A catheter is typically placed in a blood vessel of a patient using the Seldinger technique, which involves inserting a hollow needle into the blood vessel, inserting a guidewire into the needle, advancing the guidewire into the blood vessel, and removing the needle from the blood vessel leaving the guidewire in place. The catheter is then advanced over the guidewire until it is suitably placed with the patient's vasculature. The guidewire is then removed from the patient.
Guidewires for use in accordance with the Seldinger technique are typically packaged in a coiled-tube dispenser to keep the guidewires sterile and make handling the guidewires less cumbersome. However, inserting such a guidewire from a dispenser into a hollow needle requires two hands. In particular, one hand is required to hold both the needle and an engagement piece configured to guide the guidewire into the needle, while another hand is required to grip the guidewire and direct the guidewire from the dispenser into the needle. The more the guidewire is handled, the more opportunity for contamination or damage to the guidewire. In view of the foregoing, there is a need for better guidewire management in medical procedures such as those requiring the Seldinger technique.
Disclosed herein are guidewire-management devices and methods thereof that address the foregoing.
Disclosed herein is a guidewire-management device including, in some embodiments, a guidewire, a first sleeve, and a second sleeve. The first sleeve is configured for distally feeding the guidewire out of the guidewire-management device. The first sleeve is also configured for proximally feeding the guidewire into the guidewire-management device. The second sleeve is proximal of the first sleeve in the guidewire-management device. The second sleeve is configured for feeding the guidewire in concert with the first sleeve. At least a length of the guidewire extending between the first sleeve and the second sleeve is disposed within a sterile barrier configured to maintain sterility of the guidewire. The sterile barrier is a splittable casing configured to split off the guidewire while distally feeding the guidewire out of the guidewire-management device.
In some embodiments, the first sleeve has a distal portion configured as a male connector with a Luer taper for connecting the first sleeve to a complementary female connector.
In some embodiments, the first sleeve is configured to straighten the guidewire when proximally feeding the guidewire into the guidewire-management device.
In some embodiments, the first sleeve includes a seal configured to block fluid from entering or escaping the guidewire-management device when proximally feeding the guidewire into the guidewire-management device.
In some embodiments, the first sleeve has a proximal portion including a bore configured to house a distal portion of the sterile barrier.
In some embodiments, the second sleeve has a distal portion including a bore configured to house a proximal portion of the sterile barrier.
In some embodiments, the second sleeve has a proximal portion including another bore configured to stop an end of the guidewire from completely passing through the second sleeve.
In some embodiments, the guidewire has a distal portion including a T-shaped tip configured to straighten as the tip of the guidewire enters the first sleeve when proximally feeding the guidewire into the guidewire-management device.
In some embodiments, the guidewire has a proximal portion including a ball end configured to stop the guidewire from completely passing through the second sleeve.
In some embodiments, the guidewire-management device is configured to redispose the splittable casing over the guidewire while proximally feeding the guidewire into of the guidewire-management device.
Also disclosed herein is a guidewire-management device including, in some embodiments, a handle, a guidewire, a first sleeve formed in a distal portion of the handle, a second sleeve formed in a proximal portion of the handle, and a thumb wheel disposed under the guidewire between the first sleeve and the second sleeve. At least a length of the guidewire extending between the first sleeve and the second sleeve is disposed within a sterile barrier configured to maintain sterility of the guidewire. The sterile barrier is a splittable casing configured to split off the guidewire while distally feeding the guidewire out of the guidewire-management device. The thumb wheel is configured to assist in distally feeding the guidewire out of the guidewire-management device by way of the first sleeve. The thumb wheel is also configured to assist in proximally feeding the guidewire into the guidewire-management device by way of the first sleeve.
In some embodiments, the first sleeve has a distal portion configured as a male connector with a Luer taper for connecting the first sleeve to a complementary female connector.
In some embodiments, the first sleeve is configured to straighten a T-shaped tip in a distal portion of the guidewire as the tip of the guidewire enters the first sleeve when proximally feeding the guidewire into the guidewire-management device.
In some embodiments, the second sleeve has a proximal portion including a bore with a constriction configured to capture a ball end of the guidewire and stop the guidewire from completely passing through the second sleeve.
In some embodiments, the splittable casing is over an entirety of the guidewire excepting that within or distal to the first sleeve.
In some embodiments, the guidewire-management device further includes a guidewire conduit coupled to the second sleeve and a casing conduit coupled to both a first split sleeve in the distal portion of the handle and a second split sleeve in the proximal portion of the handle. The guidewire conduit is configured to distally feed the guidewire into the second sleeve. The casing conduit is configured to collect therein the splittable casing that splits off the guidewire while distally feeding the guidewire out of the guidewire-management device.
In some embodiments, the handle includes a channel configured to hold the guidewire conduit therein when the guidewire conduit is in a coiled configuration.
In some embodiments, the guidewire-management device further includes a guidewire-casing conduit coupled to both the second sleeve and a first split sleeve in the distal portion of the handle. The guidewire-casing conduit is configured to distally feed the guidewire into the second sleeve. The guidewire-casing conduit is also configured to collect therein by way of the first split sleeve the splittable casing that splits off the guidewire while distally feeding the guidewire out of the guidewire-management device.
In some embodiments, a distal end of the splittable casing that splits off the guidewire is configured to chase a proximal end of the guidewire around the guidewire-casing conduit while distally feeding the guidewire out of the guidewire-management device.
In some embodiments, the handle includes a channel configured to hold the guidewire-casing conduit therein when the guidewire-casing conduit is in a coiled configuration.
In some embodiments, the guidewire-management device further includes a flexible membrane extending from the distal portion of the handle, over the thumb wheel, and to the proximal portion of the handle. The flexible membrane is configured to be pressed down onto the thumb wheel for distally feeding the guidewire out of the guidewire-management device or proximally feeding the guidewire into the guidewire-management device.
These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail. In addition, this application is related to U.S. patent application Ser. No. 17/079,320, filed Oct. 23, 2020, which is incorporated by reference in its entirety into this application.
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.
With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.
As set forth above, there is a need for better guidewire management in medical procedures such as those requiring the Seldinger technique. Disclosed herein are guidewire-management devices and methods thereof that address the foregoing.
Guidewire-Management Devices
As shown, the guidewire-management device 100, 300, 600, or 700 includes a guidewire 102, a first sleeve 110, 610, or 710, and a second sleeve 120, 620, or 720.
The first sleeve 110, 610, or 710 is configured with a lumen for distally feeding, or advancing, the guidewire 102 out of the guidewire-management device 100, 300, 600, or 700. The first sleeve 110, 610, or 710 has a distal portion configured as a male connector with a Luer taper for connecting the first sleeve 110, 610, or 710 to a complementary female connector such as that of a hub of a hollow needle or a catheter. The male connector is configured such that when coupled to such a complementary female connector of, for example, the foregoing catheter, the guidewire-management device 100, 300, 600, or 700 forms a single unit with the catheter, thereby enabling the single unit to be held with one hand for guidewire management (e.g., distally feeding the guidewire 102 out of the guidewire-management device 100, 300, 600, or 700 into the catheter). (See
The first sleeve 110, 610, or 710 is also configured for proximally feeding, or withdrawing, the guidewire 102 into the guidewire-management device 100, 300, 600, or 700. The first sleeve 110, 610, or 710 is configured to straighten the guidewire 102 such as a T-shaped tip thereof when proximally feeding the guidewire 102 into the guidewire-management device 100, 300, 600, or 700. (See
The second sleeve 120, 620, or 720 is proximal of the first sleeve 110, 610, or 710 in the guidewire-management device 100, 300, 600, or 700 such that at least a length of the guidewire 102 extends between the first sleeve 110, 610, or 710 and the second sleeve 120, 620, or 720. At least the length of the guidewire 102 extending between the first sleeve 110, 610, or 710 and the second sleeve 120, 620, or 720 is disposed within the sterile barrier 104 or 304.
The second sleeve 120, 620, or 720 is configured with a lumen for feeding the guidewire 102 in concert with the first sleeve 110, 610, or 710 such as distally feeding the guidewire 102 out of the guidewire-management device 100, 300, 600, or 700. The second sleeve 120, 620, or 720 has a proximal portion optionally including a bore 122 into which the lumen of the second sleeve 120, 620, or 720 opens. For example, the second sleeve 120 has the proximal portion including the bore 122, whereas the second sleeve 620 or 720 has the proximal portion without such a bore. Whether or not the second sleeve 120, 620, or 720 includes such a bore, the second sleeve 120, 620, or 720 further includes a constriction 124, a recess 724, or a similar stopping means for stopping an end of the guidewire 102 such as a ball or slug end thereof from completely passing through the second sleeve 120, 620, or 720 when distally feeding the guidewire 102 out of the guidewire-management device 100, 300, 600, or 700. Since the constriction 124, the recess 724, or the similar stopping means is configured to stop the end of the guidewire 102 from completely passing through the second sleeve 120, 620, or 720, the constriction 124, the recess 724, or the similar stopping means is also configured to stop the guidewire from completely passing through the guidewire-management device 100, 300, 600, or 700 and into a patient where the guidewire 102 can be lost.
The second sleeve 120, 620, or 720 is also configured for proximally feeding the guidewire 102 into of the guidewire-management device 100, 300, 600, or 700 in concert with the first sleeve 110, 610, or 710. The second sleeve 120, 620, 720 has a distal portion including a bore 126, 626 (not shown), or 726 into which the lumen of the second sleeve 120, 620, or 720 opens. The bore 126, 626, or 726 is configured to house a proximal portion of the sterile barrier 104 or 304 or collect the proximal portion of the sterile barrier 104 or 304 when proximally feeding the guidewire 102 into of the guidewire-management device 100, 300, 600, or 700.
The guidewire 102 has a distal portion and a proximal portion.
The distal portion of the guidewire 102 can include a T-shaped tip configured to straighten as the tip of the guidewire 102 enters the first sleeve 110, 610, or 710 when proximally feeding the guidewire 102 into the guidewire-management device 100, 300, 600, or 700. When distally feeding the guidewire 102 out of the guidewire-management device 100, 300, 600, or 700, the T-shaped tip is configured to reform the ‘J’ shape upon release from its constriction (e.g., the first sleeve 110, 610, or 710). If the first sleeve 110, 610, or 710 is connected to a complementary female connector such as that of a hub of a hollow needle, the tip of the guidewire 102 does not reform the ‘J’ shape until the tip is distally beyond the needle such as in a blood vessel.
The proximal portion of the guidewire 102 can include a ball end configured to stop the guidewire 102 from completely passing through the second sleeve 120, 620, or 720 on account of the constriction 124, the recess 724, or the similar stopping means when distally feeding the guidewire 102 out the guidewire-management device 100, 300, 600, or 700.
The sterile barrier 104 or 304 is configured to maintain sterility of the guidewire 102 while the guidewire 102 is disposed therein. Importantly, the guidewire never needs to be touched by a clinician during a procedure, thereby preserving the sterility of the guidewire 102 as well as ensuring the clinician remains free from contact with bodily fluids.
The sterile barrier 104 is a pleated bag. The sterile barrier 104, or the bag 104, is configured to unpleat as it is drawn from the second sleeve 120 of the guidewire-management device 100 or pass through the second sleeve 620 or 720 of the guidewire-management device 600 or 700 while distally feeding the guidewire 102 out of the guidewire-management device 100, 600, or 700. The bag 104 is also configured to pleat as it is inserted into the first sleeve 110, 610, or 710 while distally feeding the guidewire 102 out of the guidewire-management device 100, 600, or 700. Likewise, the bag 104 is configured to unpleat as it is drawn from the first sleeve 110, 610, or 710 while proximally feeding the guidewire 102 into the guidewire-management device 100, 600, or 700. The bag 104 is also configured to pleat as it is inserted into the second sleeve 120 of the guidewire-management device 100 or pass through the second sleeve 620 or 720 of the guidewire-management device 600 or 700 while proximally feeding the guidewire 102 into the guidewire-management device 100, 600, or 700.
Advantageously, in guidewire-management devices such as the guidewire-management devices 600 and 700, a combination of a length of the bag 104 and a sealed or valved end thereof is configured to stop the end (e.g., ball end) of the guidewire 102 from passing through what would otherwise be an opening in a proximal end of the bag 104. Stopping the end of the guidewire 102 from passing through such an opening prevents the tip of the guidewire 102 from completely passing through the first sleeve 110 and reforming the T-shaped tip when proximally feeding the guidewire 102 into the guidewire-management device 600 or 700.
A method for distally feeding, or advancing, the guidewire 102 out of the guidewire-management device 100, 600, or 700 is set forth below. A method for proximally feeding, or withdrawing, the guidewire 102 into the guidewire-management device 100, 600, or 700 is also set forth below.
The sterile barrier 304 is a bellowed boot. The sterile barrier 304, or the boot 304, is configured to iteratively stretch from an equilibrium state and relax back into the equilibrium state while distally feeding the guidewire 102 out of the guidewire-management device 300. Likewise, the boot 304 is configured to iteratively stretch from an equilibrium state and relax back into the equilibrium state while proximally feeding the guidewire 102 into the guidewire-management device 300.
A method for distally feeding, or advancing, the guidewire 102 out of the guidewire-management device 300 is set forth below. A method for proximally feeding, or withdrawing, the guidewire 102 into the guidewire-management device 300 is also set forth below.
While not shown for any guidewire-management device of the guidewire-management devices 100, 300, 600, and 700, the sterile barrier 104 or 304 can alternatively be a splittable casing 904 over an entirety of the guidewire 102 or at least most of the guidewire 102, for example, excepting that within or distal to the first sleeve 110, 610, or 710. The splittable casing 904 is configured to split off the guidewire 102 while distally feeding the guidewire 102 out of a guidewire-management device. (See, for example, the guidewire-management devices 900, 1200, 1300, and 1500.) Some of the foregoing guidewire-management devices (e.g., the guidewire-management devices 1300 and 1500) are configured to insert the guidewire 102 into the splittable casing 904 while proximally feeding the guidewire 102 into the guidewire-management devices. The splittable casing 904 can include graduated markings thereon configured to indicate a length of the guidewire 102 from the tip thereof.
Adverting to
The guidewire conduit 150 can be opaque or translucent depending upon a chosen polymeric material. When the guidewire conduit 150 is translucent, the guidewire conduit 150 is configured for viewing the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 100 or 300 or proximally feeding the guidewire 102 into the guidewire-management device 100 or 300.
The guidewire conduit 150 has a proximal portion including the plug 152 configured to stop the ball end of the guidewire 102 from passing through what would otherwise be an opening in a proximal end of the guidewire conduit 150. Alternatively, the plug 152 is simply a crimped portion of the guidewire conduit 150 with the same effect. Stopping the ball end of the guidewire 102 from passing through such an opening prevents the tip of the guidewire 102 from completely passing through the first sleeve 110 and reforming the ‘J’-shaped tip when proximally feeding the guidewire 102 into the guidewire-management device 100 or 300.
Adverting to
The handle 640, 740, 940, 1240, 1340, or 1540 is ambidextrous in that it is configured to be held in either a right or left hand of a clinician. In addition, the handle 640, 740, 940, 1240, 1340, or 1540 is configured to be held in at least two different modes. The first mode, in which the clinician holds the handle 640, 740, 940, 1240, 1340, or 1540 like a person might hold the handle of a hammer, is a general mode for handling the guidewire-management device 600, 700, 900, 1200, 1300, or 1500. The second mode, in which the clinician repositions his or her thumb over the thumb wheel 642, 742, 942, 1242, 1342, or 1542, is an operational mode for advancing the guidewire 102 out of the guidewire-management device 600, 700, 900, 1200, 1300, or 1500 or withdrawing the guidewire 102 into the guidewire-management device 600, 700, 900, 1200, 1300, or 1500. Notwithstanding the foregoing, some clinicians might find it comfortable to hold the handle 640, 740, 940, 1240, 1340, or 1540 like a person might hold the barrel of a flashlight, thereby accessing both the first and second modes with less hand movement.
The handle 640, 1340, or 1540 includes a channel 641, 1341, or 1541 configured to hold a conduit therein. As set forth below, the conduit can be the guidewire conduit 1350 of the guidewire-management device 1300, the guidewire-casing conduit 1550 of the guidewire-management device 1500, or the like. Advantageously, such a channel can hold a conduit in a coiled configuration, thereby packing an otherwise elongate conduit into a compact space. While only the handles 640, 1340, and 1540 are shown with channels, any handle of the handles 740, 940, and 1240 can include a channel configured to hold a conduit. In addition, the handle 640, 1340, or 1540 need not include the channel 641, 1341, or 1541.
Notwithstanding possible differences in one or more design elements, the first sleeve 910, 1210, 1310, or 1510 is similar to the first sleeve 110, 610, or 710 set forth above. As such, the description set forth above for the first sleeves 110, 610, and 710 should be understood to extend to the first sleeves 910, 1210, 1310, and 1510 as if the first sleeves 910, 1210, 1310, and 1510 were included in the description of the first sleeves 110, 610, and 710.
Notwithstanding possible differences in one or more design elements, the second sleeve 920, 1220, 1320, or 1520 is similar to the second sleeve 120, 620, or 720 set forth above. As such, the description set forth above for the second sleeves 120, 620, and 720 should be understood to extend to the second sleeves 920, 1220, 1320, and 1520 as if the second sleeves 920, 1220, 1320, and 1520 were included in the description of the second sleeves 120, 620, and 720.
The thumb wheel 642, 742, 942, 1242, 1342, or 1542 can be rotatably mounted on an axle fixedly coupled to each side of the handle 640, 740, 940, 1240, 1340, or 1540 such that the thumb wheel 642, 742, 942, 1242, 1342, or 1542 rotates relative to both the axle and the handle 640, 740, 940, 1240, 1340, or 1540. Alternatively, the thumb wheel 642, 742, 942, 1242, 1342, or 1542 can include the axle (e.g., as a unitary piece) or be fixedly mounted on the axle, which, in turn, is rotatably coupled to each side of the handle 640, 740, 940, 1240, 1340, or 1540 such that a combination of the thumb wheel 642, 742, 942, 1242, 1342, or 1542 and the axle rotates with respect to the handle 640, 740, 940, 1240, 1340, or 1540. The thumb wheel 642, 742, 942, 1242, 1342, or 1542 is configured to assist in distally feeding the guidewire 102 out of the guidewire-management device 600, 700, 900, 1200, 1300, or 1500 by way of the first sleeve 610, 710, 910, 1210, 1310, or 1510. The thumb wheel 642, 742, 942, 1242, 1342, or 1542 is also configured to assist in proximally feeding the guidewire 102 into the guidewire-management device 600, 700, 900, 1200, 1300, or 1500 by way of the first sleeve 610, 710, 910, 1210, 1310, or 1510.
A method for distally feeding, or advancing, the guidewire 102 out of the guidewire-management device 600, 700, 900, 1200, 1300, or 1500 is set forth below. A method for proximally feeding, or withdrawing, the guidewire 102 into the guidewire-management device 600, 700, 900, 1200, 1300, or 1500 is also set forth below.
Adverting to
The first split sleeve 911 or 1211 splits off the first sleeve 910 or 1210 in the distal portion of the handle 940 or 1240. Like the lumen of the first sleeve 110, 610, or 710 set forth above, as well as that of the first sleeve 910 or 1210 by extension, the first split sleeve 911 or 1211 is configured with a lumen. Indeed, the lumen of the first split sleeve 911 or 1211 splits or furcates from the lumen of the first sleeve 910 or 1210, thereby forming a bifurcated lumen between the first sleeve 910 or 1210 and the first split sleeve 911 or 1211 in the distal portion of the handle 940 or 1240. Whereas the first sleeve 910 or 1210 is configured for at least distally feeding the guidewire 102 out of the guidewire-management device 900 or 1200, the first split sleeve 911 or 1211 is configured for discharging the splittable casing 904 that splits off the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 900 or 1200. In fact, the bifurcated lumen between the first sleeve 910 or 1210 and the first split sleeve 911 or 1211 is configured to facilitate splitting the splittable casing 904 off the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 900 or 1200.
Adverting to
The membrane 1206 is configured for distally feeding the guidewire 102 out of the guidewire-management device 1200 or proximally feeding the guidewire 102 into the guidewire-management device 1200. The membrane 1206 has sufficient flexibility for a medial portion of the membrane 1206 to be pressed down onto a proximal portion of the thumb wheel 1242, distally moved when the thumb wheel 1242 is rolled, and released back into an equilibrium state of the membrane 1206 for one or more additional rounds of the foregoing. Likewise, the membrane 1206 has sufficient flexibility for the medial portion of the membrane 1206 to be pressed down onto a distal portion of the thumb wheel 1242, proximally moved when the thumb wheel 1242 is rolled, and released back into the equilibrium state of the membrane 1206 for one or more additional rounds of the foregoing.
The membrane 1206 can have a low durometer, a degree of tackiness, or the like to facilitate gripping the guidewire 102 or a combination of the guidewire 102 within the bag 104 or splittable casing 904 for distally feeding the guidewire 102 out of the guidewire-management device 1200 or proximally feeding the guidewire 102 into the guidewire-management device 1200. As shown in
Adverting to
Notwithstanding possible differences in one or more design elements, the first split sleeve 1311 is similar to the first split sleeve 911 or 1211 set forth above. As such, the description set forth above for the first split sleeves 911 and 1211 should be understood to extend to the first split sleeve 1311 as if the first split sleeve 1311 were included in the description of the first split sleeves 911 or 1211.
The second split sleeve 1321 splits off the second sleeve 1320 in the distal portion of the handle 1340. Like the lumen of the second sleeve 120, 620, or 720 set forth above, as well as that of the second sleeve 1320 by extension, the second split sleeve 1321 is configured with a lumen. Indeed, the lumen of the second split sleeve 1321 splits or furcates from the lumen of the second sleeve 1320, thereby forming a bifurcated lumen between the second sleeve 1320 and the second split sleeve 1321 in the distal portion of the handle 1340. Similar to the channel 1341 of the handle 1340, which channel 1341 is configured to hold the guidewire conduit 1350 therein, the second split sleeve 1321 is configured to hold the casing conduit 1354 therein.
As set forth above, the thumb wheel 1342 is configured to assist in distally feeding the guidewire 102 out of the guidewire-management device 1300 by way of the first sleeve 1310. In concert with the thumb wheel 1342, the guidewire conduit 1350 is configured to distally feed the guidewire 102, or, more specifically, the guidewire 102 disposed in the splittable casing 904, into the second sleeve 1320. The guidewire conduit 1350 can be opaque or translucent depending upon a chosen polymeric material. When the guidewire conduit 1350 is translucent, the guidewire conduit 1350 is configured for viewing the guidewire 102 while distally feeding the guidewire 102 into the second sleeve 1320. In addition, the casing conduit 1354 is configured to collect therein the splittable casing 904 that splits off the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 1300. Like the guidewire conduit 1350, the casing conduit 1354 can be opaque or translucent depending upon a chosen polymeric material. When the casing conduit 1354 is translucent, the casing conduit 1354 is configured for viewing the splittable casing 904 that splits off the guidewire 102 and into the casing conduit 1354 while distally feeding the guidewire 102 out of the guidewire-management device 1300.
As further set forth above, the thumb wheel 1342 is also configured to assist in proximally feeding the guidewire 102 into the guidewire-management device 1300 by way of the first sleeve 1310. In concert with the thumb wheel 1342, the casing conduit 1354 is configured to feed the splittable casing 904 that split off the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 1300 into the first sleeve 1310 for combination with the guidewire 102 as the guidewire 102 is proximally fed into the guidewire-management device 1300. Again, the casing conduit 1354 can be opaque or translucent. When the casing conduit 1354 is translucent, the casing conduit 1354 is configured for viewing the splittable casing 904 while proximally feeding the splittable casing 904 into the guidewire-management device 1300 for combination with the guidewire 102. The guidewire conduit 1350 is configured to collect therein the combination of the guidewire 102 and splittable casing 904, preferably, the guidewire 102 redisposed in the splittable casing 904, while proximally feeding the guidewire 102 into the guidewire-management device 1300. Again, the guidewire conduit 1350 can be opaque or translucent. When the guidewire conduit 1350 is translucent, the guidewire conduit 1350 is configured for viewing the combination of the guidewire 102 and splittable casing 904 while proximally feeding the guidewire 102 into the guidewire-management device 1300.
Adverting to
Notwithstanding possible differences in one or more design elements, the first split sleeve 1511 is similar to the first split sleeve 911 or 1211 set forth above. As such, the description set forth above for the first split sleeves 911 and 1211 should be understood to extend to the first split sleeve 1511 as if the first split sleeve 1511 were included in the description of the first split sleeves 911 or 1211.
As set forth above, the thumb wheel 1542 is configured to assist in distally feeding the guidewire 102 out of the guidewire-management device 1500 by way of the first sleeve 1510. In concert with the thumb wheel 1542, the guidewire-casing conduit 1550 is configured to distally feed the guidewire 102, or, more specifically, the guidewire 102 disposed in the splittable casing 904, into the second sleeve 1520. The guidewire-casing conduit 1550 can be opaque or translucent depending upon a chosen polymeric material. When the guidewire-casing conduit 1550 is translucent, the guidewire-casing conduit 1550 is configured for viewing the guidewire 102 while distally feeding the guidewire 102 into the second sleeve 1520. In addition, the guidewire-casing conduit 1550 is configured to collect therein the splittable casing 904 that splits off the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 1500. A distal end of the splittable casing 904 that splits off the guidewire 102 is configured to chase the ball end of the guidewire 102 around the guidewire-casing conduit 1550 while distally feeding the guidewire 102 out of the guidewire-management device 1500. Indeed, when the guidewire-casing conduit 1550 is translucent, the guidewire-casing conduit 1550 is configured for viewing the splittable casing 904 chase the ball end of the guidewire 102 around the guidewire-casing conduit 1550 while distally feeding the guidewire 102 out of the guidewire-management device 1500.
As further set forth above, the thumb wheel 1542 is also configured to assist in proximally feeding the guidewire 102 into the guidewire-management device 1500 by way of the first sleeve 1510. In concert with the thumb wheel 1542, the guidewire-casing conduit 1550 is configured to feed the splittable casing 904 that split off the guidewire 102 while distally feeding the guidewire 102 out of the guidewire-management device 1500 into the first sleeve 1510 for combination with the guidewire 102 as the guidewire is proximally fed into the guidewire-management device 1500. Again, the guidewire-casing conduit 1550 can be opaque or translucent. When the guidewire-casing conduit 1550 is translucent, the guidewire-casing conduit 1550 is configured for viewing the splittable casing 904 while proximally feeding the splittable casing 904 into the guidewire-management device 1500 for combination with the guidewire 102. The guidewire-casing conduit 1550 is configured to collect therein the combination of the guidewire 102 and splittable casing 904, preferably, the guidewire 102 redisposed in the splittable casing 904, while proximally feeding the guidewire 102 into the guidewire-management device 1500. When the guidewire-casing conduit 1550 is translucent, the guidewire-casing conduit 1550 is configured for viewing the combination of the guidewire 102 and splittable casing 904 while proximally feeding the guidewire 102 into the guidewire-management device 1500.
Lastly,
Methods
A method of the guidewire-management device 100, 300, or 600 includes a connecting step of connecting the first sleeve 110 or 610 of the guidewire-management device 100, 300, or 600 to a hub of a medical device (e.g., a hollow needle) inserted into an insertion site of a patient.
The method further includes an advancing step of advancing the guidewire 102 of the guidewire-management device 100, 300, or 600 from the first sleeve 110 or 610 through the hub of the medical device and into the insertion site of the patient. The seal (e.g., the ‘O’-ring 114 or 714) in the first sleeve 110 or 610 blocks fluid (e.g., air) from escaping the guidewire-management device 100, 300, or 600 when advancing the guidewire 102 through the hub of the medical device and into the insertion site of the patient.
The advancing step can include pinching the guidewire 102 within the sterile barrier 104 or 304 and advancing the guidewire 102 into the first sleeve 110 by hand. The advancing can alternatively include pressing the guidewire 102 within the sterile barrier 104 onto the thumb wheel 742 and rolling the thumb wheel 742 to advance the guidewire 102 into the first sleeve 610.
Indeed, the guidewire 102 can be advanced into the first sleeve 110 or 610 and out of the guidewire-management device 100 or 600 by pinching a combination of the guidewire 102 within the bag 104 or pressing the guidewire 102 within the bag 104 against the thumb wheel 742, advancing the guidewire 102 into the first sleeve 110 by hand or by rolling the thumb wheel 742, releasing the combination of the guidewire 102 within the bag 104, and repeating the foregoing as necessary. The guidewire 102 can be advanced into the first sleeve 110 and out of the guidewire-management device 300 by pinching a combination of the guidewire 102 within the boot 304, advancing the guidewire 102 into the first sleeve 110 by hand, releasing the combination of the guidewire 102 within the boot 304, and repeating the foregoing as necessary.
The method can further include a ceasing step of ceasing to advance the guidewire 102 into the insertion site of the patient when the ball end of the guidewire 102 is captured in the constriction 124 of the bore 122 in the second sleeve 120 of the guidewire-management device 100 or 300. Likewise, the ceasing step can include ceasing to advance the guidewire 102 into the insertion site of the patient when the ball end of the guidewire 102 is captured in the recess 724 in the second sleeve 620 of the guidewire-management device 600.
The method further includes withdrawing the guidewire 102 from the insertion site of the patient through the hub of the medical device and into the first sleeve 110 or 610. The seal (e.g., the ‘O’-ring 114 or 714) in the first sleeve 110 or 610 blocks fluid (e.g., blood) from entering the guidewire-management device 100, 300, or 600 when withdrawing the guidewire 102 from the insertion site.
Indeed, the guidewire 102 can be withdrawn into the guidewire-management device 100 or 600 through the first sleeve 110 or 610 by pinching the combination of the guidewire 102 within the bag 104 or pressing the guidewire 102 within the bag 104 against the thumb wheel 742, withdrawing the guidewire 102 from the first sleeve 110 by hand or by rolling the thumb wheel 742, releasing the combination of the guidewire 102 within the bag 104, and repeating the foregoing as necessary. The guidewire 102 can be withdrawn into the guidewire-management device 300 through the first sleeve 110 by pinching the combination of the guidewire 102 within the boot 304, withdrawing the guidewire 102 from the first sleeve 110 by hand, releasing the combination of the guidewire 102 within the boot 304, and repeating the foregoing as necessary.
The method can further include ceasing to withdraw the guidewire 102 from the insertion site of the patient when the proximal end or the ball end of the guidewire 102 abuts the plug 152 in the proximal portion of the guidewire conduit 150 of the guidewire-management device 100 or 300.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application claims the benefit of priority to U.S. Patent Application No. 62/989,371, filed Mar. 13, 2020, which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
1013691 | Shields | Jan 1912 | A |
3225762 | Guttman | Dec 1965 | A |
3890976 | Bazell et al. | Jun 1975 | A |
4051849 | Poncy et al. | Oct 1977 | A |
4205675 | Vaillancourt | Jun 1980 | A |
4292970 | Hession, Jr. | Oct 1981 | A |
4468224 | Enzmann et al. | Aug 1984 | A |
4525157 | Vaillancourt | Jun 1985 | A |
4581019 | Curelaru et al. | Apr 1986 | A |
4637404 | Gessman | Jan 1987 | A |
4840613 | Balbierz | Jun 1989 | A |
4935008 | Lewis, Jr. | Jun 1990 | A |
4995872 | Ferrara | Feb 1991 | A |
5017259 | Kohsai | May 1991 | A |
5040548 | Yock | Aug 1991 | A |
5057073 | Martin | Oct 1991 | A |
5112312 | Luther | May 1992 | A |
5120317 | Luther | Jun 1992 | A |
5188593 | Martin | Feb 1993 | A |
5195962 | Martin et al. | Mar 1993 | A |
5207650 | Martin | May 1993 | A |
5263938 | Orr | Nov 1993 | A |
5267958 | Buchbinder et al. | Dec 1993 | A |
5273042 | Lynch et al. | Dec 1993 | A |
5282479 | Havran | Feb 1994 | A |
5295970 | Clinton et al. | Mar 1994 | A |
5306247 | Pfenninger | Apr 1994 | A |
5328472 | Steinke et al. | Jul 1994 | A |
5350358 | Martin | Sep 1994 | A |
5363847 | Viera | Nov 1994 | A |
5368567 | Lee | Nov 1994 | A |
5378230 | Mahurkar | Jan 1995 | A |
5380290 | Makower et al. | Jan 1995 | A |
5389087 | Miraki | Feb 1995 | A |
5420882 | Black | May 1995 | A |
5439449 | Mapes et al. | Aug 1995 | A |
5443457 | Ginn et al. | Aug 1995 | A |
5489271 | Andersen | Feb 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5683370 | Luther et al. | Nov 1997 | A |
5718678 | Fleming, III | Feb 1998 | A |
5772636 | Brimhall et al. | Jun 1998 | A |
5827202 | Miraki et al. | Oct 1998 | A |
5885251 | Luther | Mar 1999 | A |
5919164 | Andersen | Jul 1999 | A |
5947940 | Beisel | Sep 1999 | A |
5957893 | Luther et al. | Sep 1999 | A |
6123084 | Jandak et al. | Sep 2000 | A |
6206849 | Martin et al. | Mar 2001 | B1 |
6228062 | Howell et al. | May 2001 | B1 |
6475187 | Gerberding | Nov 2002 | B1 |
6606515 | Windheuser et al. | Aug 2003 | B1 |
6716228 | Tal | Apr 2004 | B2 |
6726659 | Stocking et al. | Apr 2004 | B1 |
6819951 | Patel et al. | Nov 2004 | B2 |
6821287 | Jang | Nov 2004 | B1 |
6926692 | Katoh et al. | Aug 2005 | B2 |
6962575 | Tal | Nov 2005 | B2 |
6994693 | Tal | Feb 2006 | B2 |
6999809 | Currier et al. | Feb 2006 | B2 |
7025746 | Tal | Apr 2006 | B2 |
7029467 | Currier et al. | Apr 2006 | B2 |
7037293 | Carrillo et al. | May 2006 | B2 |
7074231 | Jang | Jul 2006 | B2 |
7141050 | Deal et al. | Nov 2006 | B2 |
7144386 | Korkor et al. | Dec 2006 | B2 |
7311697 | Osborne | Dec 2007 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7377910 | Katoh et al. | May 2008 | B2 |
7390323 | Jang | Jun 2008 | B2 |
D600793 | Bierman et al. | Sep 2009 | S |
D601242 | Bierman et al. | Sep 2009 | S |
D601243 | Bierman et al. | Sep 2009 | S |
7594911 | Powers et al. | Sep 2009 | B2 |
7691093 | Brimhall | Apr 2010 | B2 |
7722567 | Tal | May 2010 | B2 |
D617893 | Bierman et al. | Jun 2010 | S |
D624643 | Bierman et al. | Sep 2010 | S |
7819889 | Healy et al. | Oct 2010 | B2 |
7857770 | Raulerson et al. | Dec 2010 | B2 |
7857788 | Racz | Dec 2010 | B2 |
D630729 | Bierman et al. | Jan 2011 | S |
7909797 | Kennedy, II et al. | Mar 2011 | B2 |
7909811 | Agro et al. | Mar 2011 | B2 |
7922696 | Tal et al. | Apr 2011 | B2 |
7938820 | Webster et al. | May 2011 | B2 |
7967834 | Tal et al. | Jun 2011 | B2 |
7985204 | Katoh et al. | Jul 2011 | B2 |
8073517 | Burchman | Dec 2011 | B1 |
8105286 | Anderson et al. | Jan 2012 | B2 |
8192402 | Anderson et al. | Jun 2012 | B2 |
8202251 | Bierman et al. | Jun 2012 | B2 |
8206356 | Katoh et al. | Jun 2012 | B2 |
8372107 | Tupper | Feb 2013 | B2 |
8377006 | Tal et al. | Feb 2013 | B2 |
8454577 | Joergensen et al. | Jun 2013 | B2 |
8585858 | Kronfeld et al. | Nov 2013 | B2 |
8657790 | Tal et al. | Feb 2014 | B2 |
8672888 | Tal | Mar 2014 | B2 |
8696645 | Tal et al. | Apr 2014 | B2 |
8784362 | Boutilette et al. | Jul 2014 | B2 |
8827958 | Bierman et al. | Sep 2014 | B2 |
8876704 | Golden et al. | Nov 2014 | B2 |
8882713 | Call et al. | Nov 2014 | B1 |
8900192 | Anderson et al. | Dec 2014 | B2 |
8900207 | Uretsky | Dec 2014 | B2 |
8915884 | Tal et al. | Dec 2014 | B2 |
8956327 | Bierman et al. | Feb 2015 | B2 |
9023093 | Pal | May 2015 | B2 |
9138252 | Bierman et al. | Sep 2015 | B2 |
9180275 | Helm | Nov 2015 | B2 |
9265920 | Rundquist et al. | Feb 2016 | B2 |
9272121 | Piccagli | Mar 2016 | B2 |
9522254 | Belson | Dec 2016 | B2 |
9554785 | Walters et al. | Jan 2017 | B2 |
9566087 | Bierman et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9675784 | Belson | Jun 2017 | B2 |
9713695 | Bunch et al. | Jul 2017 | B2 |
9764117 | Bierman et al. | Sep 2017 | B2 |
9770573 | Golden et al. | Sep 2017 | B2 |
9814861 | Boutillette et al. | Nov 2017 | B2 |
9820845 | von Lehe et al. | Nov 2017 | B2 |
9861383 | Clark | Jan 2018 | B2 |
9884169 | Bierman et al. | Feb 2018 | B2 |
9889275 | Voss et al. | Feb 2018 | B2 |
9913585 | McCaffrey et al. | Mar 2018 | B2 |
9913962 | Tal et al. | Mar 2018 | B2 |
9981113 | Bierman | May 2018 | B2 |
10010312 | Tegels | Jul 2018 | B2 |
10065020 | Gaur | Sep 2018 | B2 |
10098724 | Adams et al. | Oct 2018 | B2 |
10111683 | Tsamir et al. | Oct 2018 | B2 |
10118020 | Avneri et al. | Nov 2018 | B2 |
10130269 | McCaffrey et al. | Nov 2018 | B2 |
10220184 | Clark | Mar 2019 | B2 |
10220191 | Belson et al. | Mar 2019 | B2 |
10265508 | Baid | Apr 2019 | B2 |
10271873 | Steingisser et al. | Apr 2019 | B2 |
10376675 | Mitchell et al. | Aug 2019 | B2 |
10675440 | Abitabilo et al. | Jun 2020 | B2 |
10806901 | Burkholz et al. | Oct 2020 | B2 |
11285301 | Ornelas Vargas et al. | Mar 2022 | B2 |
20020040231 | Wysoki | Apr 2002 | A1 |
20020198492 | Miller et al. | Dec 2002 | A1 |
20030036712 | Heh | Feb 2003 | A1 |
20030060863 | Dobak | Mar 2003 | A1 |
20030088212 | Tal | May 2003 | A1 |
20030100849 | Jang | May 2003 | A1 |
20030153874 | Tal | Aug 2003 | A1 |
20030158514 | Tal | Aug 2003 | A1 |
20040116901 | Appling | Jun 2004 | A1 |
20040193093 | Desmond | Sep 2004 | A1 |
20040230178 | Wu | Nov 2004 | A1 |
20050004554 | Osborne | Jan 2005 | A1 |
20050245847 | Schaeffer | Nov 2005 | A1 |
20050245882 | Elkins et al. | Nov 2005 | A1 |
20050283221 | Mann et al. | Dec 2005 | A1 |
20060009740 | Higgins et al. | Jan 2006 | A1 |
20060064036 | Osborne et al. | Mar 2006 | A1 |
20060116629 | Tal et al. | Jun 2006 | A1 |
20060129100 | Tal | Jun 2006 | A1 |
20060129130 | Tal et al. | Jun 2006 | A1 |
20070276288 | Khaw | Nov 2007 | A1 |
20080045894 | Perchik et al. | Feb 2008 | A1 |
20080058839 | Nobles et al. | Mar 2008 | A1 |
20080091137 | Reavill | Apr 2008 | A1 |
20080125744 | Treacy | May 2008 | A1 |
20080125748 | Patel | May 2008 | A1 |
20080262430 | Anderson et al. | Oct 2008 | A1 |
20080262431 | Anderson et al. | Oct 2008 | A1 |
20080294111 | Tal et al. | Nov 2008 | A1 |
20080312578 | DeFonzo et al. | Dec 2008 | A1 |
20090105653 | Spenser et al. | Apr 2009 | A1 |
20090221961 | Tal et al. | Sep 2009 | A1 |
20090227900 | Kim et al. | Sep 2009 | A1 |
20090270889 | Tal et al. | Oct 2009 | A1 |
20100256487 | Hawkins et al. | Oct 2010 | A1 |
20100305474 | DeMars et al. | Dec 2010 | A1 |
20110004162 | Tal | Jan 2011 | A1 |
20110009827 | Bierman et al. | Jan 2011 | A1 |
20110021994 | Anderson et al. | Jan 2011 | A1 |
20110066142 | Tal et al. | Mar 2011 | A1 |
20110106057 | Hamboly | May 2011 | A1 |
20110144620 | Tal | Jun 2011 | A1 |
20110152836 | Riopelle et al. | Jun 2011 | A1 |
20110202006 | Bierman et al. | Aug 2011 | A1 |
20110251559 | Tal et al. | Oct 2011 | A1 |
20110270192 | Anderson et al. | Nov 2011 | A1 |
20120004665 | Defossez et al. | Jan 2012 | A1 |
20120041371 | Tal et al. | Feb 2012 | A1 |
20120065590 | Bierman et al. | Mar 2012 | A1 |
20120071857 | Goldfarb et al. | Mar 2012 | A1 |
20120078231 | Hoshinouchi | Mar 2012 | A1 |
20120130411 | Tal et al. | May 2012 | A1 |
20120130415 | Tal et al. | May 2012 | A1 |
20120157854 | Kurrus et al. | Jun 2012 | A1 |
20120220942 | Hall et al. | Aug 2012 | A1 |
20120283640 | Anderson | Nov 2012 | A1 |
20120316500 | Bierman et al. | Dec 2012 | A1 |
20130053826 | Shevgoor | Feb 2013 | A1 |
20130123704 | Bierman et al. | May 2013 | A1 |
20130158338 | Kelly et al. | Jun 2013 | A1 |
20130188291 | Vardiman | Jul 2013 | A1 |
20130237931 | Tal et al. | Sep 2013 | A1 |
20130306079 | Tracy | Nov 2013 | A1 |
20140025036 | Bierman et al. | Jan 2014 | A1 |
20140081210 | Bierman et al. | Mar 2014 | A1 |
20140100552 | Gallacher et al. | Apr 2014 | A1 |
20140207052 | Tal et al. | Jul 2014 | A1 |
20140207069 | Bierman et al. | Jul 2014 | A1 |
20140214005 | Belson | Jul 2014 | A1 |
20140257111 | Yamashita et al. | Sep 2014 | A1 |
20140276432 | Bierman et al. | Sep 2014 | A1 |
20140276599 | Cully et al. | Sep 2014 | A1 |
20150045695 | Simpson et al. | Feb 2015 | A1 |
20150080939 | Adams et al. | Mar 2015 | A1 |
20150112310 | Call et al. | Apr 2015 | A1 |
20150126930 | Bierman et al. | May 2015 | A1 |
20150148595 | Bagwell et al. | May 2015 | A1 |
20150190168 | Bierman et al. | Jul 2015 | A1 |
20150196210 | McCaffrey et al. | Jul 2015 | A1 |
20150224287 | Bian et al. | Aug 2015 | A1 |
20150231364 | Blanchard et al. | Aug 2015 | A1 |
20150283357 | Lampropoulos et al. | Oct 2015 | A1 |
20150297867 | Howell et al. | Oct 2015 | A1 |
20150297868 | Tal et al. | Oct 2015 | A1 |
20150320969 | Haslinger et al. | Nov 2015 | A1 |
20150351793 | Bierman et al. | Dec 2015 | A1 |
20150359549 | Lenker et al. | Dec 2015 | A1 |
20150359998 | Carmel et al. | Dec 2015 | A1 |
20160074628 | Smith et al. | Mar 2016 | A1 |
20160082223 | Barnell | Mar 2016 | A1 |
20160114124 | Tal | Apr 2016 | A1 |
20160220786 | Mitchell et al. | Aug 2016 | A1 |
20160325073 | Davies et al. | Nov 2016 | A1 |
20160338728 | Tal | Nov 2016 | A1 |
20160346503 | Jackson et al. | Dec 2016 | A1 |
20170014599 | Crisman | Jan 2017 | A1 |
20170035990 | Swift | Feb 2017 | A1 |
20170072165 | Lim et al. | Mar 2017 | A1 |
20170080189 | Tao et al. | Mar 2017 | A1 |
20170128700 | Roche Rebollo | May 2017 | A1 |
20170172653 | Urbanski et al. | Jun 2017 | A1 |
20170239443 | Abitabilo et al. | Aug 2017 | A1 |
20170273713 | Shah et al. | Sep 2017 | A1 |
20170296792 | Ornelas Vargas et al. | Oct 2017 | A1 |
20170326339 | Bailey et al. | Nov 2017 | A1 |
20170361070 | Hivert | Dec 2017 | A1 |
20180021545 | Mitchell et al. | Jan 2018 | A1 |
20180116690 | Sarabia et al. | May 2018 | A1 |
20180117284 | Appling et al. | May 2018 | A1 |
20180133438 | Hulvershorn et al. | May 2018 | A1 |
20180154062 | DeFonzo et al. | Jun 2018 | A1 |
20180154112 | Chan et al. | Jun 2018 | A1 |
20180296799 | Horst et al. | Oct 2018 | A1 |
20180296804 | Bierman | Oct 2018 | A1 |
20190015646 | Matlock et al. | Jan 2019 | A1 |
20190046770 | Shields | Feb 2019 | A1 |
20190060616 | Solomon | Feb 2019 | A1 |
20190076167 | Fantuzzi et al. | Mar 2019 | A1 |
20190134349 | Cohn et al. | May 2019 | A1 |
20190255294 | Mitchell et al. | Aug 2019 | A1 |
20190276268 | Akingba | Sep 2019 | A1 |
20190321590 | Burkholz et al. | Oct 2019 | A1 |
20200016374 | Burkholz et al. | Jan 2020 | A1 |
20210069471 | Howell | Mar 2021 | A1 |
20210085927 | Howell | Mar 2021 | A1 |
20210121661 | Howell | Apr 2021 | A1 |
20210121667 | Howell | Apr 2021 | A1 |
20210228843 | Howell et al. | Jul 2021 | A1 |
20210307854 | Bernhard et al. | Oct 2021 | A1 |
20210322729 | Howell | Oct 2021 | A1 |
20210330941 | Howell et al. | Oct 2021 | A1 |
20210330942 | Howell | Oct 2021 | A1 |
20210361915 | Howell et al. | Nov 2021 | A1 |
20210402149 | Howell | Dec 2021 | A1 |
20210402153 | Howell et al. | Dec 2021 | A1 |
20220001138 | Howell | Jan 2022 | A1 |
20220032013 | Howell et al. | Feb 2022 | A1 |
20220176082 | Mckinnon et al. | Jun 2022 | A1 |
20220193379 | Howell | Jun 2022 | A1 |
20220409275 | Hoang et al. | Dec 2022 | A1 |
20230128853 | Lindekugel et al. | Apr 2023 | A1 |
20230129318 | Lindekugel et al. | Apr 2023 | A1 |
20230277812 | Howell et al. | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
202526749 | Nov 2012 | CN |
0641571 | Mar 1995 | EP |
0730880 | Sep 1996 | EP |
2061385 | May 2009 | EP |
1458437 | Mar 2010 | EP |
2248549 | Nov 2010 | EP |
2319576 | May 2011 | EP |
2366422 | Sep 2011 | EP |
2433670 | Mar 2012 | EP |
2486880 | Aug 2012 | EP |
2486881 | Aug 2012 | EP |
2486951 | Aug 2012 | EP |
2512576 | Oct 2012 | EP |
2152348 | Feb 2015 | EP |
3205368 | Aug 2017 | EP |
3093038 | May 2019 | EP |
2260897 | Sep 2019 | EP |
1273547 | May 1972 | GB |
9306878 | Apr 1993 | WO |
9421315 | Sep 1994 | WO |
9532009 | Nov 1995 | WO |
9844979 | Oct 1998 | WO |
9853871 | Dec 1998 | WO |
9912600 | Mar 1999 | WO |
9926681 | Jun 1999 | WO |
0205886 | Jan 2002 | WO |
2003008020 | Jan 2003 | WO |
2003057272 | Jul 2003 | WO |
2003066125 | Aug 2003 | WO |
2006055288 | May 2006 | WO |
2006055780 | May 2006 | WO |
2006096262 | Sep 2006 | WO |
2007046850 | Apr 2007 | WO |
2008005618 | Jan 2008 | WO |
2008033983 | Mar 2008 | WO |
2008092029 | Jul 2008 | WO |
2008107869 | Sep 2008 | WO |
2008131300 | Oct 2008 | WO |
2008131289 | Oct 2008 | WO |
2008133808 | Nov 2008 | WO |
2009114833 | Sep 2009 | WO |
2009114837 | Sep 2009 | WO |
2010048449 | Apr 2010 | WO |
2010056906 | May 2010 | WO |
2010083467 | Jul 2010 | WO |
2010132608 | Nov 2010 | WO |
2011081859 | Jul 2011 | WO |
2011097639 | Aug 2011 | WO |
2011146764 | Nov 2011 | WO |
2012068162 | May 2012 | WO |
2012068166 | May 2012 | WO |
2012135761 | Oct 2012 | WO |
2012162677 | Nov 2012 | WO |
2013026045 | Feb 2013 | WO |
2013138519 | Sep 2013 | WO |
2014006403 | Jan 2014 | WO |
2014100392 | Jun 2014 | WO |
2014113257 | Jul 2014 | WO |
2014152005 | Sep 2014 | WO |
2014197614 | Dec 2014 | WO |
2015057766 | Apr 2015 | WO |
2016110824 | Jul 2016 | WO |
2016123278 | Aug 2016 | WO |
2016139590 | Sep 2016 | WO |
2016139597 | Sep 2016 | WO |
2016176065 | Nov 2016 | WO |
2018089275 | May 2018 | WO |
2018089285 | May 2018 | WO |
2018089385 | May 2018 | WO |
2018191547 | Oct 2018 | WO |
2018213148 | Nov 2018 | WO |
2018218236 | Nov 2018 | WO |
2019146026 | Aug 2019 | WO |
2019199734 | Oct 2019 | WO |
2020069395 | Apr 2020 | WO |
2021050302 | Mar 2021 | WO |
2021077103 | Apr 2021 | WO |
2021062023 | Apr 2021 | WO |
2021081205 | Apr 2021 | WO |
2021086793 | May 2021 | WO |
2022120068 | Jun 2022 | WO |
2022133138 | Jun 2022 | WO |
2023069600 | Apr 2023 | WO |
2023069726 | Apr 2023 | WO |
2023167940 | Sep 2023 | WO |
Entry |
---|
PCT/US2021/061638 filed Dec. 2, 2021 International Search Report and Written Opinion dated Apr. 12, 2022. |
PCT/US2021/063903 filed Dec. 16, 2021, International Search Report and Written Opinion dated Jun. 28, 2022. |
PCT/US2020/057202 filed Oct. 23, 2020 International Preliminary Report on Patentability dated Apr. 26, 2022. |
PCT/US2020/057202 filed Oct. 23, 2020 International Search Report and Written Opinion dated Jan. 21, 2021. |
PCT/US2021/022208 filed Mar. 12, 2021 International Search Report and Written Opinion dated Sep. 3, 2021. |
PCT/US2022/047252 filed Oct. 20, 2022 International Search Report and Written Opinion dated Mar. 21, 2023. |
PCT/US2022/047444 filed Oct. 21, 2022 International Search Report and Written Opinion dated Mar. 7, 2023. |
U.S. Appl. No. 17/079,320, filed Oct. 23, 2020 Restriction Requirement dated Mar. 29, 2023. |
PCT/US2023/014295 filed Mar. 1, 2023 International Search Report and Written Opinion dated Jun. 23, 2023. |
U.S. Appl. No. 17/079,320, filed Oct. 23, 2020 Non-Final Office Action dated Jul. 28, 2023. |
PCT/US2021/022226 filed Mar. 12, 2021 International Search Report and Written Opinion dated Oct. 21, 2021. |
U.S. Appl. No. 17/200,630, filed Mar. 12, 2021 Non-Final Office Action dated Sep. 27, 2023. |
U.S. Appl. No. 17/200,630, filed Mar. 12, 2021 Restriction Requirement dated Jul. 14, 2023. |
U.S. Appl. No. 17/079,320, filed Oct. 23, 2020 Final Office Action dated Jan. 18, 2024. |
U.S. Appl. No. 17/200,630, filed Mar. 12, 2021 Final Office Action dated Feb. 5, 2024. |
Strittmatter, F., Eisel, M., Brinkmann, R., Cordes, J., Lange, B., & Sroka, R., “Laser Induced Lithotripsy: a Review, insight into laboratory work, and lessons learned.” Translational Biophotonics, 2(1-2), e201900029. (2020). |
Traxer, O., & Keller, E. X., “Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium: YAG laser.” World Journal of Urology, 38, 1883-1894. (2020). |
U.S. Appl. No. 17/079,320, filed Oct. 23, 2020 Advisory Action dated Apr. 11, 2024. |
U.S. Appl. No. 17/079,320, filed Oct. 23, 2020 Non-Final Office Action dated May 7, 2024. |
U.S. Appl. No. 17/200,630, filed Mar. 12, 2021 Advisory Action dated May 10, 2024. |
U.S. Appl. No. 17/200,630, filed Mar. 12, 2021 Non-Final Office Action dated Jun. 4, 2024. |
Number | Date | Country | |
---|---|---|---|
20210283381 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62989371 | Mar 2020 | US |