Guiding panel for condenser, condenser and refrigeration system

Information

  • Patent Grant
  • 11098934
  • Patent Number
    11,098,934
  • Date Filed
    Wednesday, January 16, 2019
    6 years ago
  • Date Issued
    Tuesday, August 24, 2021
    3 years ago
Abstract
The present utility model relates to a deflector for a condenser. The condenser has an inlet in communication with a compressor, and a deflector for guiding a refrigerant gas flow from the compressor is arranged in the condenser and at a position close to the inlet. The deflector is provided with a deflecting structure projecting toward the inlet, and the deflecting structure is configured as impermeable to the refrigerant gas flow. The present utility model further provides a condenser having the deflector for a condenser and a refrigeration system equipped with the condenser. The deflector for a condenser according to the present utility model not only can alleviate the impact of high-temperature high-pressure gas from the compressor but also can reduce noise and vibration.
Description
FOREIGN PRIORITY

This application claims priority to Chinese Patent Application No. 201820068695.0, filed Jan. 16, 2018, and all the benefits accruing therefrom under 35 U.S.C. ยง 119, the contents of which in its entirety are herein incorporated by reference.


TECHNICAL FIELD

The present utility model relates to the technical field of heat exchange equipment, and particularly to a deflector for a condenser, a condenser having the deflector for a condenser, and a refrigeration system equipped with the condenser.


BACKGROUND ART

It is known to those skilled in the art that the condenser is one type of heat exchange equipment. In a refrigeration system consisting of basic components such as a compressor, a condenser, a throttle valve, and an evaporator, a refrigerant continuously circulates and flows in the system and exchanges heat with the outside by means of its phase change. The compressor compresses a working medium from a low-temperature low-pressure gas into a high-temperature high-pressure gas, which is then condensed into a medium-temperature high-pressure liquid through the condenser.


Currently, a deflector 14 is mounted inside a shell of a condenser as shown in FIG. 1 and at a position corresponding to a refrigerant gas inlet 13, to reduce the impact force of a high-temperature high-pressure gas from a discharge pipe 12 of the compressor. The deflector 14 is usually in the form of a flat plate, as shown in FIG. 1 and FIG. 2. When the refrigerant gas flow discharged from the compressor goes through the deflector 14, the huge impact force of the gas flow generally causes the entire condenser to vibrate violently and produces unexpected noise. In addition, because the deflector 14 is arranged inside the shell of the refrigerant gas inlet of the condenser in the form of a flat plate, the space inside the condenser is not fully used.


Therefore, it is necessary to provide a deflector for a condenser, which not only can reduce the impact force of the refrigerant gas flow, but also can reduce vibration and noise.


SUMMARY OF THE UTILITY MODEL

In view of this, a first aspect of the present utility model provides a deflector for a condenser, so as to effectively solve the above-mentioned problems of the prior art and other problems. In the deflector for a condenser according to the present utility model, the condenser has an inlet in communication with a compressor, and a deflector for guiding a refrigerant gas flow from the compressor is arranged in the condenser and at a position close to the inlet, wherein the deflector is provided with a deflecting structure projecting toward the inlet, and the deflecting structure is configured as impermeable to the refrigerant gas flow.


In another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure includes a first side plate, a second side plate, and a top plate, the first side plate and the second side plate are arranged on two sides of the top plate respectively, and the top plate projects toward the inlet relative to the first side plate and the second side plate.


In another embodiment of the deflector for a condenser according to the present utility model, the first side plate and the second side plate are of the same size and are symmetrically arranged on the two sides of the top plate respectively.


In still another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure is configured as a wavy cross section with peaks and troughs, and at least one peak points to the inlet.


In another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure has a triangular cross section, the deflecting structure has a first side plate and a second side plate, and the first side plate and the second side plate are of the same size and are symmetrically arranged on the deflector.


In still another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure has a truncated spherical cross section.


In yet another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure is arranged on the entire surface of the deflector.


In another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure is made of steel.


In still another embodiment of the deflector for a condenser according to the present utility model, the deflecting structure is fixed to a housing of the condenser by welding.


In addition, a second aspect of the present utility model provides a condenser, including the above-mentioned deflector for a condenser.


In addition, a third aspect of the present utility model provides a refrigeration system including the above-mentioned condenser.


It should be understood that the deflector for a condenser according to the present utility model not only can effectively alleviate the impact of the high-temperature high-pressure gas flow from the compressor, but also can help reduce the vibration of the condenser and noise when the condenser runs. In addition, the deflector for a condenser according to the present utility model makes maximum use of the space inside the condenser.





BRIEF DESCRIPTION OF THE DRAWINGS

The technical solutions of the present utility model will be further described in detail below with reference to the accompanying drawings and embodiments, wherein:



FIG. 1 is a three-dimensional partially-enlarged diagram of a deflector for a condenser in the prior art;



FIG. 2 is a schematic structural diagram of a condenser including the deflector for a condenser in FIG. 1;



FIG. 3 is a three-dimensional schematic structural diagram of a deflector for a condenser according to a first embodiment of the present utility model;



FIG. 4 is a partially-enlarged schematic diagram of the deflector for a condenser in FIG. 3;



FIG. 5 is a schematic structural diagram of a condenser including the deflector for a condenser in FIG. 3;



FIG. 6 is a partially-enlarged schematic diagram of a deflector for a condenser according to a second embodiment of the present utility model;



FIG. 7 is a schematic structural diagram of a condenser including the deflector for a condenser in FIG. 6;



FIG. 8 is a partially-enlarged schematic diagram of a deflector for a condenser according to a third embodiment of the present utility model;



FIG. 9 is a schematic structural diagram of a condenser including the deflector for a condenser in FIG. 8;



FIG. 10 is a partially-enlarged schematic diagram of a deflector for a condenser according to a fourth embodiment of the present utility model; and



FIG. 11 is a schematic structural diagram of a condenser including the deflector for a condenser in FIG. 10.





DETAILED DESCRIPTION

Several embodiments of the present utility model will be described in detail below with reference to the accompanying drawings. It should be noted that orientational terms such as up, down, left, right, front, rear, inner side, outer side, top, and bottom, which are or may be mentioned in this specification, are defined in combination with the structures shown in the accompanying drawings. They are relative concepts, and therefore may change according to different positions and different usage states. Therefore, these or other orientational terms should not be construed as limiting terms.


As shown in FIG. 3, in general, the structure of a deflector for a condenser according to an embodiment of the present utility model is schematically shown. As can be clearly seen from FIG. 3, the condenser 101 has an inlet 103 in communication with a discharge pipe 102 of a compressor (not shown), and a deflector 104 for guiding a refrigerant gas flow from the compressor is arranged in the condenser 101 and at a position close to the inlet 103. The deflector 104 is fixed to a housing of the condenser 101 by welding or other means.


As can be seen from FIG. 4 and FIG. 5, the deflector 104 is provided with a deflecting structure projecting toward the inlet 103, to reduce the impact force of the high-temperature high-pressure gas flow from the compressor and alleviate the violent vibration caused in the internal structure of the condenser 101. In addition, the propagation direction of noise generated due to the vibration can be changed by the uneven surface of the deflector 104, and therefore the noise level of the condenser 101 can be effectively reduced. In addition, the deflecting structure is designed as impermeable to the refrigerant gas flow. For example, the deflecting structure does not have any pore.


In the embodiment shown in FIGS. 3 to 5, the deflecting structure is approximately configured as a wavy cross section with peaks and troughs, and at least one peak 110 points to the inlet 103, so that the gas flow entering the condenser 101 can be approximately evenly guided to the trough parts on two sides. Preferably, the deflecting structure is arranged on the entire surface of the deflector 104, so as to provide a better vibration and noise reduction effect. Because the wavy cross section of the deflecting structure increases the circulation area, the deflector 104 makes use of the space inside the condenser 101 to a large extent.



FIG. 6 shows a deflector for a condenser according to another specific embodiment of the present utility model. For the position relationship between the inlet 203 of the condenser in communication with the discharge pipe 202 of the compressor and the deflector 204, reference may be made to the description of the foregoing embodiments, and the details will not be repeated herein. As can be clearly seen from FIG. 6 and FIG. 7, in the deflector 204 for a condenser, the deflecting structure has a triangular cross section. Further, the deflecting structure may include a first side plate 211 and a second side plate 212, and the first side plate 211 and the second side plate 212 are of the same size and are symmetrically arranged on the deflector 204 respectively. The top edge formed by the intersection of the first side plate 211 and the second side plate 212 points to the inlet 203. Similarly, after the gas flow entering the condenser reaches the top edge, the gas flow can be approximately evenly guided to the first side plate 211 and the second side plate 212, thus reducing the impact of the high-pressure gas flow on the condenser and reducing noise. Preferably, the deflecting structure is arranged on the entire surface of the deflector 204, so as to provide a better vibration and noise reduction effect. Because the triangular cross section of the deflecting structure increases the circulation area, the deflector 204 makes use of the space inside the condenser to a large extent.



FIG. 8 shows a deflector for a condenser according to still another specific embodiment of the present utility model. For the position relationship between the inlet 303 of the condenser in communication with the discharge pipe 302 of the compressor and the deflector 304, reference may be made to the description of the foregoing embodiments, and the details will not be repeated herein. As can be seen from FIG. 8 and FIG. 9, in the deflector 304 for a condenser, the deflecting structure has a truncated spherical cross section 305. The highest point of the spherical cross section 305 faces directly toward the inlet 303. It should be readily understood that because the spherical surface has a larger guiding area than a plane, the deflector 304 for a condenser in this embodiment has a longer guiding path and can better reduce the impact force of the gas flow from the compressor and reduce the noise level of the condenser. Of course, those skilled in the art can also use a deflecting structure having an irregular spherical cross section instead of the above-mentioned strictly regular spherical cross section.



FIG. 10 shows a deflector for a condenser according to another specific embodiment of the present utility model. For the position relationship between the inlet 403 of the condenser in communication with the discharge pipe 402 of the compressor and the deflector 404, reference may also be made to the description of the foregoing embodiments. As can be seen from FIG. 10 and FIG. 11, in the deflector 404 for a condenser, the deflecting structure has a trapezoidal section. Further, the deflecting structure may include a first side plate 411, a second side plate 412, and a top plate 413. The top plate 413 faces directly toward the inlet 403, and the first side plate 411 and the second side plate 412 are of the same size and are symmetrically arranged on two sides of the top plate 413. The deflector having such a structure can also reduce the impact force of the gas flow from the compressor and reduce the noise level of the condenser.


As an example, for ease of manufacturing, the deflector and the deflecting structure may be integrally formed. In addition, it can be readily figured out by those skilled in the art that the deflecting structure may also be mounted on the deflector for a condenser as an additional component as long as the manufacturing or processing costs permit.


In addition, the present utility model provides a condenser including the above-mentioned deflector for a condenser. Because the deflector is disposed inside the condenser, the condenser is less likely to generate unexpected noise and vibration during running.


In addition, the present utility model further provides a refrigeration system including the above-mentioned condenser. The refrigeration system includes a cooling tower, a water chilling unit, a pumping device, etc. connected through pipelines. The water chilling unit consists of a compressor, a condenser, a throttle device, an evaporator, and the like. As described above, the condenser including the above-mentioned deflector can effectively achieve the objective of vibration and noise reduction without increasing the costs of the water chilling unit. Therefore, the above-mentioned condenser is suitable for use in various refrigeration systems.


Several specific embodiments are provided above to describe in detail the deflector for a condenser, the condenser including the deflector, and the refrigeration system equipped with the condenser of the present utility model. These examples are only used for describing the principles and implementation manners of the present utility model and are not intended to limit the present utility model. Those of ordinary skill in the art can also make various modifications and improvements without departing from the spirit and scope of the present utility model. For example, to enable the deflector to be able to resist the impact of the gas flow, the deflector may be made of steel or other high-strength materials. Therefore, all equivalent technical solutions shall fall within the scope of the present utility model as defined by the appended claims.

Claims
  • 1. A deflector for a condenser, wherein the condenser has an inlet in communication with a compressor, and a deflector for guiding a refrigerant gas flow from the compressor is arranged in the condenser and at a position close to the inlet, wherein the deflector is provided with a deflecting structure projecting toward the inlet, and the deflecting structure is configured as impermeable to the refrigerant gas flow, wherein the deflector is configured to guide all refrigerant gas flow from the compressor; wherein the deflector has a curved cross section including a curved peak directed to the inlet and a curved trough on each side of the curved peak.
  • 2. The deflector according to claim 1, wherein the deflecting structure is arranged on the entire surface of the deflector.
  • 3. The deflector according to claim 1, wherein the deflecting structure is made of steel.
  • 4. The deflector according to claim 1, wherein a highest point of the deflector faces the inlet of the condenser.
  • 5. A condenser, comprising: an inlet in communication with a compressor, and a deflector for guiding a refrigerant gas flow from the compressor arranged in the condenser and at a position close to the inlet, wherein the deflector is provided with a deflecting structure projecting toward the inlet, and the deflecting structure is configured as impermeable to the refrigerant gas flow, wherein the deflector is configured to guide all refrigerant gas flow from the compressor; wherein the deflector has a curved cross section including a curved peak directed to the inlet and a curved trough on each side of the curved peak.
  • 6. A refrigeration system, comprising the condenser according to claim 5.
Priority Claims (1)
Number Date Country Kind
201820068695.0 Jan 2018 CN national
US Referenced Citations (13)
Number Name Date Kind
2111133 Zwickl Mar 1938 A
2111570 Neeson Mar 1938 A
4194371 Morse Mar 1980 A
4928524 Sugi May 1990 A
5122352 Johnson Jun 1992 A
6868695 Dingel et al. Mar 2005 B1
8944152 Kulankara et al. Feb 2015 B2
20030192339 Macbain Oct 2003 A1
20050039587 Gorun Feb 2005 A1
20050115248 Koehler Jun 2005 A1
20100326108 Schreiber Dec 2010 A1
20110024080 Bose et al. Feb 2011 A1
20150292804 Hermida Dominguez Oct 2015 A1
Foreign Referenced Citations (17)
Number Date Country
2890783 Apr 2007 CN
202328931 Jul 2012 CN
202928219 May 2013 CN
202973672 Jun 2013 CN
202973672 Jun 2013 CN
203478730 Mar 2014 CN
203478730 Mar 2014 CN
203964462 Nov 2014 CN
104764258 Jul 2015 CN
104833140 Aug 2015 CN
205227950 May 2016 CN
105823353 Aug 2016 CN
206073517 Apr 2017 CN
106642833 May 2017 CN
107062709 Aug 2017 CN
1426565 Jun 2004 EP
S59170697 Sep 1984 JP
Non-Patent Literature Citations (1)
Entry
European Search Report for application 19151521.2, dated Jun. 19, 2019, 7 pages.
Related Publications (1)
Number Date Country
20190219314 A1 Jul 2019 US