The present disclosure relates to medical guidewires, and more particularly, a guidewire with a movable or adjustable core. Such a guidewire can be used in interventional cardiovascular procedures such as balloon angioplasty, atherectomy, stent implantation procedures, or radiology procedures.
One of the therapeutic procedures applicable to the present invention is known as percutaneous transluminal coronary angioplasty (PTCA). This procedure can be used, for example, to treat arterial build-up of cholesterol fats or atherosclerotic plaque in blood vessels of a patient. Typically, a guidewire is steered through the vascular system to the treatment site and a balloon dilatation catheter is advanced over, or together with the guidewire. A guiding catheter may be utilized to provide a conduit for directing the guidewire and/or dilatation catheter from a minimally-invasive entry site to a location near the treatment site. The balloon at the distal end of the catheter is inflated causing the site of the stenosis to widen. The original catheter can then be withdrawn and a catheter of a different size or another device such as an atherectomy device can be inserted.
The major considerations in guidewire design include steerability, flexibility, medial stiffness or support, bending in transition areas, tip formability and radiopacity. In a typical guidewire construction a stainless steel core wire has a platinum spring coil disposed around a tapered distal end of the core wire. A blunt tip is typically welded to the distal end of the guidewire to reduce trauma to the blood vessel.
Conventional guidewire designs are a trade-off between flexibility and steerability/stiffness. A flexible guidewire is needed to track through the tortuous vasculature. However, a stiff guidewire is often needed to cross a stenosis at the treatment site, or to guide a relatively stiff interventional device such as a compressed stent carried by a catheter into a curved region. In some instances, one guidewire needs to be exchanged for another guidewire with different properties to successfully cross the treatment site. Exchanging guidewires is time consuming and, in the case of so-called rapid exchange or single-operator catheters, exchanging guidewires is impossible or impractical. Accordingly, what is needed is a guidewire having a distal portion that can be more flexible when tracking through the vasculature and stiffer when needed to cross a stenosis or guide a stent across a stenosis.
The present disclosure is a guidewire and method of advancing the guidewire to a treatment site within a vessel. The guidewire includes a proximal portion and a distal portion. The proximal portion includes a proximal hollow tube. The distal portion includes a distal tube made of elastomeric material, located inside a coil. The coil is disposed around the distal tube. A core wire is disposed within the hypotube and is movable between a proximal position and a distal position. When the core wire is in the proximal position, the distal portion of the guidewire is more flexible than when the core wire is in the distal position.
The method of advancing the guidewire to a treatment site includes inserting the guidewire into the vessel and advancing the guidewire with the core wire in the proximal position. The core wire is moved distally into the distal position in order to increase bending stiffness in the distal portion of the guidewire.
The foregoing and other features and advantages of the disclosure will be apparent from the following description of the disclosure as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the disclosure and to enable a person skilled in the pertinent art to make and use the disclosure. The drawings are not to scale.
Specific embodiments of the present disclosure are now described with reference to the figures, where like reference numbers indicate identical or functionally similar elements. The terms “distal” and “proximal” are used in the following description with respect to a position or direction relative to the treating clinician. “Distal” or “distally” are a position distant from or in a direction away from the clinician. “Proximal” and “proximally” are a position near or in a direction toward the clinician.
As illustrated in
Coil 110 may be provided with a gap 130 between longitudinally adjacent turns along the full length or a portion of coil 110. Gap 130 may be relatively large to provide improved flexibility of distal portion 104 or may be relatively small for improved pushability, depending upon the application. Gap 130 may also vary from a proximal portion of distal portion 104 to a distal portion of distal portion 104. For example, gap 130 may increase toward the distal end of distal portion 104, as shown in
Distal tube 112 is bonded internally to tip 114 using an adhesive. Adhesives such as cyanoacrylate or epoxy may be used, although those skilled in the art would recognize that a number of biocompatible adhesives would be satisfactory. As shown in
Distal tube 112 may be made from elastomeric materials such as natural rubber, polyisoprene, butyl rubber (copolymer of isobutylene and isoprene, IIR), halogenated butyl rubbers (chloro butyl rubber: CIIR; bromo butyl rubber: BIIR), polybutadiene, styrene-butadiene rubber (copolymer of polystyrene and polybutadiene, SBR), nitrile rubber, (copolymer of polybutadiene and acrylonitrile, NBR), Bayer Inc's Therban® and ZEON Corp's Zetpol® hydrated nitrile rubbers (HNBR), Bayer Inc's Baypren® chloroprene rubber (CR), polychloroprene, neoprene, ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber (ECO), polyacrylic rubber (ACM, ABR), silicone rubber (SI, Q, VMQ), fluorosilicone rubber (FVMQ), fluoroelastomers, and perfluoroelastomers.
As illustrated in
A forming ribbon may also be provided in distal section 104 of guidewire 100, as shown in
Forming ribbon 140 serves a number of functions, including, but not limited to, holding the flexible distal tube 112 at a fixed position with respect to hypotube 108 while core wire 118 is pushed into bore 116, and transmitting rotation from hypotube 108 to distal tip 114 to aid in steering guidewire 100. It will be understood that relative movement between core wire 118 and distal tube 112 can be accomplished by moving either component while the other component is held steady, or by simultaneously moving both components.
Core wire 118 includes a proximal section 120, a transition section 122, and a distal section 124, as in
In one embodiment of practicing the disclosed method, guidewire 100 or 100′ is inserted into the vasculature with core wire 118 in the proximal position such that guidewire 118 can be advanced through the tortuous bends of the vasculature. Upon reaching a lesion, occlusion, or other impediment, core wire 118 is advanced distally such that distal section 124 is disposed within distal tube 112, 112′, thereby stiffening distal portion 104 for improved pushability.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of illustration and example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the disclosure. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment.