The present invention relates generally to a guidewire for positioning and removing emboli capture and recovery devices (ECRD) such as small filters in a vein or artery, and more particularly to a guidewire with an integral stop mechanism which, when expanded or extended, permits the guide wire to move freely with respect to the filter while preventing the guidewire from being inadvertently removed from association with the filter and when collapsed or retracted permits the guidewire to be inserted through or removed from the filter.
In recent years, a number of intervascular medical devices have been designed which are adapted for compression into a small size to facilitate introduction into a body vessel such as an arterial or vascular passageway and which are subsequently expandable into contact with walls of the passageway. These devices, among others, include stents, such as those shown by U.S. Pat. No. 5,540,712 and blood clot filters such as those shown by U.S. Pat. No. 5,669,933 which expand and are held in position by engagement with the inner wall of a vessel. It has been found to be advantageous to form such devices of a thermal shape memory material having a first, relatively pliable low temperature condition and a second, relatively rigid high-temperature condition. By forming such devices of temperature responsive material, the device in a flexible and reduced stress state may be compressed to fit within the bore of a delivery catheter when exposed to a temperature below a predetermined transition temperature, but at temperatures at or above the transition temperature, the device expands and becomes relatively rigid.
Known self expanding medical devices have been formed of Nitinol, an alloy of titanium and nickel which provides the device with a thermal memory. The unique characteristic of this alloy is its thermally triggered shape memory, which allows a device constructed of the alloy to be cooled below a temperature transformation level to a martensitic state and thereby softened for loading into a catheter in a relatively compressed and elongated state, and to regain the memorized shape in an austenitic state when warmed to a selected temperature, above the temperature transformation level, such as human body temperature. The two interchangeable shapes are possible because is of the two distinct microcrystalline structures that are interchangeable with a small variation in temperature. The temperature at which the device assumes its first configuration may be varied within wide limits by changing the composition of the alloy. Thus, while for human use the alloy may be focused on a transition temperature range close to 98.6° F., the alloy readily may be modified for use in animals with different body temperatures.
In recent years advances have been made in the treatment of blood vessel stenosis or occlusion by plaque, thrombi, embolic, or other deposits which adversely reduce or block the flow of blood through a vessel. Balloon angioplasty or similar transluminal treatments have become common for some blood vessel lesions, but for all such procedures, plaque and emboli dislodged during the procedure are free to flow within the lumen of the vessel and possibly cause substantial injury to a patient.
In an attempt to contain and remove emboli and other debris, balloon angioplasty coupled with irrigation and aspiration has been performed as illustrated by U.S. Pat. No. 5,883,644 and International Publication No. WO 98/39046 to Zadno-Azizi et al. This procedure requires complete vessel occlusion cutting off all blood flow which imposes severe time constraints on the procedure. Additionally, the balloons involved in the procedure are affixed to elongate guidewires or small elongate catheters which extend for a substantial distance through blood vessels to the location of the stenosis or occlusion, and it is practically impossible to prevent some back and forth longitudinal motion of these elongate elements within a vessel during a procedure. This movement of the guidewire or catheter to which a balloon is attached causes the balloon to move back and forth and abrade emboli from the vessel wall downstream of the balloon containment area.
Angioplasty is often not a preferred treatment for lesions in the carotid artery because dislodged plaque can enter arterial vessels of the brain causing brain damage or even death. As indicated by U.S. Pat. No. 5,879,367 to Kaganov et al., carotid endarterectomy is a surgical procedure used to remove a lesion in the carotid artery, but this procedure also involves substantial risk of dislodged embolic material.
In an attempt to contain dislodged emboli during a procedure to clear blood vessel stenosis or occlusion, a variety of distal filters have been devised such as those shown by U.S. Pat. No. 5,814,064 and International Publication Nos. WO 98/38920 and WO 98/39053 to Daniel et al. as well as U.S. Pat. No. 5,827,324 to Cassell et al., 5,846,260 to Maahs and 5,876,367 to Kaganov et al. These filters are secured to the distal portion of a guidewire or catheter and are deployed distally from the stenosis or occlusion to capture embolic material. Once the distal filter is positioned and expanded into contact with the wall of the blood vessel, an angioplasty balloon, a stent, or other devices are introduced over the proximal end of the guidewire or catheter to which the filter is attached and moved into position in the area of the occlusion or stenosis spaced proximally from the filter.
Known guidewire or catheter attached distal filters have been subject to a number of disadvantages. First, since the elongate catheter or guidewire to which the filter is attached is used to guide over the wire devices during a subsequent procedure, it is extremely difficult if not impossible to prevent longitudinal movement of the wire or catheter after the filter has been deployed. This causes the filter to move back and forth within the vessel with resultant abrasion by the filter of the vessel wall, and such abrasion not only causes trauma to the vessel wall but also operates to dislodge debris which is free to flow distally of the filter. Thus filter movement after the filter is deployed somewhat defeats the purpose of the filter. Also, it is often desirable during a procedure to exchange guidewires, and such an exchange is not possible with an attached filter.
Additionally, the retrieval of known distal filters while retaining captured embolic material has proven to be problematic. Many cone shaped filters with wide, upstream proximal open ends tend to eject captured embolic material through the open end as the filter is collapsed. Also, many distal filters are formed by a mesh material which is expanded by a filter frame, and when the frame closes to collapse the filter for withdrawal through a catheter, the mesh folds creating outwardly projecting pleats. These pleats snag on the withdrawal of the catheter making retrieval of the filter difficult and often causing the filter to spill captured embolic material.
Recently, it has become of concern that if the guidewire is made to be displaceable with respect to a filter or other intervascular device, there is the possibility that the device could become disassociated with the guidewire and consequently could migrate and become lost within the vessel. Accordingly, there is a need for a mechanism to provide selective association of the guidewire with a free standing, unsecured intervascular device when necessary while also being capable of stopping travel of the device away from the stenosis or occlusion in order to alleviate concerns regarding free migration of the device within a blood vessel.
A primary object of the present invention is to provide a combination intervascular device and guidewire wherein the guidewire is longitudinally movable relative to the intervascular device.
It is an object of the present invention to provide a novel and improved guidewire for confidently positioning a free standing filter for expansion within a blood vessel to capture dislodged embolic material.
Another object of the present invention is to provide a novel and improved guidewire for confidently positioning a free standing filter for use during a procedure to treat blood vessel stenosis or occlusion which does not cause filter movement which results in trauma to the luminal wall during guidewire, balloon and stent exchanges and which can be associated with the filter in a manner to facilitate longitudinal movement of the guidewire relative to the filter while precluding filter migration.
A further object of the present invention is to provide a novel and improved guidewire for positioning a free standing filter for use during a procedure to treat blood vessel stenosis or occlusion which is formed to facilitate intra-procedural guidewire exchanges and which reduces concern for the disassociation of the filter from the guidewire during normal procedures.
Yet another object of the present invention is to provide a novel and improved guidewire for use with a free standing filter during a procedure to treat blood vessel stenosis or occlusion which is formed to remain stationary after expansion independent of guidewire or catheter motion which maintains an association with the filter to ensure proper removal of the filter upon completion of the procedure.
A still further object of the present invention is to provide a novel and improved guidewire for association with the positioning of ECRD including a stop mechanism in the area of a distal end thereof to expand or extend and collapse or retract on actuation thereby forming a mechanical stop preventing the guidewire from being inadvertently removed from the ECRD.
These and other objects of the present invention are accomplished by providing an elongated guidewire having a stop mechanism thereon which is receivable in a receiving member extending centrally through an intervascular device provided with an open ended channel which may be configured to receive a plurality of different sized guidewires. The guidewire stop mechanism is positioned in the area of a distal end of the guidewire and may be selectively expanded or extended and collapsed or retracted to permit selective association with the intervascular device. When positioned through the receiving member of the intervascular device, the stop mechanism can be expanded or extended to prevent the loss of the device while still permitting the guidewire to move longitudinally with respect to the device. The stop mechanism may take on numerous configurations namely that of a balloon, a grappling hook, a buckled tube, a braided structure, barbs, biased bosses or any mechanism which is remotely expandable or extendable and collapsible or retractable from a guidewire. In the retracted position, the stop member should pass freely through the receiving member of the intervascular device, but in the expanded position, the stop member should be radially spaced from the inner wall of a blood vessel while precluding migration of the intervascular device over the distal end of the guidewire.
Referring to
In the example illustrated in
In the operation of the filter 10, the stent with the mesh filter material is inserted in a collapsed condition into a delivery tube 34 and guidewire 12 extends through the central tube 11. Then the delivery tube is used to deliver the filter 10 over the guidewire 12 to a desired position within a body vessel whereupon the filter is ejected from the delivery tube. Now the previously collapsed stent 14 expands into contact with the walls 36 of the vessel (shown in broken lines) thereby expanding the flexible mesh filter material which was previously collapsed within the delivery tube with the stent. The guidewire 12 may now be used to guide other devices into the vessel, and since the guidewire can move freely in a longitudinal direction within the tube 11, longitudinal movement of the guidewire will not result in movement of the expanded filter.
Once the stent 14 has expanded against the wall 36 of the vessel, the guidewire 12 can be removed and replaced with a new guidewire of a different size. The tube 11 is preferably formed with an internal dimension of sufficient size to accept 0.014 inch diameter to 0.035 inch diameter guidewires. It may often be desirable to initially use a very fine guidewire (0.014″) to cross a lesion and position the filter 10 and to then exchange this fine guidewire for a thicker wire. The details of the association of the guidewire with the tube 11 will be set forth in detail hereinbelow.
The fine mesh filter material 22, when expanded, should have a pore size within a range of 100 Mm to 150 Mm to capture and retain embolic material sized in excess of the pore size while permitting blood flow in the direction of the arrow 38 line in
To remove the filter 10 with the captured embolic material, the stent 14 is collapsed against the tube 11 for withdrawal through a catheter or delivery tube 34. Preferably the stent is formed of the thermal shape memory material such as nitinol and may be collapsed by cooling the stent to a temperature below a transition temperature. It is important to note that the embolic material has been captured within the conical section 28, so that when the stent collapses against the tube 11, it positively closes the mouth of the conical section preventing material from escaping as the filter is drawn into the tube 34. The stent forces the entire longitudinal extent of the section 32 against the tube 11 to prevent the escape of material from the conical section 28.
The guidewire 12 has an elongate, flexible body 13 which extends from a distal end of the wire 15 to a proximal end 17 which projects beyond the proximal end of the catheter or delivery tube 34. Adjacent to the distal end 15 of the guidewire 12 is an expandable and contractable stop member 19 which moves between a contracted position adjacent to the guidewire and an expanded position as shown in FIG. 1. In the contracted position of the stop member, the stop member is dimensioned to move freely with the guidewire 12 through the tube 11, but once through the tube, the stop member can be manually or automatically expanded to prevent migration of the filter over the distal end of the guidewire. In the expanded position, the stop member has an outer dimension which is larger than the internal dimension of the channel through the tube 11, but the outer dimension of the expanded stop member is radially spaced from the inner wall 36 of the blood vessel. This is important as contact by the stop member with the vessel wall would dislodge plaque downstream of the filter 10 as the guidewire moves during an intervascular procedure.
With the stop member 19 in the expanded position, the guidewire 12 can still move longitudinally relative to the filter 10, but may not be withdrawn from the filter nor may the filter migrate over the distal end of the guidewire. A number of stop member structures will subsequently be discussed, but the stop member could be formed of two or more short arms 21 and 23 secured at one end to the guidewire 12. These arms can be constructed of spring metal or of nitinol so that they lie flat against the guidewire as it passes through the catheter 34 and spring outwardly as the guidewire and filter leave the catheter.
Referring now to
The central section 44 of the frame 42 includes a plurality of interconnected cells 54 which are substantially equal in size and which are defined by spaced sidewalls 56 and 58 which extend substantially parallel to the tube 50 and the longitudinal axis of the filter. Adjacent cells 54 in a row of cells extending around the central tube 50 are connected together by their adjacent sidewalls 56 and 58, and these sidewalls remain substantially parallel to the tube 50 in both the expanded and collapsed configuration of the filter 40 as illustrated in
The proximal end section 46 and distal end section 48 of the frame 42 are formed of cells 68 with tapered sidewalls 70 and 72 which extend at an angle to the central tube 50 to form the tapered conical end sections of the frame. Proximal end section 46 of the frame is secured to the tube 50 by a coupling 74, and distal end section 48 is secured to a coupling 76 which slides on the tube 50. The couplings 74 and 76 are provided with radiopaque markers 78 and 80 respectively.
Fine mesh filter material 82 of the type previously described for the filter 10 is positioned within the central and distal sections of the frame 42. This filter material is bonded to at least the first row of cells 54 in the proximal end of the central section 44 of the frame, and at the distal end of the frame the filter material is secured to the tube 50 adjacent to the coupling 76 by a coupling 84. Thus the filter material forms a cone when the filter 40 is expanded, and the open proximal end of the cone is positively closed when the proximal end row of cells of the central section 44 collapse against the tube 50.
As shown in
With reference now to
With reference to
The grappling hooks 116 may be extended and retracted through openings 104 formed on opposite sides of the guidewire which open into the channel 102. The grappling hooks may be formed of spring metal strips which curl outwardly when the hooks are extended or may be formed of strips of thermal shape memory material such as nitinol having a temperature transition level such that the hooks curl to the configuration shown in
Alternatively, as illustrated in
In accordance with yet another embodiment of the present invention, the stop mechanism 100 may take on the form of barbs 120 which are extendable and retractable with respect to the guidewire 12. Again a mechanism which is moved axially with respect to the guidewire 12 may be utilized in order to extend and retract the barbs 120 with respect to the guidewire 12. The barbs 120 when extended would be of a dimension greater than that of the tube 11 of the filter or intervascular device and when retracted would be permitted to readily pass through the tube 11.
The barbs 120 may be formed of spring metal with each having an end secured at 122 to the guidewire 12. These barbs, when retracted, lie within depressions 124 formed in the exterior surface of the guidewire, and when released, the spring bias of the barbs causes them to extend outwardly as shown in FIG. 7. An elongate, flexible tether 126 is connected to the free end of each of the barbs 120 and passes through a hole 128 into the channel 102 in the guidewire 12. When the tethers 126 are drawn toward the proximal end of the guidewire, the barbs 120 are retracted into the depressions 124.
In
Each boss element extends through an opening 136 in the guidewire and is attached to a mounting arm 138 secured within the channel 102. The mounting arms 138 spring bias the bosses 130 into the channel 120, but when the actuator 132 is moved toward the distal end 106 of the guidewire, the cam surface 134 forces the bosses outwardly against the spring bias through the openings 136.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/155,090 filed on Sep. 22, 1999.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4425908 | Simon | Jan 1984 | A |
4817600 | Herms et al. | Apr 1989 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4921484 | Hillstead | May 1990 | A |
4985014 | Orejola | Jan 1991 | A |
5030199 | Barwick et al. | Jul 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5042976 | Ishitsu et al. | Aug 1991 | A |
5057114 | Wittich et al. | Oct 1991 | A |
5073166 | Parks et al. | Dec 1991 | A |
5108418 | Lefebvre | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5112310 | Grobe | May 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5176687 | Hasson et al. | Jan 1993 | A |
5190528 | Fonger et al. | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5242462 | El-Nounou et al. | Sep 1993 | A |
5284488 | Sideris | Feb 1994 | A |
5312341 | Turi | May 1994 | A |
5312417 | Wilk | May 1994 | A |
5357979 | Imran | Oct 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5370657 | Irie | Dec 1994 | A |
5370661 | Branch | Dec 1994 | A |
5403338 | Milo | Apr 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5464408 | Duc | Nov 1995 | A |
5507811 | Koike et al. | Apr 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5545138 | Fugoso et al. | Aug 1996 | A |
5577299 | Thompson et al. | Nov 1996 | A |
5578045 | Das | Nov 1996 | A |
5601595 | Smith | Feb 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5667525 | Ishibashi | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5683411 | Kavteladze et al. | Nov 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5709707 | Lock et al. | Jan 1998 | A |
5720754 | Middleman et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5746765 | Kleshinski et al. | May 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5836968 | Simon et al. | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5853420 | Chevillon et al. | Dec 1998 | A |
5868753 | Schatz | Feb 1999 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5902317 | Kleshinski et al. | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6007558 | Ravenscroft et al. | Dec 1999 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6030007 | Bassily et al. | Feb 2000 | A |
6030405 | Zarbatany et al. | Feb 2000 | A |
6056760 | Koike et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6086610 | Duerig et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6106532 | Koike et al. | Aug 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6149664 | Kurz | Nov 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6203559 | Davis et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6213976 | Trerotola | Apr 2001 | B1 |
6214029 | Thill et al. | Apr 2001 | B1 |
6216696 | Van den Berg | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6221092 | Koike et al. | Apr 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6258026 | Ravenscroft et al. | Jul 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6342064 | Koike et al. | Jan 2002 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6352531 | O'Connor et al. | Mar 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375671 | Kobayashi et al. | Apr 2002 | B1 |
6379368 | Corcoran et al. | Apr 2002 | B1 |
6440152 | Gainor et al. | Aug 2002 | B1 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
20010037129 | Thill | Nov 2001 | A1 |
20020099389 | Michler et al. | Jul 2002 | A1 |
20020120323 | Thompson et al. | Aug 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020183786 | Girton | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030208232 | Blaeser et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
WO9838920 | Sep 1998 | WO |
WO9839046 | Sep 1998 | WO |
WO9839053 | Sep 1998 | WO |
WO 03077733 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
60155090 | Sep 1999 | US |