The present invention generally relates to the maneuvering of a guidewire in surgical procedures where an ‘endovascular’ technique is employed to access vasculature of a patient. Additional background information can be found in U.S. Pat. No. 5,634,475, the contents of which are hereby incorporated by reference.
A guidewire is typically a semi-rigid probe used as an initial access point for performing am endovascular procedure. The guidewire is twisted, bent, and otherwise maneuvered through an access vessel in order to portion the guidewire tip at a location a surgeon would like to treat.
Convention guidewire manipulation methods often involve applying “torque” to the guidewire to aid its passage through tortuous and clogged vessels. This maneuver is performed by quickly and stiffly spinning the wire in one's fingertips. This torque helps curve or manipulate the guidewire through an obstruction or difficult passageway. This technique is also known as “helicoptering”, alluding to the spinning blades of a helicopter.
However, applying torque remains difficult since guidewires are extremely thin in diameter and typically have a low friction surface. Additionally, the gloves of a surgeon are often coated with blood or saline solution, further increasing the slackness of the guidewire. In this respect, helicoptering and similar maneuvers can be time consuming and inefficient. This inefficiency not only frustrates surgeons but also increases procedure times and therefore procedure costs.
Present guidewires designs attempt to address these problems by providing a torque handle consisting of a plastic tube that is about 0.5 inches in diameter and three inches long that slips over the proximal end of the guidewire and looks in place. The surgeon manipulates this torque device (Olcott Torque Device) to facilitate rotational motion of the guidewire and grip.
These current techniques and practices have several problems. First, the current torque devices require a surgeon to concentrate on spinning the guidewire with the attached torque device. The spinning technique greatly depends on the ability of the user and can be difficult to learn. Thus, these devices remain inefficient and often highly dependent on the operator skill. Since it is highly desirably to place a guidewire quickly and therefore finish a procedure quickly, a more consistently controllable guidewire placement device that overcomes these disadvantages is desired.
It is therefore an object of the invention to provide a strong, non-slip grip on a guidewire.
It is another object of the invention to use a powered motor to spin a guidewire on a surgeon's command.
It is another object of the invention to spin the guidewire using a motorized guidewire spinning mechanism to provide optimal torque and technique that would thus be operator (i.e. surgeon) independent. For example, helicoptering with the spinning mechanism by rapidly twisting the guidewire about 180 degrees to the left and then rapidly spinning the guidewire to the right. In another example, rapidly spinning the guidewire in one direction.
It is another object of the invention to use a motorized mechanism to helicopter the guidewire in a number of different patterns dependant on the surgeon's need. Such patterns include, but are limited to a full clockwise rotation, a full counterclockwise rotation, continuous clockwise or counterclockwise rotations or any combination of the above.
It is another object of the invention to provide a vibration mechanism to allow the guidewire to vibrate to help the guidewire travel past a distal obstruction.
It is another object of the invention to utilize a roller mechanism to attain efficient traction on a guidewire. These rollers may be rubberized to provide traction in case the wire is slippery from liquids or due to a slick coating provided by the manufacturer.
It is another object of the invention to, via a roller system, allow for manual control of guide we spinning using a large cog-like manual control which would “torque” the guidewire using the surgeon's finger motion. Gears within the system may also be used to maximize the surgeon's finger motion efficiency. This manual control can be in addition to, or instead of, a motorized embodiment.
It is another object of the invention to use a lever-operated system to provide guidewire torque in an alternate embodiment with or without electric motor power. This system provides guidewire torque in a variety of patterns which mimics current surgical technique performed by hand.
In one preferred embodiment, the present invention is directed to a guidewire manipulation device for providing a user with guidewire manipulation techniques. Preferably, the guidewire manipulation device includes a lightweight housing (e.g., plastic) in which a powered motor drives a tandem roller assembly. The guidewire is passed through a hole positioned lengthwise through the device where the roller assembly engages the guidewire's outer surface.
The interface of the manipulation device includes a power button that directs the internal roller assembly to roll the guidewire in a desired rotational direction. Additional interface controls are also preferable to provide a different roll patterns, depending upon surgeon preference and guidewire placement efficiency.
In an alternate embodiment the roller assembly may be driven by a thumb wheel. Preferably, the roller assembly is spring-loaded, allowing the surgeon to roll the thumb control wheel in one direction and then have the guidewire automatically roll back in the opposite direction.
The manipulation device may be reusable or disposable and may delude contours to provide an ergonomic grip for the user.
For example, as a distal end of the guidewire 102 reaches an angled or curved region of the vessel, the user activates the manipulation device 100 to rotate the guidewire 102 (i.e., in a counter clockwise direction indicated by arrow 103), thereby causing the distal end of the guidewire 102 to more easily advance through the angled or curved region. In another example, the distal end of the guidewire 102 reaches an obstruction (e.g., an embolism) but is unable to easily pass. The user then activates the guidewire manipulation device 102 to vibrate (e.g., by routing between a clockwise and counter clockwise direction quickly), thereby causing the distal end of the guidewire 12 to pass through the obstruction, in another example, the device 100 may include a multiple, preprogrammed rotation patterns appropriate for different vessel configurations (e.g., a 180 degree clockwise rotation followed by 180 degree counter clockwise rotation, a 90 degree clockwise rotation followed by 90 degree counter clockwise rotation or a 30 degree clockwise rotation followed by 180 degree counter clockwise rotation). The device may also include a microprocessor and memory connected to the motor and button 108 for storing and executing the preprogrammed rotation patterns.
The device 100 also preferably includes a power indicator light 104 (e.g., an LED) which indicates if the device 100 is powered on and a rotation button 108 which causes the guidewire 102 to rotate. Optionally, the device 100 may include a button, switch or similar mechanism to toggle the device 100 between rotating m a clockwise direction or a counter clockwise direction. Alternately, the button 108 may include multiple actuation techniques for determining clockwise or counter clockwise rotation (e.g., sliding forward or backward, multiple button presses, etc.).
Preferably, an outer container or casing 110 is composed of a light-weight material such as plastic and has an ergonomic shape that at least partially fits in the user's hand. In this respect, the user can comfortably operate the device 100 during a procedure.
Referring to
One or more of the rollers 120 are preferably driven by a motor 118 which is powered by battery 114 (or alternately by A.C. power such as an outlet). The motor 116 connects to the rollers 120 by a cam 119 made up of a first linkage 118 connected to the motor 116 and a second linkage 112 connected to the roller 120. In this respect, activation of the motor 116 drives the cam 110 and ultimately rotation of the roller 120.
Preferably, the device 140 includes a locking assembly in the form of a locking hub 146 (similar to the device 132) which allows the user to selectively lock the guidewire 102 with the device 140. The locking hub 146 allows free movement of the guidewire 102 when positioned near the case 142 (
As seen in
As with all motorized embodiments described in this specification, the device 140 may also include a microprocessor and memory for storing and executing different rotation sequences (i.e., rotation directions and rotation speeds).
A hub 174 includes an interior, angled passage that increases in diameter in a distal direction. The wedge tube 174 is partially positioned within the hub 174. In the unlocked position of
The device 190 locks on to the guidewire 102 when the user releases trigger 196 (see
When the trigger 196 is released, as in
The device 220 further includes a locking mechanism assembly that locks the lateral position of the guidewire 102. As seen in
In the locked position, the trigger 232 maintains an outer tube 222 in a proximal position, proximally biased by a spring 226. The outer tube includes an inner passage that generally decreases in diameter in a distal direction. The inner surface of the outer tube 222 presses against a wedge portion 224A of a wedge tube 224, causing the wedge tube 224 to press against and lock onto the guidewire 102.
In the unlocked position, the trigger 232 pushes the outer tube 222 distally, against the bias of the spring 226. The surface of the inner passage of the outer tube 222 moves away from the wedge 224A, releasing the wedge tube 224 from the guidewire 102.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application is a continuation of U.S. patent application Ser. No. 11/874,836, filed on Oct. 18, 2007, and is incorporated in its entirety by reference herein for all purposes, which claims the benefit of priority to U.S. Provisional App. No. 60/853,731, filed on Oct. 21, 2006, which is incorporated in its entirety by reference herein for all purposes. Priority is claimed pursuant to 35 U.S.C. §120 and 35 U.S.C. §119.
Number | Name | Date | Kind |
---|---|---|---|
3748435 | Reynolds | Jul 1973 | A |
3847140 | Ayella | Nov 1974 | A |
5055109 | Gould et al. | Oct 1991 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5392778 | Horzewski | Feb 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5524180 | Wang et al. | Jun 1996 | A |
5524635 | Uflacker et al. | Jun 1996 | A |
5634475 | Wolvek | Jun 1997 | A |
5709661 | Van Egmond et al. | Jan 1998 | A |
5735535 | McCombs et al. | Apr 1998 | A |
5893857 | Shturman et al. | Apr 1999 | A |
5908395 | Stalker et al. | Jun 1999 | A |
5911722 | Adler et al. | Jun 1999 | A |
6027460 | Shturman | Feb 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6183432 | Milo | Feb 2001 | B1 |
6348040 | Stalker et al. | Feb 2002 | B1 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6726675 | Beyar | Apr 2004 | B1 |
6752800 | Winston et al. | Jun 2004 | B1 |
7615042 | Beyar et al. | Nov 2009 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
8142458 | Shturman | Mar 2012 | B2 |
8187229 | Weitzner et al. | May 2012 | B2 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20030088187 | Saadat et al. | May 2003 | A1 |
20050240116 | Saadat et al. | Oct 2005 | A1 |
20050240120 | Modesitt | Oct 2005 | A1 |
20050277851 | Whittaker et al. | Dec 2005 | A1 |
20060041245 | Ferry et al. | Feb 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20070016105 | Mamourian | Jan 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070219467 | Clark et al. | Sep 2007 | A1 |
20070270755 | Von Oepen et al. | Nov 2007 | A1 |
20090082722 | Munger et al. | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
60853731 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11874836 | Oct 2007 | US |
Child | 14704879 | US |