The present invention generally pertains to intravascular guidewires.
Intravascular guidewires are commonly used in conjunction with intravascular devices such as balloon catheters to facilitate navigation through the vasculature of a patient. Because the vasculature of a human being may be very tortuous, guidewires often have a stiff proximal portion for pushability and torqueability, and a flexible distal portion for trackability.
To provide for a relatively stiff proximal portion and a relatively flexible distal portion, the proximal and distal portions of the guidewire may be formed of different materials. The present invention provides several alternative designs, materials and manufacturing methods for connecting different guidewire sections together.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate examples of various embodiments of the claimed invention, and are not intended to be limiting.
Refer now to
The embodiment of
The proximal and distal guidewire sections 14/16 may have a solid cross-section as shown, or a hollow cross-section, and may be formed of metals or metal alloys suitable for metal joining techniques such as welding, soldering, brazing, crimping, friction fitting, adhesive bonding, etc. As used herein, the proximal section 14 and the distal section 16 may generically refer to any two adjacent guidewire sections along any portion of the guidewire. Furthermore, although discussed with specific reference to guidewires, the present invention may be applicable to almost any intravascular device having two adjacent metallic shaft sections. For example, the present invention may be applicable to metallic hypotube shafts for intravascular catheters (e.g., rapid exchange balloon catheters, stent delivery catheters, etc.) or metallic drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.).
The proximal guidewire section 14 may be formed of relatively stiff material such as straightened 304v stainless steel wire. Alternatively, proximal portion 14 may be comprised of a metal or metal alloy such as a nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other suitable material. In general, the material used to construct proximal portion 14 may be selected to be relatively stiff for pushability and torqueability.
The distal guidewire section 16 may be formed of a relatively flexible material such as a straightened super elastic or linear elastic alloy (e.g., nickel-titanium) wire. Alternatively, distal portion 16 may be comprised of a metal or metal alloy such as stainless steel, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other suitable material. In general, the material used to construct distal portion 16 may be selected to be relatively flexible for trackability.
The distal end 24 of the proximal portion 14 and the proximal end 26 of distal portion 16 (i.e., the joined ends) may form an overlapping tapered joint 12 as shown in
In the tapered embodiments illustrated in
As mentioned previously, the proximal guidewire section 14 and the distal guidewire section 16 may be formed of different materials (i.e., materials having different moduli of elasticity) resulting in a difference in flexibility. For example, the proximal guidewire section 14 may be formed of stainless steel wire and the distal guidewire section 16 may be formed of nickel-titanium alloy wire, both having the same dimensions, resulting in a 3:1 difference in elastic modulus. Such a difference in elastic modulus (i.e., flexibility) may result in a stress concentration point during flexure and/or torsion that may have a tendency to kink. By virtue of the gradual transition in stiffness provided by the overlapping portion 12, stress is distributed along the entire length of the connection 20 thereby decreasing the probability that guidewire 10 may kink at the junction.
A gradual transition in stiffness may also allow the connection 20 to be located further distally. According to this embodiment, the distal portion 16 may be manufactured to be shorter than proximal portion 14. Including a relatively long proximal section 14 may advantageously increase the torquability and pushability of the guidewire 10. Although only one connection 20 is shown, additional connections 20 may be used to connect other guidewire sections of varying stiffness.
The connector 18 may comprise a tubular structure such as a hypotube as shown or a coiled wire. The connector 18 may have an inside diameter sized appropriately to receive the ends 24/26 of the proximal portion 14 and the distal portion 16, and an outside diameter sufficient to accommodate a final grinding procedure. The final diameter of the guidewire 10 and the connector 18 may be in the range of 0.010 to 0.018 inches, for example. By way of example, not limitation, the connector 18 may have a length of about 1.0 to 3.0 inches for an overlapping portion 12 of about 0.75 to 2.5 inches.
The connector 18 may be comprised of a metal or metal alloy, and may include radiopaque materials. Suitable metals and metal alloys include stainless steels, nickel-titanium alloys (e.g., nitinol), nickel-chromium alloys, nickel-chromium-iron alloys, cobalt alloys, nickel, or other suitable materials. Alternatively, connector 18 may be comprised of a polymer or a metal-polymer composite, including a radiopaque filler.
The word nitinol was coined by a group of researchers at the United States Naval Ordinance Laboratory (NOL) who were the first to observe the shape memory behavior of this material. The word nitinol is an acronym including the chemical symbol for nickel (Ni), the chemical symbol for titanium (Ti), and an acronym identifying the Naval Ordinance Laboratory (NOL).
Some types of alloys are particularly suitable for connector 18 for purposes of connecting a stainless steel proximal section 14 and a nickel titanium alloy distal section 16, or visa-versa. An example is a nickel-chromium-iron alloy available under the trade name INCONEL 625, which advantageously welds to both stainless steels and nickel-titanium alloys. INCONEL 625 may be obtained from California Fine Wire Company of Grover Beach, Calif., and has the following composition:
Another example of a suitable alloy which welds to both stainless steels and nickel-titanium alloys is available under the trade name ALLOY C276 from Fort Wayne Metals Research Products Corporation of Fort Wayne, Ind., which has the following composition:
Another example of a suitable alloy which welds to both stainless steels and nickel-titanium alloys is available under the trade name ALLOY B2 from Fort Wayne Metals Research Products Corporation of Fort Wayne, Ind., which has the following composition:
To manufacture the connection 20 of the guidewire 10, the ends 24/26 of the proximal and distal guidewire sections 14/16 may be ground to form the desired shape (e.g., uniform diameter 23, bulbous portion 25, helix 27, or taper) to accommodate the overlapping joint 12. If a butt joint 13 is to be used, such a shape need not be ground. A recess step may be ground into the proximal and distal guidewire sections 14/16 to accommodate the connector tube 18. If a connector tube 18 is not to be used, such a recess step need not be ground.
For the embodiments utilizing a connector tube 18, the connector tube 18 is positioned over one of the ends 24/26 of the proximal and distal guidewire sections 14/16. The distal end 24 of the proximal portion 14 and proximal end 26 of the distal portion 16 are then positioned adjacent one another in an overlapping 12 or an end-to-end 13 arrangement. The proximal and distal guidewire sections 14/16 and the connector tube 18 may be bonded, welded (e.g., resistance or laser welded), soldered, brazed, or otherwise connected by a suitable technique depending on the material selected for each component. Alternatively, the ends 24/26 and the connector tube 18 may be crimped together or may be sized to establish a friction fit therebetween. If a connector tube 18 is not used, the ends 24/26 may be bonded, welded (e.g., resistance or laser welded), soldered, brazed, or otherwise connected, using a connector material 19. Connector material 19 may be the same as or similar to the material of the connector 18. In all cases, because the connection 20 may reside within a catheter lumen during use, it is preferred that a permanent connection (as opposed to a releasable connection) be used.
It is to be appreciated that various welding processes may be utilized without deviating from the spirit and scope of the present invention. Examples of welding processes which may be suitable in some applications include LASER welding, resistance welding, TIG welding, microplasma welding, electron beam, and friction or inertia welding. LASER welding equipment which may be suitable in some applications is commercially available from Unitek Miyachi of Monrovia, Calif. and Rofin-Sinar Incorporated of Plymouth, Mich. Resistance welding equipment which may be suitable in some applications is commercially available from Palomar Products Incorporated of Carlsbad, Calif. and Polaris Electronics of Olathe, Kans. TIG welding equipment which may be suitable in some applications is commercially available from Weldlogic Incorporated of Newbury Park, Calif. Microplasma welding equipment which may be suitable in some applications is commercially available from Process Welding Systems Incorporated of Smyrna, Tenn.
Once connected, the connector tube 18 and the proximal and distal guidewire sections 14/16 are centerless ground to provide a smooth and uniform profile across the connection 20, and to straighten out small misalignments between the proximal and distal guidewire sections 14/16. Other portions of the guidewire 10 may be ground as well to provide the desired tapers and changes in diameter. Once finally ground, a flexible coil tip and/or a polymer jacket (optionally covering connection 20) may be placed on the guidewire 10, and a lubricious coating (e.g., hydrophylic) may be applied.
The centerless grinding technique may utilize an indexing system employing sensors (e.g., optical/reflective, magnetic) to avoid excessive grinding of the connection 20. In addition, the centerless grinding technique may utilize a CBN or diamond abrasive grinding wheel that is well shaped and dressed to avoid grabbing the connector 20 during the grinding process.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
4080706 | Heilman et al. | Mar 1978 | A |
4456017 | Miles | Jun 1984 | A |
4538622 | Samson et al. | Sep 1985 | A |
4556240 | Yoshida | Dec 1985 | A |
4763647 | Gambale | Aug 1988 | A |
4813434 | Buchbinder et al. | Mar 1989 | A |
4846186 | Box et al. | Jul 1989 | A |
4884579 | Engelson | Dec 1989 | A |
4925445 | Sakamoto et al. | May 1990 | A |
4984581 | Stice | Jan 1991 | A |
5069226 | Yamauchi et al. | Dec 1991 | A |
5109867 | Twyford, Jr. | May 1992 | A |
5111829 | Alvarez de Toledo | May 1992 | A |
5213111 | Cook et al. | May 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5273052 | Kraus et al. | Dec 1993 | A |
5275173 | Samson et al. | Jan 1994 | A |
5312356 | Engelson et al. | May 1994 | A |
5333620 | Moutafis et al. | Aug 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5365943 | Jansen | Nov 1994 | A |
5402829 | Takikawa et al. | Apr 1995 | A |
5411476 | Abrams et al. | May 1995 | A |
5433200 | Fleischhacker, Jr. | Jul 1995 | A |
5452726 | Burmeister et al. | Sep 1995 | A |
5637089 | Abrams et al. | Jun 1997 | A |
5651373 | Mah | Jul 1997 | A |
5695111 | Nanis et al. | Dec 1997 | A |
5772641 | Wilson | Jun 1998 | A |
5782776 | Hani | Jul 1998 | A |
5797857 | Obitsu | Aug 1998 | A |
5820571 | Erades et al. | Oct 1998 | A |
5833631 | Nguyen | Nov 1998 | A |
5836893 | Urick | Nov 1998 | A |
5980471 | Jafari | Nov 1999 | A |
6001068 | Uchino et al. | Dec 1999 | A |
6042553 | Solar et al. | Mar 2000 | A |
6106488 | Fleming et al. | Aug 2000 | A |
6165292 | Abrams et al. | Dec 2000 | A |
6168571 | Solar et al. | Jan 2001 | B1 |
6183420 | Douk et al. | Feb 2001 | B1 |
6234981 | Howland | May 2001 | B1 |
6248082 | Jafari | Jun 2001 | B1 |
6306105 | Rooney et al. | Oct 2001 | B1 |
6352515 | Anderson et al. | Mar 2002 | B1 |
6464651 | Hiejima et al. | Oct 2002 | B1 |
6497709 | Health | Dec 2002 | B1 |
6554942 | Solar et al. | Apr 2003 | B2 |
6561218 | Mudd | May 2003 | B2 |
6610046 | Usami et al. | Aug 2003 | B1 |
6682493 | Mirigian | Jan 2004 | B2 |
Number | Date | Country |
---|---|---|
0 274 412 | Jul 1988 | EP |
0 491 349 | Jun 1992 | EP |
0 806 220 | Nov 1997 | EP |
0 838 230 | Apr 1998 | EP |
WO 00402860 | Jul 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030069520 A1 | Apr 2003 | US |