The subject matter disclosed generally relates to guidewires for catheter use. More particularly, it relates to pressure guidewire technology.
Conventional Guidewires
Conventional guidewires are made using solid rods. They may be made using a combination of different materials such as hard tempered stainless steel and nitinol. Stainless steel provides good pushability and torquability, and is relatively cheap, while the nitinol provides good yield strength, i.e., does not permanently deform. Nitinol is nickel/titanium alloy having superelastic properties as known by those skilled in the art. One consideration in designing guidewires is that welding nitinol to stainless steel is extremely challenging.
Typical guidewires comprise three main parts as described below.
The first part is the proximal section. For coronary use, the proximal section, i.e., the length prior to the last 25 to 40 cm, is made typically of 0.014″ outside diameter (OD) stainless steel. Nitinol is not preferred in this section because it does not provide a good pushability and torquability and it is fairly expensive. This section always resides in the catheter guide, hence not directly into the blood vessel. In use, a portion of this section is outside the patient's body and is controlled by the person using the guidewire. The typical length of the proximal section is 140 cm or longer.
The second part is the middle section. The middle section is the following 25 to 40 cm of flexible wire, before the tip portion, i.e., the third portion extending further over another 3 to 4 cm. The middle section is the section that navigates within the coronary arteries. Guidewires may use a nitinol wire of about 0.0095″ OD over this section. In order to improve the navigability within the vessel, i.e., having the ability to be threaded through sharp corners within vessels, the distal 1 to 3 cm portion of the middle section, may be slightly tapered, the outside diameter being reduced roughly from 0.0095″ to 0.007″. This taper allows the guidewire to bend with a circular shape, as opposed to a parabolic shape in the case where the outside diameter is uniform. This section can be bent quite seriously when navigating into the vessels and hence, shape retaining is a desirable feature, although not a necessary one.
The third part is the tip section. The tip is the last 3 to 4 cm of the guidewire. It is made with a very thin tapered, or shaped otherwise, spring tempered or hardened stainless steel core wire. The core wire is surrounded by tungsten, platinum, palladium or another wire winding providing smooth radiopaque tip. Tip section can be pre-shaped prior to use by physician to ease the navigation in any given circumstance.
Guidewire features are:
Pressure Guidewire
A pressure guidewire is one that includes a tip pressure sensor. Trade-offs are necessary to route the sensor lead wire(s) through the guidewire, resulting in sub-optimal mechanical design. Existing pressure guidewires typically comprises four main parts as described below.
The first part is the proximal section. The proximal section is made with a stainless steel hypotube (aka the proximal tube) having typical OD of 0.014″. There are three sensor lead wires that are routed through the proximal tube to connect to tip sensor.
The second part is the middle section. A solid core is welded to the proximal section on one end, and to a sensor housing on the other end. This solid rod is typically 27 cm long. The three wires of typical piezo-resistive sensor run through the proximal tube and on the wall of the core along the 27 cm. The three wires are finally directed within the sensor housing (described below) to be connected to the sensor.
The solid core and three wire assembly are protected either by providing a polyimide tube covering the assembly, by providing a spiral wound wire or other method for the assembly. The foregoing covering method provides minimal mechanical benefit and therefore they are used mostly as a protective sheath.
The third part of the pressure guidewire is the sensor housing. The sensor housing is made with a hypotube with internal diameter (ID) accommodating the tip sensor and an OD that is the continuity of the proximal section OD. An opening is provided to the sensor housing to let blood communicate with tip sensor.
The fourth part of the pressure guidewire is the tip section. The tip section is provided at the end of the sensor housing. A conventional tip section can be used as there is no wire to be passed therethrough.
The critical part of above described pressure guidewires is the middle section (second part above). Wall thickness of polyimide or wire winding added to the size of the sensor lead wires that runs along the solid core compromise the use of optimal solid core. More specifically, the solid core is usually too thin for delivering adequate pushability and torquability on one hand, and adequate support for a balloon catheter on another hand.
The device described herein optimizes the mechanical performance; mode specifically it improves the pushability, torquability, trackability and catheter support in the case of a pressure guidewire.
As a first basic consideration, mechanical performance of prior pressure guidewires can be improved if instead of routing the sensor leads through a region toward the perimeter of the guidewire, therefore relying on a thin solid core for the transfer of torque, the sensor leads are routed through the center. It is known that contribution to torque transfer from the central part of a rod is lower than the contribution from the periphery of the same and therefore, it is optimal sacrificing the central portion rather than its periphery. This way, the torque per available surface area is maximized.
The size of the distal portion of such a hypotube, the portion that navigates within the coronaries, that delivers optimal flexibility and torquability may however be susceptible to kinking, as it would have to be a fairly thin hypotube if made of stainless steel. It is then useful to provide a mechanism that protects this otherwise vulnerable section against the risks of kinking. Protection against kinking is very suitably provided by the continuity of a proximal hypotube extending over, but being cut with a spiral or other pattern.
The use of a nitinol tube, instead of stainless steel tube, within the middle section of the guidewire would reduce the risk of kinking. The joining of nitinol is however a challenging process and there is a risk of leaving any of the guidewire distal parts within the blood vessel. It is then also desirable to provide a safety mechanism for retaining any of the distal parts of guidewire in case the joining of nitinol was to fail.
The presence of a continuous shaft from the very proximal end of the guidewire, up and after the sensor housing provides safety features critical for medical devices.
Manufacturability is another consideration, where the guidewire device needs to be produced in large quantity at the lowest possible cost. Having a minimal amount of parts surely contributes minimizing the manufacturing cost, as well as ease of assembly.
According to an embodiment, there is provided a pressure guidewire comprising: a shaft tube comprising: a proximal section providing pushability to the pressure guidewire; a middle section extending further relative to the proximal section, the middle section being cut according to a cut pattern thereby resulting in greater flexibility in the middle section than in the proximal section; and a sensor housing extending further relative to the middle section; an inner hypotube installed substantially within the middle section; a pressure sensor communication means routed to the sensor housing through the proximal section and the middle section; and a tip pressure sensor embedded within the sensor housing and communicatively connected to the pressure sensor communication means.
According to an aspect, the cut pattern comprises a spiral cut pattern.
According to an aspect, the proximal section, the middle section and the sensor housing are made from a unitary and continuous piece of material.
According to an aspect, the unitary and continuous piece of material comprises stainless steel.
According to an aspect, the pressure guidewire further comprises a window through the shaft tube giving access to the inner hypotube for welding, soldering or bonding the inner hypotube within the middle section of the shaft tube.
According to an aspect, the pressure guidewire further comprises a small piece of material in contact with a wall of the inner hypotube and protruding within the window through the shaft tube, the small piece of material being welded to inner hypotube.
According to an aspect, the inner hypotube comprises nitinol and the shaft tube comprises stainless steel.
According to an aspect, the middle section has two ends and comprises two windows, each one of the two windows located at a respective one of the two ends of the middle section and thereby providing two areas for welding, soldering or bonding the inner hypotube within the middle section of the shaft tube.
According to an aspect, the pressure guidewire further comprises an adhesive or solder for joining the inner hypotube and the shaft tube.
According to an aspect, the inner hypotube and the shaft tube are made of stainless steel.
According to an aspect, the inner hypotube comprises a distal portion having a diameter which is profiled, thereby constituting a profiled portion.
According to an aspect, the tip pressure sensor comprises an optical pressure sensor for measuring a pressure of a fluid in a blood vessel in which the pressure guidewire is inserted.
According to an aspect, the pressure guidewire further comprises a band to which is fixed the pressure sensor communication means.
According to an aspect, the sensor housing comprises a window for welding or bonding the band to the shaft tube.
According to an aspect, the inner hypotube comprises a nitinol hypotube.
According to an aspect, the distal portion of the profile portion of the inner hypotube is enlarged.
According to an aspect, both ends of the inner hypotube are bonded to the shaft tube with an adhesive.
According to an aspect, the pressure sensor communication means comprises an optical fiber.
According to an aspect, the pressure sensor communication means is also routed within the inner hypotube.
According to an aspect, the pressure sensor communication means has an end providing a connection to the tip pressure sensor.
According to an aspect, the pressure guidewire further comprises a soft atraumatic tip extending further relative to the sensor housing.
According to an embodiment, there is provided a pressure guidewire comprising: a proximal section of shaft tube providing pushability to the pressure guidewire; a middle section of shaft tube being the extension of proximal section, the middle section having greater flexibility than the proximal section; an inner hypotube installed substantially within the middle section and providing middle section with desired mechanical characteristics; a sensor housing extending further relative to middle section; a pressure sensor communication means routed through portion of the sensor housing and through the proximal and middle sections of shaft tube, the pressure sensor communication means having an end; and a tip pressure sensor embedded within sensor housing.
According to an embodiment, there is provided a pressure guidewire comprising: a shaft tube with a proximal section delivering good pushability; the same shaft tube comprising a middle section having a flexibility, the flexibility of the flexible middle section being provided by way of cutting the hypotube over the middle section; an inner hypotube installed substantially within the middle section for providing desired mechanical characteristics to the middle section; the same shaft tube with the distal section cut with a different pattern for offering same rigidity as proximal section for receiving and protecting a tip pressure sensor, and providing an opening for blood pressure to communicate with pressure sensor; a tip section connected and extending further to the sensor housing; and a tip pressure sensor located within the sensor housing, with a communication means routed through portion of sensor housing, and inner hypotube and shaft tube.
According to another embodiment, there is provided a pressure guidewire comprising: a shaft tube with a proximal section delivering good pushability; the same shaft tube comprising a flexible middle section having a flexibility, the flexibility of the middle section being provided by way of laser cutting the hypotube over the middle section; a nitinol inner hypotube installed substantially within the middle section for providing desired mechanical characteristics to the middle section; a nitinol inner hypotube being joined at both ends to corresponding overlapped sections with proximal shaft tube and sensor housing; the same shaft tube with the distal section cut with a different pattern for offering same rigidity as proximal section for receiving and protecting a tip pressure sensor, and providing an opening for blood pressure to communicate with pressure sensor; a tip section connected and extending further to the sensor housing; and a tip pressure sensor located within the sensor housing, with a communication mean routed through portion of sensor housing, and inner hypotube and shaft tube.
According to an embodiment, there is provided a pressure guidewire comprising: a shaft tube comprising: a proximal section configured to provide pushability to the pressure guidewire; a middle section extending distally relative to the proximal section, the middle section comprising a cut pattern configured to provide greater flexibility in the middle section than the proximal section; and a sensor housing section extending distally relative to the middle section; an inner hypotube comprising a proximal end portion and a distal end portion, the inner hypotube positioned entirely radially inward of the shaft tube and within at least the middle section, the proximal end portion and the distal end portion of the inner hypotube being joined to the shaft tube; and a tip pressure sensor positioned in the sensor housing section.
According to an aspect, the proximal and distal end portions of the inner hypotube are sealed to the shaft tube to prevent fluid from leaking through the cut pattern and into the proximal section or sensor housing section of the shaft tube.
According to an aspect, the proximal end portion of the inner hypotube is joined to the shaft tube proximate to and proximal of a proximal end of the cut pattern, and wherein the distal end portion of the inner hypotube is joined to the shaft tube proximate to and distal of a distal end of the cut pattern.
According to an aspect, the proximal end portion of the inner hypotube is joined to the shaft tube distal of a proximal end of the shaft tube, and wherein the distal end portion of the inner hypotube is joined to the shaft tube proximal of the tip pressure sensor.
According to an aspect, a distal end of the inner hypotube is positioned within the sensor housing section.
According to an aspect, the inner hypotube comprises a tapered portion proximal to the distal end portion, the tapered portion being tapered in a distal direction.
According to an aspect, the distal end portion of the hypotube is enlarged relative to the tapered portion.
According to an aspect, the cut pattern comprises a spiral cut.
According to an aspect, the pressure guidewire further comprises an optical fiber extending through the shaft tube to the tip pressure sensor.
According to an aspect, the sensor housing section comprises an opening configured to let blood communicate with tip pressure sensor.
According to an embodiment, there is provided a pressure guidewire comprising: a shaft tube having a length and comprising: a proximal section configured to provide pushability to the pressure guidewire; a middle section extending distally relative to the proximal section, the middle section comprising a cut pattern configured to provide greater flexibility in the middle section than the proximal section; and a sensor housing section extending distally relative to the middle section; an inner hypotube having a length and comprising a proximal end portion and a distal end portion, the inner hypotube positioned entirely radially inward of the shaft tube and within at least the middle section, the length of the inner hypotube being less than the length of the shaft tube; a central lumen extending through the pressure guidewire, the central lumen comprising a proximal portion defined at least in part by the proximal section of the shaft tube, the central lumen further comprising an intermediate portion defined at least in part by the inner hypotube, and the central lumen also comprising a distal portion defined at least in part by the sensor housing section of the shaft tube; and a tip pressure sensor positioned in the sensor housing section.
According to an aspect, the proximal and distal end portions of the inner hypotube are sealed to the shaft tube to prevent fluid from leaking through the cut pattern and into the proximal section or sensor housing section of the shaft tube.
According to an aspect, the proximal end portion and the distal end portion of the inner hypotube are joined to the middle section of the shaft tube.
According to an aspect, the proximal end portion of the inner hypotube is joined to the shaft tube proximate to and proximal of a proximal end of the cut pattern, and wherein the distal end portion of the inner hypotube is joined to the shaft tube proximate to and distal of a distal end of the cut pattern.
According to an aspect, a distal end of the inner hypotube is positioned within the sensor housing section.
According to an aspect, the inner hypotube comprises a tapered portion proximal to the distal end portion, the tapered portion being tapered in a distal direction.
According to an aspect, the distal end portion of the hypotube is enlarged relative to the tapered portion.
According to an aspect, the cut pattern comprises a spiral cut.
According to an aspect, the pressure guidewire further comprises an optical fiber extending through the shaft tube to the tip pressure sensor.
According to an aspect, the sensor housing section comprises an opening configured to let blood communicate with tip pressure sensor.
According to an embodiment, there is provided a pressure guidewire comprising: a shaft tube comprising: a proximal section configured to provide pushability to the pressure guidewire; a sensor housing section extending distally relative to the proximal section; and middle section disposed between the proximal section and the sensor housing, the middle section being discontinuous to provide more flexibility in the middle section than the proximal section; an inner hypotube positioned entirely radially inward of the shaft tube and within at least the middle section; a tip pressure sensor positioned in the sensor housing section and having a sensor lead wire or a sensor communication means disposed proximally of the sensor housing through the inner hypotube; and wherein the inner hypotube seals off the shaft tube to prevent leakage of fluid into the proximal section.
According to an aspect, the pressure guidewire further comprises a sensor lead wire or a communication means disposed proximally of the sensor housing through the inner hypotube wherein the sealing of the shaft tube by the inner hypotube prevents leakage of fluid onto the sensor lead wire or the communication means.
As will be realized, the subject matter disclosed and claimed is capable of modifications in various respects, all without departing from the scope of the claims. Accordingly, the drawings and the description are to be regarded as illustrative in nature, and not as restrictive and the full scope of the subject matter is set forth in the claims.
Further features and advantages of the present disclosure will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
Referring now to the drawings, and more particularly to
The general design for the pressure guidewire shown in
According to an embodiment, the proximal section 12 is made of a stainless steel hypotube, with an OD of about 0.014″ and by way of non limiting example with an ID of about 0.009″. The proximal section is used to push other more distal sections of the pressure guidewire within the vasculature. The proximal section resides within the guiding catheter at one end, with the other end exiting the patient through the introducer (not shown), therefore allowing the physician to remotely control the pressure guidewire within the blood vessel, such as pushing and torquing the wire. According to an embodiment, the length of the sensor housing 15 is in a range between 1 mm to 3.5 mm. According to an embodiment, the length of the sensor housing 15 is 2.5 mm.
The middle section is the one that faces the most challenging trade-offs. The middle section 14 must not damage the vessel and hence it must be fairly flexible. It must however transmit the torque for better navigability, be stiff enough to deliver a good pushability and provide a good support for an angioplasty balloon. The middle section can be made by extending the proximal section 12 further, but it would be too stiff to navigate within the vessels. On the other hand, the middle section 14 can be softened by cutting the tube as a spiral or other cutting patterns as known by those skilled in the art. Those skilled in the art also know that such cut patterns are achieved using laser, etching and other processes. Spiral cutting the tube would result in a very soft section whether the pitch is high or low, and would not deliver any of the required tensile force and torque response. Other non continuous cut patterns can provide adequate tensile force, but the stiffness is controlled by adjusting the pitch and cut pattern. It is however difficult to provide a smooth and continuous variation of stiffness. There is also a critical safety challenges when torquing such a cut patterned guidewire as the torque induced stresses are concentrated in narrow cut regions of the guidewire, hence potentially provoking guidewire failure.
Using the device described hereinafter it is possible to control safely the mechanical performance of the middle section 14 by way of a) extending the proximal section 12 further; b) cut this extended section to soften it; and c) combining this cut section with an additional inner hypotube 20 overlapping the whole cut region of middle section 14, the inner hypotube geometry being chosen such that the desired mechanical characteristics are achieved. The middle section 14 is the continuity of the proximal section 12, where the portion corresponding to the 27 cm middle section 14 of the shaft tube 18 is cut, such as a spiral cut shaft tubing 22 according to one embodiment. The spiral cut section of the shaft tubing 22 does not provide any significant tensile strength nor does it provide significant bending or torque strength.
The inner hypotube 20 is inserted within the shaft tube 18 such that it overlaps the middle section 14, where the tubing is cut. The outside diameter (OD) of the inner hypotube 20 fits the inside diameter (ID) of shaft tube 18 and can be of 0.009″ in an embodiment. The ID of the inner hypotube 20 must accommodates the sensor lead wire, or communication means (not shown in
One problem if such an inner hypotube 20 was used alone is that it may not provide adequate resistance against kinking. In the absence of the spiral cut shaft tubing overlay, or other cut pattern, a more conventional design would involve the addition of an elastomer coating to bring the outer diameter of the inner tube to a similar diameter as that of the shaft tube 18 (i.e., the stainless steel hypotube). However, this would not improve the resistance against kinking, which is a safety consideration.
Another safety issue is the risk of leaving parts inside the patient as a result of joint failure between inner tube and proximal tube or sensor housing. In case of a joint failure in more conventional designs, such as the one proposed in U.S. Pat. No. 5,085,223 and Patent appl. No. US2010/0318000, the risk of leaving the distal parts of the guidewire within the blood vessel in case of joint failure is quite important. The proposed design mitigates this risk by providing a spiral cut pattern external tube that covers an inner hypotube, the inner tube providing most of the mechanical characteristics of the middle section. In case of joint failure resulting from applying a pulling force too strongly, the spiral cut tube will collapse over and grip the inner hypotube 20, thereby bringing along the distal portion of the guidewire.
The spiral cut shaft tubing 22, when provided with an inner hypotube 20, delivers the desired mechanical characteristics. Stiffness (flexibility), torque transfer, pushability and support are provided by the inner hypotube 20. Inner hypotube 20 dimensions are easily adapted to provide optimal mechanical performance. On the other hand, kink resistance, distal parts safety retainer, and guidewire outside diameter continuity are provided by the spiral cut shaft tubing 22. It is worth mentioning that kink resistance provided by the spiral cut section is useful mostly in cases where the inner hypotube is not nitinol, e.g., it is useful when inner hypotube is stainless steel.
As shown by
The very end 41 of the inner hypotube 20, the portion that fits within the sensor housing section, should be enlarged, e.g., to the same diameter as its proximal section, so as to assure a good joint with the internal wall of the sensor housing section 15 (see
One method of joining the inner hypotube 20 to the ends of middle section 14 of shaft tube 18 is shown in
Similar methods apply for joining the inner hypotube 20 to the other end of middle section 14, where another window 26 (
Without the presence of an inner hypotube 20 within the cut middle section 14, blood may leak inside the shaft tube 18, which constitutes a fairly large volume, which in turn may cause biocompatibility issues. The presence of the inner hypotube 20 seals off the inside of the shaft tube 18 where it is cut.
The sensor housing section 15 is made of the very last 2 to 3 mm of the shaft tube 18. The spiral cut, or other cut patterns, stops some 2 to 3 mm before the end of the shaft tube 18, where the sensor 34 (see
A radiopaque marker band 36 may be located in the sensor housing section 15 to help in localizing the pressure guidewire in the vessels. The marker band, or otherwise similar non radiopaque band, main purpose is however to allow easy assembly of the sensor within the sensor housing. It is indeed preferable to avoid the application of hard adhesive directly on sensor head. The marker band 36 can be bonded to the pressure sensor communication means (e.g., optical fiber) as a pre-assembly in an environment allowing the control of adhesive flow. The sensor 34 is secured within pressure guidewire by bonding the marker band 36, or other non radiopaque band, to the sensor housing section 15 using sensor joining window 28.
A tip section 16 (
Having similar materials for shaft tube 18 and inner hypotube 20, such as stainless steel, makes the above welding process fairly simple and reliable. It may however be desirable to use dissimilar materials that cannot easily be welded together. For example, it is desirable to use shaft tube 18 made of stainless steel for providing a good pushability, while it is also desirable to use nitinol for the inner hypotube 20 for its superior yield strength and lower elastic modulus. It is well known by those skilled in the art that those two materials are not easily welded together, at least not without an intermediate material.
The present description also discloses a method for joining together those dissimilar materials.
Another method of joining the above inner hypotube 52 to stainless steel shaft tube 18 is to use an intermediate material, for example nickel, that can be welded to both nitinol and stainless steel. A small piece 50 made of nickel can be laser welded to inner hypotube 52 first. A small hole in the center 51 can be provided to promote heat transfer to inner hypotube 52. The inner hypotube 52 is then interlocked to proximal section 12 as described above. The edges of the small piece 50 of nickel can then be laser welded to shaft tube 18. In this case, no direct welding of nitinol to stainless steel occurs and therefore, no brittle interface is created.
Another method involves the use of adhesive to bond the nitinol inner hypotube 20 to the stainless steel shaft tube 18. The same parts can also be soldered together and by any other methods known by those skilled in the art.
It can be appreciated that the design is made with one single uniform part, from proximal section 12 to the sensor housing section 15, and therefore the guidewire 10 is very smooth with minimum mechanical steps.
The manufacturability of this design is quite easy and very efficient as the number of parts is minimized.
The mechanical properties can be optimized by varying the respective wall thicknesses of inner hypotube 20 and shaft tube 18.
The pitch of the spiral cut or other laser cut pattern can be varied ideally from a larger pitch to a shorter one when approaching the sensor housing section 15. Sharp turns are expected to arise in the region of the sensor housing section 15, near the tip of the guidewire 10 and therefore, it would be best if the pitch of the laser cut pattern was reduced near the sensor housing section 15 to allow a smoother bending of the cut shaft tubing 22.
For improved safety, the spiral cut pattern provides a retainer for distal portions of guidewire. Risks of leaving parts inside patient body are therefore minimized.
There will be an optical connector (not shown) at the very proximal end of the guidewire 10.
As known by those skilled in the art, above described pressure guidewire can be coated with different material such as Teflon or hydrophilic coating so as to reduce friction against wall of vessels and/or guiding catheter.
Now referring to
While preferred embodiments have been described above and illustrated in the accompanying drawings, it will be evident to those skilled in the art that modifications may be made without departing from this disclosure. Such modifications are considered as possible variants comprised in the scope of the disclosure.
This application is filed as a continuation application of U.S. patent application Ser. No. 15/918,677, filed on Mar. 12, 2018, which is a continuation application of U.S. patent application Ser. No. 14/138,392 filed on Dec. 23, 2013, which is a continuation of U.S. patent application Ser. No. 14/030,425 filed Sep. 18, 2013, which is a continuation of U.S. patent application Ser. No. 13/389,319 filed Feb. 7, 2012, which is the US national phase application of PCT/CA2011/001257, filed Nov. 9, 2011, and entitled “GUIDEWIRE WITH INTERNAL PRESSURE SENSOR”, which claims priority of U.S. Provisional Application Ser. No. 61/411,722, filed on Nov. 9, 2010, the contents of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3273447 | Frank | Sep 1966 | A |
3590638 | Anastasia | Jul 1971 | A |
3963323 | Arnold | Jun 1976 | A |
4678904 | Saaski et al. | Jul 1987 | A |
4682500 | Uda | Jul 1987 | A |
4726232 | Koneval | Feb 1988 | A |
4771782 | Millar | Sep 1988 | A |
4953553 | Termulis | Sep 1990 | A |
4983824 | Saaski et al. | Jan 1991 | A |
5085223 | Tenerz et al. | Feb 1992 | A |
5106455 | Jacobsen et al. | Apr 1992 | A |
5125058 | Tenerz et al. | Jun 1992 | A |
5128537 | Halg | Jul 1992 | A |
5178159 | Christian | Jan 1993 | A |
5187761 | Mehadji et al. | Feb 1993 | A |
5226423 | Tenerz et al. | Jul 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5280786 | Wlodarczyk et al. | Jan 1994 | A |
5313957 | Little | May 1994 | A |
5313967 | Lieber et al. | May 1994 | A |
5315110 | Smith | May 1994 | A |
5385053 | Wlodarczyk et al. | Jan 1995 | A |
5392117 | Belleville et al. | Feb 1995 | A |
5421195 | Wlodarczyk | Jun 1995 | A |
5422969 | Eno | Jun 1995 | A |
5427114 | Colliver et al. | Jun 1995 | A |
5429617 | Hammersmark et al. | Jul 1995 | A |
5438873 | Wlodarczyk et al. | Aug 1995 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5633963 | Rickenbach et al. | May 1997 | A |
5755668 | Itoigawa et al. | May 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5797856 | Frisbie et al. | Aug 1998 | A |
5872879 | Hamm | Feb 1999 | A |
5902248 | Millar et al. | May 1999 | A |
5916177 | Schwager | Jun 1999 | A |
5938624 | Akerfeldt et al. | Aug 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5964714 | Lafontaine | Oct 1999 | A |
6059767 | Noriega | May 2000 | A |
6106486 | Tenerz | Aug 2000 | A |
6112598 | Tenerz et al. | Sep 2000 | A |
6120457 | Coombes et al. | Sep 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6162182 | Cole | Dec 2000 | A |
6167763 | Tenerz et al. | Jan 2001 | B1 |
6193669 | Degany et al. | Feb 2001 | B1 |
6196980 | Akerfeldt et al. | Mar 2001 | B1 |
6210339 | Kiepen et al. | Apr 2001 | B1 |
6248083 | Smith et al. | Jun 2001 | B1 |
6265792 | Granchukoff | Jul 2001 | B1 |
6394986 | Millar | May 2002 | B1 |
6398738 | Millar | Jun 2002 | B1 |
6409677 | Tulkki | Jun 2002 | B1 |
6428336 | Akerfeldt | Aug 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6508803 | Horikawa et al. | Jan 2003 | B1 |
6565514 | Svanerudh et al. | May 2003 | B2 |
6579246 | Jacobsen et al. | Jun 2003 | B2 |
6585660 | Dorando et al. | Jul 2003 | B2 |
6602427 | Tu | Aug 2003 | B1 |
6615067 | Hoek et al. | Sep 2003 | B2 |
6663570 | Mott et al. | Dec 2003 | B2 |
6766720 | Jacobsen et al. | Jul 2004 | B1 |
6767327 | Corl et al. | Jul 2004 | B1 |
6776720 | Bartlett | Aug 2004 | B2 |
6823738 | Wlodarczyk et al. | Nov 2004 | B1 |
6908442 | von Malmborg et al. | Jun 2005 | B2 |
6918873 | Millar et al. | Jul 2005 | B1 |
6918882 | Skujins et al. | Jul 2005 | B2 |
6976965 | Corl et al. | Dec 2005 | B2 |
6993974 | Tenerz et al. | Feb 2006 | B2 |
7071197 | Leonardi et al. | Jul 2006 | B2 |
7134994 | Alpert et al. | Nov 2006 | B2 |
7162926 | Guziak et al. | Jan 2007 | B1 |
7173713 | Xu et al. | Feb 2007 | B2 |
7187453 | Belleville | Mar 2007 | B2 |
7259862 | Duplain | Aug 2007 | B2 |
7265847 | Duplain et al. | Sep 2007 | B2 |
7274956 | Mott et al. | Sep 2007 | B2 |
7331236 | Smith et al. | Feb 2008 | B2 |
7532920 | Ainsworth et al. | May 2009 | B1 |
7618379 | Reynolds et al. | Nov 2009 | B2 |
7684657 | Donlagic et al. | Mar 2010 | B2 |
7689071 | Belleville et al. | Mar 2010 | B2 |
7715903 | Hartley et al. | May 2010 | B2 |
7717624 | Carlin et al. | May 2010 | B2 |
7724148 | Samuelsson et al. | May 2010 | B2 |
7759633 | Duplain et al. | Jul 2010 | B2 |
7783338 | Ainsworth et al. | Aug 2010 | B2 |
7878984 | Jacobsen et al. | Feb 2011 | B2 |
7930014 | Huennekens et al. | Apr 2011 | B2 |
7946997 | Hubinette | May 2011 | B2 |
8029447 | Kanz et al. | Oct 2011 | B2 |
8142363 | Eigler et al. | Mar 2012 | B1 |
8149647 | Borgen et al. | Apr 2012 | B2 |
8149648 | Daigle | Apr 2012 | B2 |
8174395 | Samuelsson et al. | May 2012 | B2 |
8216151 | Smith | Jul 2012 | B2 |
8298156 | Manstrom et al. | Oct 2012 | B2 |
8343076 | Sela | Jan 2013 | B2 |
8393802 | Stanley | Mar 2013 | B2 |
8461997 | Samuelsson et al. | Jun 2013 | B2 |
8485985 | Manstrom et al. | Jul 2013 | B2 |
8556820 | Alpert et al. | Oct 2013 | B2 |
8562537 | Alpert et al. | Oct 2013 | B2 |
8583218 | Eberle | Nov 2013 | B2 |
8636659 | Alpert et al. | Jan 2014 | B2 |
8641633 | Smith | Feb 2014 | B2 |
8641639 | Manstrom et al. | Feb 2014 | B2 |
8676299 | Schmitt et al. | Mar 2014 | B2 |
8752435 | Belleville et al. | Jun 2014 | B2 |
8936401 | Belleville et al. | Jan 2015 | B2 |
8998823 | Manstrom et al. | Apr 2015 | B2 |
9052466 | Belleville et al. | Jun 2015 | B2 |
9256035 | Park et al. | Feb 2016 | B2 |
9405075 | Belleville et al. | Aug 2016 | B2 |
9405078 | Belleville et al. | Aug 2016 | B2 |
9782129 | Radman | Oct 2017 | B2 |
9878142 | Burkett | Jan 2018 | B2 |
9895108 | Burkett et al. | Feb 2018 | B2 |
9901260 | Manstrom et al. | Feb 2018 | B2 |
9924903 | Burkett | Mar 2018 | B2 |
9943235 | Burkett | Apr 2018 | B2 |
9949646 | Belleville | Apr 2018 | B2 |
9955878 | Burkett | May 2018 | B2 |
9968260 | Belleville | May 2018 | B2 |
9974446 | Burkett | May 2018 | B2 |
10028666 | Gregorich | Jul 2018 | B2 |
10154787 | Belleville | Dec 2018 | B2 |
20020003917 | Sherrer et al. | Jan 2002 | A1 |
20020013540 | Jacobsen et al. | Jan 2002 | A1 |
20020072680 | Schock et al. | Jun 2002 | A1 |
20020122635 | Rief et al. | Sep 2002 | A1 |
20020159711 | Lutzen et al. | Oct 2002 | A1 |
20020183597 | Kaufman et al. | Dec 2002 | A1 |
20030009095 | Skarda | Jan 2003 | A1 |
20030044124 | Saitoh | Mar 2003 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20030100838 | Ehr et al. | May 2003 | A1 |
20040073141 | Hartley et al. | Apr 2004 | A1 |
20040116816 | Tenerz et al. | Jun 2004 | A1 |
20040181174 | Davis et al. | Sep 2004 | A2 |
20040237659 | Mattmann | Dec 2004 | A1 |
20040244502 | Youngner et al. | Dec 2004 | A1 |
20050062979 | Zhu et al. | Mar 2005 | A1 |
20050183507 | Bailey et al. | Aug 2005 | A1 |
20050255317 | Bavaro et al. | Nov 2005 | A1 |
20050267444 | Griffin et al. | Dec 2005 | A1 |
20050268725 | Tulkki | Dec 2005 | A1 |
20060122537 | Reynolds et al. | Jun 2006 | A1 |
20060189896 | Davis et al. | Aug 2006 | A1 |
20080269641 | O'Shaughnessy et al. | Oct 2008 | A1 |
20080312671 | Riles et al. | Dec 2008 | A1 |
20090036832 | Skujins et al. | Feb 2009 | A1 |
20090082678 | Smith | Mar 2009 | A1 |
20090192412 | Sela et al. | Jul 2009 | A1 |
20100145308 | Layman et al. | Jun 2010 | A1 |
20100234698 | Manstrom et al. | Sep 2010 | A1 |
20100318000 | Von Malmborg et al. | Dec 2010 | A1 |
20110071407 | Hubinette et al. | Mar 2011 | A1 |
20110178413 | Schmitt | Jul 2011 | A1 |
20110186294 | Narvaez et al. | Aug 2011 | A1 |
20110319773 | Kanz et al. | Dec 2011 | A1 |
20120265079 | Hilmersson | Oct 2012 | A1 |
20120265102 | Leo et al. | Oct 2012 | A1 |
20130296718 | Ranganathan et al. | Nov 2013 | A1 |
20130317372 | Eberle et al. | Nov 2013 | A1 |
20140005558 | Gregorich | Jan 2014 | A1 |
20140058275 | Gregorich et al. | Feb 2014 | A1 |
20140081244 | Voeller et al. | Mar 2014 | A1 |
20140107624 | Belleville | Apr 2014 | A1 |
20140121475 | Alpert et al. | May 2014 | A1 |
20140350414 | McGowan et al. | Nov 2014 | A1 |
20150032011 | McGowan et al. | Jan 2015 | A1 |
20150301288 | Thornton, Jr. | Oct 2015 | A1 |
20170082514 | Duplain et al. | Mar 2017 | A1 |
20180008153 | Burkett | Jan 2018 | A1 |
20180020929 | Gregorich | Jan 2018 | A1 |
20180103854 | Manstrom et al. | Apr 2018 | A1 |
20180214082 | Burkett et al. | Aug 2018 | A1 |
20190029523 | Belleville | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
202014100938 | Mar 2014 | DE |
0 235 992 | Sep 1987 | EP |
0 313 836 | May 1989 | EP |
0 738 495 | Oct 1996 | EP |
0 879 615 | Nov 1998 | EP |
0 879 617 | Nov 1998 | EP |
1 479 407 | Nov 2004 | EP |
0 907 335 | Sep 2006 | EP |
2 085 108 | Aug 2009 | EP |
1 733 198 | Jan 2010 | EP |
3 174 455 | Jun 2017 | EP |
2 038 016 | Oct 1982 | GB |
2007-296354 | Oct 2007 | JP |
2010-201027 | Mar 2015 | JP |
746128 | Jul 1980 | SU |
WO 9313707 | Jul 1993 | WO |
WO 9533983 | Dec 1995 | WO |
WO 9945352 | Sep 1999 | WO |
WO 2008034010 | Mar 2008 | WO |
WO 2009054800 | Apr 2009 | WO |
WO 2010030882 | Mar 2010 | WO |
WO 2010105356 | Sep 2010 | WO |
WO 2011027282 | Mar 2011 | WO |
WO 2011088572 | Jul 2011 | WO |
WO 2011090744 | Jul 2011 | WO |
WO 2011123689 | Oct 2011 | WO |
WO 2012000798 | Jan 2012 | WO |
WO 2012061935 | May 2012 | WO |
WO 2012090210 | Jul 2012 | WO |
WO 2013028613 | Feb 2013 | WO |
WO 2013033489 | Mar 2013 | WO |
WO 2014025255 | Feb 2014 | WO |
WO 2015109339 | Jul 2015 | WO |
WO 2017013020 | Jan 2017 | WO |
WO 2017049392 | Mar 2017 | WO |
Entry |
---|
Tohyama et al.. “A Fiber-Optic Silicon Pressure Sensor for Ultra-Thin Catheters”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, Jun. 25-29, 1995 (Jun. 25, 1995), p. 596, right col., line 1 to p. 598, left col., line 8, Fig. 3, 4. |
European Search Report issued in EP 11 83 9309, dated Mar. 20, 2014, in 1 page. |
International Search Report issued in PCT Application No. PCT/CA2011/001257, dated Mar. 6, 2012, in 4 pages. |
Number | Date | Country | |
---|---|---|---|
20190029523 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61411722 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15918677 | Mar 2018 | US |
Child | 16128957 | US | |
Parent | 14138392 | Dec 2013 | US |
Child | 15918677 | US | |
Parent | 14030425 | Sep 2013 | US |
Child | 14138392 | US | |
Parent | 13389319 | US | |
Child | 14030425 | US |