by reference. Once a rider dismounts from such a transporter, the rider cannot control the transporter's motion by leaning and the transporter is no longer useful to the rider.
Rather, the user may wish to alight from the transporter and still control its motion and it is thus desirable to provide a mode of control whereby a user may control such a transporter without boarding it and controlling it by leaning.
In accordance with preferred embodiments of the present invention, a method is provided for conducting a transporter under riderless conditions. The transporter has two laterally disposed primary wheels. In accordance with the method, an input is received via a user input disposed on the transporter and a control signal corresponding to the received input is generated. Then a torque is applied to each of the laterally disposed wheels so as propel the transporter on the basis of at least the control signal.
The control signal may correspond to either a commanded torque or to a commanded transporter velocity. The torque may include coadded terms where the terms are, respectively, proportional to the control signal, to a counteracting artificial friction proportional to the common velocity of the wheels, and a term proportional to the differential rotation of the wheels to facilitate turning of the transporter. Generating the control signal based in received input may include conditioning the signal. Conditioning may entail a deadband in the vicinity of zero signal, as well as limits on the range of control signal or on the rate at which the control signal may be slewed.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
A characteristic of many transporter embodiments to which the present invention may be applied is the use of a pair of laterally disposed ground-contacting members 20 and 21 to suspend a subject 8 over a surface with respect to which the subject is being transported. The ground or other surface, such as a floor, over which a vehicle in accordance with the invention is employed may be referred to generally herein as the “ground.” The ground-contacting members 20, 21, here depicted as wheels, are typically motor-driven. In many embodiments, the configuration in which the subject is suspended during locomotion lacks inherent stability in the fore-aft plane at least a portion of the time with respect to a vertical (axis z) but is relatively stable with respect to a vertical in the lateral plane.
Some embodiments of the invention may invoke the concept of primary wheels. The term “primary wheels,” as used in this description and in any appended claims, refers to a minimum set of a vehicle's wheels on which the vehicle is capable of operating stably. More generally, the term “primary ground-contacting members” allows for a more general class of members, that includes, but is not limited to, wheels. Hence, as used in this description and in any appended claims, “primary ground-contacting members” refers to a minimum set of a vehicle's ground-contacting members on which the vehicle is capable of operating stably. Other ground-contacting members may include, without limitation: arcuate sections of a wheel, clusters of wheels, treads, etc.
In various embodiments of the invention, fore-aft stability may be achieved by providing a control loop, in which one or more motors are included, for operation of a motorized drive in connection with the ground-contacting members. As described below, a pair of ground-contacting members may, for example, be a pair of wheels or a pair of wheel clusters. In the case of wheel clusters, each cluster may include a plurality of wheels. Each ground-contacting member, however, may instead be a plurality (typically a pair) of axially-adjacent, radially supported and rotatably mounted arcuate elements. In these embodiments, the ground-contacting members are driven by the motorized drive in the control loop in such a way as to maintain, when the vehicle is not in locomotion, the center of mass of the vehicle above the region of contact of the ground-contacting members with the ground, regardless of disturbances and forces operative on the vehicle.
A ground-contacting member typically has a “point” (actually, a region) of contact or tangency with the surface over which the vehicle is traveling or standing. Due to the compliance of the ground-contacting member, the “point” of contact is actually an area, where the region of contact may also be referred to as a contact patch. The weight of the vehicle is distributed over the contact region, giving rise to a distribution of pressures over the region, with the center of pressure displaced forward during forward motion. The distribution of pressures is a function both of the composition and structure of the wheel, the rotational velocity of the wheel, the torque applied to the wheel, and thus of the frictional forces acting on the wheel.
A force in the direction of motion is required to overcome rolling friction (and other frictional forces, including air resistance). Gravity may be used, in accordance with preferred embodiments of the invention, to provide a torque about the point of contact with the surface in a direction having a component in the sense of desired motion.
Referring further to
A simplified control algorithm for achieving balance in the embodiment of the invention according to
T=K1(θ−θ0)+K2({dot over (θ)}−{dot over (θ)}0)+K3(x−x0)+K4({dot over (x)}−{dot over (x)}0), (Eqn. 1)
where:
The effect of θ0 in the above control equation (Eqn. 1) is to produce a specified offset θ0 from the non-pitched position where θ=0. Adjustment of θ0 will adjust the vehicle's offset from a non-pitched position. As discussed in further detail below, in various embodiments, pitch offset may be adjusted by the user, for example, by means of a thumb wheel 32, shown in
Alternatively, θ0 can be set by the control system of the vehicle as a method of limiting the speed and/or the performance of the vehicle.
The magnitude of K3 determines the extent to which the vehicle will seek to return to a given location. With a non-zero K3, the effect of x0 is to produce a specified offset −x0 from the fiducial reference by which x is measured. When K3 is zero, the vehicle has no bias to return to a given location. The consequence of this is that if the vehicle is caused to lean in a forward direction, the vehicle will move in a forward direction, thereby maintaining balance.
The term “lean” is often used with respect to a system balanced on a single point of a perfectly rigid member. In that case, the point (or line) of contact between the member and the underlying surface has zero theoretical width. In that case, furthermore, lean may refer to a quantity that expresses the orientation with respect to the vertical (i.e., an imaginary line passing through the center of the earth) of a line from the center of gravity (CG) of the system through the theoretical line of ground contact of the wheel. While recognizing, as discussed above, that an actual ground-contacting member is not perfectly rigid, the term “lean” is used herein in the common sense of a theoretical limit of a rigid ground-contacting member. The term “system” refers to all mass caused to move due to motion of the ground-contacting elements with respect to the surface over which the vehicle is moving.
“Stability” as used in this description and in any appended claims refers to the mechanical condition of an operating position with respect to which the system will naturally return if the system is perturbed away from the operating position in any respect.
In order to accommodate two wheels instead of the one-wheel system illustrated for simplicity in
Operating modes of the transporter may include modes wherein the rider is supported by the transporter but may also include modes where the rider is not supported by the transporter. For example, it may be advantageous for the rider to be able to ‘drive’ or to ‘conduct’ the transporter while walking alongside or behind it.
The top of base 12 provides a substantially flat surface and is sized to comfortably support a rider standing on the base 12. A mat 521 covers the top of the base 12 and provides additional protection to the base 12 from particles and dust from the environment. In an alternate embodiment, the mat may also cover part of the fenders 512514 and may be used to cover a charger port (not shown) that provides for external charging of the power supply. Mat 521 may be made of an elastomeric material that provides sufficient traction such that the rider does not slip off the mat 521 under expected operating conditions. A plate 522 is positioned between base 12 and mat 521. Plate 522 is made of a rigid material and evenly distributes the force acting on the plate 522 from the rider's feet such that at least one rider detection switch 523 is activated when a rider is standing on the mat.
Referring now to
It is to be understood that various modes of motor control are within the scope of the invention. For example, the motors may be commanded in current mode, wherein the torque applied to the wheels is commanded and, as shown below, ultimate subject to user input. Thus, the user governs how much torque is applied. This is a mode of operation that users tend to be comfortable with, allowing a user to urge the transporter over an obstacle or up a curb or a stair. On the other hand, the wheel motors may be governed in voltage mode, where wheel velocity is controlled by the user input.
User input 410 is received from a user input device which may be thumbwheel 32 (shown in
Moreover, the slew rate of change of the commanded control signal may be limited by slew limiter 420.
In addition to control signal 412 which is applied, via summers 408 and 422 to the respective wheel amplifiers, a counteracting contribution to wheel torque is provided that is proportional, modulo gain 424, to the common component 426 of the rotational velocity of the respective right and left wheels. Since the counteracting component is proportional to velocity, it acts as an artificially imposed friction and the user feels a resistance to pushing (or pulling) the transporter.
Finally, a differential term, proportional, above a threshold set by deadband 428, to the differential rotational velocity 430 of the two wheels. This allows the faux friction of the preceding term to be overcome in the case where the user seeks to turn the transporter.
As suggested above, transporter 10 may be guided by a user walking ahead of, behind, or alongside, the transporter. When operated without a mounted user, transporter 10 may operate in either a ‘power assist’ mode or in the same mode of operation as when bearing the user, in which case it operates in a ‘riderless balancing mode’.
If the transporter is being operated in balance mode, and if the user is no longer sensed by rider detection switch 523, then limits may be placed on the distance the transporter may be moved from its position at the time a user was last onboard the transporter, as sensed by rider detect switch 523 or other means. This function, which may be referred to as an “electronic leash,” may be used as an added safety feature to limit unintended travel of the transporter. Travel of the transporter may be limited such that the transporter is decelerated to a slow speed or a stop after a specified distance with respect to a fiducial reference position, set when the rider dismounts, or under other circumstances discussed below. Additionally, once the transporter is slowed or stopped, the transporter may be switched out of balance mode and/or may be powered off until such time as a user restarts the transporter. The distance of travel before such an electronic leash is activated may be set based on the desired performance of the transporter. For example, a distance on the order two meters may be used. The distance of travel may be determined by integrating the velocity of the transporter as determined by sensing rotation of the wheels from the position of the transporter at the time a user was last onboard the transporter, as sensed by rider detect switch 523 or other means. Alternatively, distance may be determined by other means, such as an onboard GPS receiver.
In another specific embodiment, if the user is no longer sensed by rider detection switch 523 or other means, then limits may be placed on the speed the transporter may attain. If the transporter attains a specified speed without a user aboard, then the transporter may be decelerated to a slower speed or a stop.
In the case transporter 10 is actively guided by a user in balance mode, the electronic leash may be deactivated to allow travel beyond the distanced specified for the electronic leash. Alternatively, if a user repeatedly dismounts from transporter, actively guides the transporter for short distances, such as to traverse a curb or a flight of stairs, and then remounts the transporter, it may be advantageous to continue to use the electronic leash. In this case, however, the user may wish to guide the transporter further than the distance specified by the electronic leash, for example to climb a long flight of stairs. In such a case, the electronic leash may advantageously be reset, accordingly updating the fiducial reference, to allow further riderless travel in balance mode while still guarding against unintended travel of the transporter.
One method of resetting the electronic leash while still avoiding unintended travel is to slew the wheel position variable to zero whenever the velocity of the transporter reaches or falls below a specified level, such as 0.5 mi/hr. Thus, a user may guide the transporter further than the distance specified by the electronic leash, for example to climb a large flight of stairs, while still guarding against unintended travel of the transporter. Alternatively, a user input device may be used to alternatively activate and deactivate the electronic leash or to reset the electronic leash.
Embodiments of the invention advantageously employing these capabilities are described with reference to
The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in the appended claims.
The present application is a continuation-in-part application of copending U.S. application Ser. No. 09/325,976, filed Jun. 4, 1999, which is a continuation in part of U.S. application Ser. No. 08/479,901, filed Jun. 7, 1995, now issued as U.S. Pat. No. 5,975,225, which is a continuation in part of U.S. application Ser. No. 08/384,705, filed Feb. 3, 1995, now issued as U.S. Pat. No. 5,971,091, which is a continuation in part of U.S. application Ser. No. 08/250,693, filed May 27, 1994, now issued as U.S. Pat. No. 5,701,965, which in turn is a continuation in part of U.S. application Ser. No. 08/021,789, filed Feb. 24, 1993, now abandoned, from which the present application claims priority. Additionally, the present application is a continuation-in-part of U.S. Ser. No. 10/308,888, filed Dec. 3, 2002, and claims priority through the latter application from U.S. Ser. Nos. 60/336,601, filed Dec. 5, 2001, and 60/347,800, filed Jan. 10, 2002. Finally, this application claims priority from U.S. Provisional Application No. 60/388,937, filed Jun. 14, 2002.
Number | Name | Date | Kind |
---|---|---|---|
584127 | Draullette et al. | Jun 1897 | A |
849270 | Schafer et al. | Apr 1907 | A |
2742973 | Johannesen | Apr 1956 | A |
3145797 | Taylor | Aug 1964 | A |
3260324 | Suarez | Jul 1966 | A |
3283398 | Andren | Nov 1966 | A |
3288234 | Feliz | Nov 1966 | A |
3348518 | Forsyth et al. | Oct 1967 | A |
3374845 | Selwyn | Mar 1968 | A |
3399742 | Malick | Sep 1968 | A |
3446304 | Alimanestiano | May 1969 | A |
3450219 | Fleming | Jun 1969 | A |
3515401 | Gross | Jun 1970 | A |
3580344 | Floyd | May 1971 | A |
3596298 | Durst, Jr. | Aug 1971 | A |
3860264 | Douglas et al. | Jan 1975 | A |
3872945 | Hickman et al. | Mar 1975 | A |
3952822 | Udden et al. | Apr 1976 | A |
4018440 | Deutsch | Apr 1977 | A |
4062558 | Wasserman | Dec 1977 | A |
4076270 | Winchell | Feb 1978 | A |
4088199 | Trautwein | May 1978 | A |
4094372 | Notter | Jun 1978 | A |
4109741 | Gabriel | Aug 1978 | A |
4111445 | Haibeck | Sep 1978 | A |
4151892 | Francken | May 1979 | A |
4222449 | Feliz | Sep 1980 | A |
4264082 | Fouchey, Jr. | Apr 1981 | A |
4266627 | Lauber | May 1981 | A |
4293052 | Daswick et al. | Oct 1981 | A |
4325565 | Winchell | Apr 1982 | A |
4354569 | Eichholz | Oct 1982 | A |
4363493 | Veneklasen | Dec 1982 | A |
4373600 | Buschbom et al. | Feb 1983 | A |
4375840 | Campbell | Mar 1983 | A |
4445704 | Troxler | May 1984 | A |
4510956 | King | Apr 1985 | A |
4560022 | Kassai | Dec 1985 | A |
4566707 | Nitzberg | Jan 1986 | A |
4570078 | Yashima et al. | Feb 1986 | A |
4571844 | Komasaku et al. | Feb 1986 | A |
4624469 | Bourne, Jr. | Nov 1986 | A |
4657272 | Davenport | Apr 1987 | A |
4685693 | Vadjunec | Aug 1987 | A |
4709771 | Basham et al. | Dec 1987 | A |
4709772 | Brunet | Dec 1987 | A |
4716980 | Butler | Jan 1988 | A |
4740001 | Torleumke | Apr 1988 | A |
4746132 | Eagan | May 1988 | A |
4770410 | Brown | Sep 1988 | A |
4786069 | Tang | Nov 1988 | A |
4790400 | Sheeter | Dec 1988 | A |
4790548 | Decelles et al. | Dec 1988 | A |
4794999 | Hester | Jan 1989 | A |
4798255 | Wu | Jan 1989 | A |
4802542 | Houston et al. | Feb 1989 | A |
4809804 | Houston et al. | Mar 1989 | A |
4834200 | Kajita | May 1989 | A |
4863182 | Chern | Sep 1989 | A |
4867188 | Reid | Sep 1989 | A |
4869279 | Hedges | Sep 1989 | A |
4874055 | Beer | Oct 1989 | A |
4890853 | Olson | Jan 1990 | A |
4919225 | Sturges | Apr 1990 | A |
4953851 | Sherlock et al. | Sep 1990 | A |
4984754 | Yarrington | Jan 1991 | A |
4985947 | Ethridge | Jan 1991 | A |
4998596 | Miksitz | Mar 1991 | A |
5002295 | Lin | Mar 1991 | A |
5011171 | Cook | Apr 1991 | A |
5052237 | Reimann | Oct 1991 | A |
5111899 | Reimann | May 1992 | A |
5143386 | Uriarte | Sep 1992 | A |
5158493 | Morgrey | Oct 1992 | A |
5161820 | Vollmer | Nov 1992 | A |
5168947 | Rodenborn | Dec 1992 | A |
5171173 | Henderson et al. | Dec 1992 | A |
5180023 | Reimers | Jan 1993 | A |
5186270 | West | Feb 1993 | A |
5221883 | Takenaka et al. | Jun 1993 | A |
5241875 | Kochanneck | Sep 1993 | A |
5248007 | Watkins et al. | Sep 1993 | A |
5314034 | Chittal | May 1994 | A |
5350033 | Kraft | Sep 1994 | A |
5366036 | Perry | Nov 1994 | A |
5376868 | Toyoda et al. | Dec 1994 | A |
5419624 | Adler et al. | May 1995 | A |
5562176 | Lucernoni et al. | Oct 1996 | A |
5701965 | Kamen et al. | Dec 1997 | A |
5701968 | Wright-Ott et al. | Dec 1997 | A |
5775452 | Patmont | Jul 1998 | A |
5791425 | Kamen et al. | Aug 1998 | A |
5794730 | Kamen | Aug 1998 | A |
5971091 | Kamen et al. | Oct 1999 | A |
5973463 | Okuda et al. | Oct 1999 | A |
5975225 | Kamen et al. | Nov 1999 | A |
5986221 | Stanley | Nov 1999 | A |
6003624 | Jorgensen et al. | Dec 1999 | A |
6039142 | Eckstein et al. | Mar 2000 | A |
6050357 | Staelin et al. | Apr 2000 | A |
6059062 | Staelin et al. | May 2000 | A |
6125957 | Kauffmann | Oct 2000 | A |
6131057 | Tamaki et al. | Oct 2000 | A |
6223104 | Kamen et al. | Apr 2001 | B1 |
6225977 | Li | May 2001 | B1 |
6254313 | DeVito | Jul 2001 | B1 |
6276471 | Kratzenberg et al. | Aug 2001 | B1 |
6288505 | Heinzmann et al. | Sep 2001 | B1 |
6302230 | Kamen et al. | Oct 2001 | B1 |
6470981 | Sueshige et al. | Oct 2002 | B1 |
6474007 | Sueshige et al. | Nov 2002 | B1 |
6536544 | Egawa et al. | Mar 2003 | B1 |
6941206 | Hasegawa et al. | Sep 2005 | B2 |
20020063006 | Kamen et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
2 048 593 | May 1971 | DE |
31 28 112 | Feb 1983 | DE |
32 42 880 | Jun 1983 | DE |
3411489 | Oct 1984 | DE |
44 04 594 A 1 | Aug 1995 | DE |
196 25 498 C 1 | Nov 1997 | DE |
298 08 091 | Oct 1998 | DE |
298 08 096 | Oct 1998 | DE |
0 109 927 | Jul 1984 | EP |
0 193 473 | Sep 1986 | EP |
0 537 698 | Apr 1993 | EP |
0663 313 | Jul 1995 | EP |
0 958 978 | Nov 1999 | EP |
980 237 | May 1951 | FR |
82 04314 | Sep 1982 | FR |
152664 | Feb 1922 | GB |
1213930 | Nov 1970 | GB |
2 139 576 | Nov 1984 | GB |
52-44933 | Oct 1975 | JP |
57-87766 | Jun 1982 | JP |
57-110569 | Jul 1982 | JP |
59-73372 | Apr 1984 | JP |
62-12810 | Jul 1985 | JP |
0255580 | Dec 1985 | JP |
61-31685 | Feb 1986 | JP |
63-305082 | Dec 1988 | JP |
2-190277 | Jul 1990 | JP |
4-201793 | Jul 1992 | JP |
6-171562 | Dec 1992 | JP |
5-213240 | Aug 1993 | JP |
6-105415 | Dec 1994 | JP |
7255780 | Mar 1995 | JP |
WO 8605752 | Oct 1986 | WO |
WO 8906117 | Jul 1989 | WO |
WO 9623478 | Aug 1996 | WO |
WO 9846474 | Oct 1998 | WO |
WO 00 75001 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040011573 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60388937 | Jun 2002 | US | |
60347800 | Jan 2002 | US | |
60336601 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09325976 | Jun 1999 | US |
Child | 10462379 | US | |
Parent | 08479901 | Jun 1995 | US |
Child | 09325976 | US | |
Parent | 08384705 | Feb 1995 | US |
Child | 08479901 | US | |
Parent | 08250693 | May 1994 | US |
Child | 08384705 | US | |
Parent | 08021789 | Feb 1993 | US |
Child | 08250693 | US | |
Parent | 10462379 | US | |
Child | 08250693 | US | |
Parent | 10308888 | Dec 2002 | US |
Child | 10462379 | US |