The invention pertains to the technical field of systems for transportation and storage of goods provided with guiding rails and flexible dunnage.
Handling units, like boxes, racks or other, provided with guiding rails supporting flexible movable dunnage, are well known in the art. These handling units with dunnage, manufactured of materials like plastic, woven textile or non-woven textile, are used to transport a variety of goods all over the world. It is essential that the dunnage can be easily manipulated by the factory workers, who only have a limited time to fill or empty the dunnage.
Motivated by its low weight and high tensile strength, aluminum is the standard material to produce such guiding rails. However, aluminum has a high coefficient of kinetic friction, obliging the workers using both hands on the dunnage (one hand on the left side close to the guiding rail, one hand on the right side close to the guiding rail) to slide the dunnage along the rails in the handling units. This issue is in particular, but not only, the case when the flexible dunnage is self-supportive and not supported by a solid dunnage support.
Transport devices with movable flexible dunnage can be divided in two categories. A first category of such transport devices comprises solid dunnage supports, like strut bars, which are mounted between the guiding rails by means of gliding elements. These transport devices need inventive systems to be collapsible when returned empty, which is a serious drawback for such transport devices. Moreover, when the dunnage support is skewed between the guiding rails, the dunnage can get blocked, due to the large friction between the gliding elements and the recess of the guiding rail. A second category comprises dunnage which is self-supportive, with gliding elements mounted directly on the dunnage or attached by means of a flexible connection like a textile band. Due to the absence of solid bars, these devices are easily collapsible, which is a considerable advantage. However, when manipulating such flexible dunnage lacking a dunnage support, a considerable normal force acts on the gliding element, which results in a large friction and often a blockage of the dunnage.
Hence, there remains a need in the art for an improved transport system with guiding rails and movable dunnage with or without solid dunnage supports, enabling easy manipulation of the dunnage along the guiding rails.
The present invention aims to resolve at least some of the problems mentioned above.
The invention thereto aims to provide an improved guiding rail, both inexpensive, enabling easy and effortless manipulation of the dunnage with or without dunnage supports and easy to install. In particular, the object of the current invention allows a one-hand operation when moving the dunnage in the box, which enhances greatly the efficiency of the operators of such devices.
The present invention provides an improved guiding rail which can be used in storing and transporting devices provided with dunnage, which can be easily and effortlessly moved along the guiding rails, preferably by a one-hand operation.
In a first aspect, the present invention discloses guiding rails provided with a recess in the longitudinal direction of said rail, whereby said recess is at least partially provided with an intermediate material, according to claim 1. Said intermediate material can be in the form of a polymer insert, according to claim 2, or in the form of a coating added during a painting and/or anodization process, according to claim 6. The intermediate material allows easy one-handed manipulation of the flexible dunnage along the guiding rails by pulling or pushing the dunnage, even when a force is applied centrally on the dunnage.
In a second aspect, the present invention provides a device for storing and transporting goods, according to claim 14, provided with such guiding rails provided with an intermediate material as described above.
In
In
In
In
The present invention concerns an improved guiding rail which can be used in storing and transporting handling units provided with guiding rails and flexible dunnage. This flexible dunnage can be self-supportively mounted between the guiding rails by means of gliding elements at both ends. Alternatively, the flexible dunnage can be provided with at least one solid dunnage support, to which gliding elements are provided. These gliding elements are placed in the recess of the guiding rail. This document discloses how the recess of the guiding rail is at least partially provided with an intermediate material. The intermediate material enables easy manipulation of the dunnage along the guiding rail by pushing or pulling, even with one hand in the center of the dunnage.
Unless otherwise defined, all terms used in disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
As used herein, the following terms have meanings as described below.
The term “dunnage” refers to the assembly of one or more pockets mounted in the transport device. The dunnage can be suspended between the rails by means of a dunnage support, which connects the dunnage with the guiding rails by means of gliding elements. Said dunnage support comprises a strut bar manufactured of materials comprising hard or soft plastic. Alternatively, the flexible dunnage can be suspended between the guiding rails without the use of a dunnage support. In this case, the dunnage is self-supportive and the gliding elements are mounted directly on the dunnage, for instance by means of a flexible connection like a textile band, which is moved in the slot of the gliding element and stitched or sewn to the flexible dunnage for fixation.
The term “to be slidably fitted in a rail” means that an element is fitted in the rail, but it is able to move along the recess of the rail.
In a first aspect, this current invention discloses a guiding rail, provided with a recess in the longitudinal direction of the rail. This rail is suitable for receiving gliding elements of a movable dunnage structure like suspended pockets. To improve the ease of manipulation of said dunnage, an intermediate material is provided to the recess of the guiding rail. This intermediate material is at least partially covering the recess of the guiding rail, but can also completely cover the recess of the guiding rail. The cross section of the recess of said guiding rail can be approximately U-shaped or C-shaped. Said guiding rails are manufactured of materials comprising aluminum, steel, plastic or a combination thereof.
As a possible embodiment of said intermediate material provided to the recess of the guiding rail, the invention provides an intermediate material in the form of a polymer insert that can be plugged in in the recess along the longitudinal direction of a guiding rail. The insert covers the recess at least partially along its length, but can also span the entire length of said recess. Gliding elements can be slidably fitted in the insert and interconnect the insert of the guiding rail and the dunnage. The insert comprises lips suitable for partly enclosing said gliding element, inhibiting the removal of the gliding element from the insert. The lips of the insert fold inwards towards the recess of the guiding rail and are bent along the edges of the recess of guiding rail. Both the distal and the proximal end of the guiding rail are at least partially covered by an end cap, closing the recess of the insert and thus preventing the loss of the gliding elements. These improved guiding rails are specifically designed for use in transporting devices with suspended pockets, but can also be applied in other systems with guiding rails. Therefore, the use of said inserts in guiding rails is not limited to the examples provided in the text.
In a preferred embodiment of the invention, the insert comprises at least one division along a transversal line, hence the insert can be subdivided in at least two components. Inserts are often long and can be slightly curved. It is not straightforward to slide such long insert along the recess from the proximal end to the distal end of the guiding rail, as the curvature of the insert generates tension during installation. Alternatively, several short inserts can be placed in the recess of the long guiding rail and cover as such the entire length of the recess. However, it is necessary to partly disassemble the transport device and to remove the end caps to install such inserts. This is a highly inconvenient and time-consuming process. The installation process of said insert components with a division along the transversal line is much more convenient, because the shape of the recess of the guiding rail and the shape of the insert components allow that the insert components are clicked in the recess of the guiding rail without disassembling the transport device or removing the end caps of the guiding rails.
In a preferred embodiment, a portion of the guiding rail is insert-free. Said portion is preferentially at the distal or proximal end of the guiding rail. This insert-free opening allows installing the gliding elements in the guiding rails without disassembling the transport device, because the opening of the recess of the guiding rails is large enough to insert the gliding elements. Once the gliding element is included in the recess of the rail, it can be moved further into the insert present in the guiding rail. The lips of the insert impede the removal of the gliding element from the insert, because the opening between the lips is smaller than the foot of the gliding element. Once the gliding elements of the dunnage are installed via the insert-free opening of the guiding rail, a blocking element can be mounted on the insert-free position of the guiding rail, preventing the escape of the gliding elements when moving the dunnage along the guiding rails.
In an embodiment, the insert is by preference manufactured of a polymer with a low friction coefficient. As a consequence, the suspended pockets can be easily manipulated along the guiding rails in transporting boxes by pulling or pushing the dunnage in the center with one hand, even if the dunnage is not supported by bars and is flexible or bendable. In the transport devices known in the state of the art, moving suspended pockets, especially those without solid dunnage supports, along the guiding rails can be complicated, because the gliding elements get blocked in the guiding rails, especially when only one hand is used in the center of the dunnage support. Therefore, two hands are necessary to move the dunnage of current transport devices, applying one hand on the left side and one hand on the right side of the dunnage support, both hands close to the guiding rail on each side. This is a big disadvantage and hampers efficient work.
The polymer used for the insert has by preference a density of between 0.9 and 1.5 g/cm3, but preferentially a density of at least about 0.91 g/cm3. The tensile stress of said polymer ranges between 18 and 25 N/mm2, but is preferentially larger than about 19 N/mm2. Furthermore, said polymer has an elongation at break between 45% and 60%, preferentially larger than 50%. The E-modulus of the polymer covers values between 650 N/mm2 and 800 N/mm2 and is preferentially larger than 700 N/mm2. The polymer requires between 4 and 5 N/mm2 compression stress at 1% nominal upset, preferentially 4.5 N/mm2 compression stress. The polymer also needs a compression stress between 6 N/mm2 and 10 N/mm2, preferentially 8 N/mm2, at a nominal upset of 2%. Finally, the polymer needs a compression stress between 12 N/mm2 and 16 N/mm2 at 5% nominal upset. Additionally, the polymer requires a notched impact stress between 100 and 150, preferentially larger than 118. The polymer has a ball pressure hardness between 35 N/mm2 and 45 N/mm2, preferentially about 39 N/mm2. The polymer has a Shore D hardness between 55 and 70, preferentially above 60, and, an abrasion resistance (measured with a Sand Slurry test) between 70% and 90%, preferentially about 80%.
It was found by the inventors of the current invention that polymers complying with one or more ratios as mentioned above, were proven to be particularly beneficial in the framework of the current invention.
In an embodiment, the polymer insert comprises a polymer selected from polyolefins such as High-density polyethylene (HDPE), Ultra-high-molecular-weight polyethylene (UHMWPE), Medium density polyethylene (MDPE), polypropylene, polyurethane, polystyrene, cross-linked polyethylene (PEX or XLPE), polyoxymethylene (POM), or lubricated or modified versions of any of the polyolefins stated above to create lower friction coefficients.
In an alternative embodiment of the invention, the intermediate material provided between the recess of the guiding rail and the gliding elements comprises a coating added during a painting and/or anodizing process to the recess of the guiding rail. The coating covers the recess at least partially, but can also completely cover the recess. Lips are provided at the edges of the coated recess of the guiding rail, bending inwards towards the recess. These lips are enclosing the gliding elements and prevent the removal of said gliding elements. An end cap covering at least partially the recess of the guiding rail is provided at both ends of the guiding rail. The gliding elements mounted in the coated recess of the guiding rail allow the uncomplicated manipulation of the flexible dunnage.
The painting and/or anodization layer is applied with a thickness between 5 and 200 micron, preferentially between 10 and 150 micron. In an embodiment, the coating can comprise a polymer like polytetrafluoroethylene (also known as Teflon), WS2 (Tungsten disulfide) or lubricant paint. In this case, no polymer insert is used, but due to the properties of the polymer, the gliding element can move along the guiding rails without large amounts of friction. Due to the lack of an insert, lips are provided on the guiding rail, preventing the gliding elements of being removed from the recess of the guiding rail.
The guiding rails are made of materials comprising aluminum, plastic, steel or a combination thereof. These materials are frequently used to produce such rails, because of their low weight and high tensile strength. The insert is manufactured of a polymer with a kinetic friction coefficient between 0 and 0.12 in dry condition. Preferentially, the coefficient of friction between 0 and 0.1, more than ten times lower than the friction coefficient of aluminum. Due to the properties of the polymer of the insert or the recess coating, the dunnage can be easily manipulated along the guiding rails, in contrast to the complicated sliding of the dunnage in current transport devices with aluminum, plastic or steel guiding rails.
In a particularly preferred embodiment, the gliding elements mounted on the dunnage or on the dunnage supports are replaceable. These elements can be fragile and can require replacement after multiple use of the transport system, especially when heavy goods are carried in the dunnage. Moreover, if the inserts are innovated and are provided with a different improved opening, it is possible to also alter the gliding element. The replacement process of both the insert and the gliding element is fast and inexpensive, especially in the case the insert has a division along a transversal line as described above and the insert components can be clicked in the guiding rail without the need to disassemble the transport device. Further costs are reduced, because the guiding rails do not need replacement and the installation of the innovative insert can be performed without replacing the transporting boxes.
In an alternative embodiment, the foot of a gliding element has a width smaller than twice the height of the foot of said element. Preferentially the width of the foot is smaller than the height of the foot of the gliding element. Hereby, the foot of the gliding element refers to that part of the gliding element that is introduced in the insert of the guiding rail or in the coated recess of the guiding rail. The width of said foot involves the size of the foot parallel to the guiding rail once the gliding element is mounted (hence parallel to the moving direction). The height refers to the vertical size of the foot once mounted in the horizontal guiding rail (hence orthogonal to the moving direction). The width of the gliding element is important when taking the piece goods out of the transport device: when the piece goods are removed, the operator closes the dunnage and slides the empty dunnage towards the proximal end of the guiding rail. Therefore, empty dunnage is accumulating on the side of the operator while emptying the dunnage and the distance to the closest dunnage loaded with piece goods is increasing. This is highly inconvenient for the operator, who can suffer back pains if it is necessary to reach far for the piece goods. The width of the emptied dunnage is determined by the width of the gliding elements, hence the smaller the width of the gliding elements, the smaller the width of the accumulated emptied dunnage and the more convenient the operator can remove the piece goods.
The invention also discloses a device, like a handling unit such as a container, a rack or other, used for holding product therein during storage and shipment, the product being two-dimensional or three-dimensional piece goods. The container comprises a bottom and at least two sides, erecting from said bottom, and at least one set of guiding rails supported by the container sides. A lid can be provided to cover the upper side of the container. The container can be manufactured of materials comprising steel (e.g. to form a rack), plastic (e.g. to form a box), wood (e.g. to form a pallet) or a combination thereof. Gliding elements are engaged with and slidable along a longitudinal recess of said guiding rails. A dunnage structure is movably coupled at both sides to the container by means of the gliding elements and operable for being slid along the guiding rails to vary the position of the dunnage structure and to receive product within the container. The dunnage can be self-supportive or can be mounted on solid dunnage supports, like strut bars. The recess of said guiding rails is at least partially provided with an intermediate material in order to facilitate the manipulation of the dunnage along the guiding rails. The intermediate material comprises a polymer insert or a coating added during a painting and/or anodization process, as described above.
In a possible embodiment of the invention, the dunnage comprises flexible pockets having U-shaped cross sections, suitable for storing and transporting flat, substantially two-dimensional or three-dimensional objects. The dunnage can be supported by at least one dunnage support provided with gliding elements on both sides and manufactured from solid materials like hard plastic. Alternatively, the dunnage can be self-supportive and the gliding elements can be attached directly to the dunnage. The flexible dunnage is made of materials comprising plastic, woven textile, non-woven textile or a combination thereof. The guiding rails are provided over the entire length with an intermediate material like a polymer insert, plugged into the recess of said guiding rails. The gliding elements are placed in the opening of the insert and enable moving the dunnage along the guiding rails without suffering a disturbing amount of friction. Alternatively, a coating can be added during the painting and/or anodization process of the recess of the guiding rail, whereby the friction during the manipulation of dunnage is also vastly reduced. Said coating can be applied by any technique available in the State of the art known by the skilled person. This way the transported goods can be easily stored and arranged in the dunnage of the box, optimizing the use of available storage space. As a consequence, more goods can be transported within the same volume or container, reducing the costs of shipping for a factory. Due to the low friction when moving the dunnage, significant time savings can be achieved and the transport device is more user friendly.
In a preferred embodiment, said transport device is foldable or collapsible before and after use. Methods and techniques to fold the reusable and returnable containers are well known in the State of the Art. Such containers for holding product therein during shipment and subsequently being returned generally empty of product for reuse comprise a body configured for being manipulated into an erected position for containing a product placed therein during shipment and for subsequently being manipulated into a collapsed position for reducing the size of the container for return. An integrated dunnage structure is coupled to the body and is operable for moving into an engagement position when the container body is erected to thereby engage a product placed in the container for shipment. The dunnage structure is further operable for moving into a relaxed position when the container body is collapsed so that the container and dunnage structure may be returned together for reuse. The container provides reusable dunnage which is usable with the container when it is shipped and subsequently remains with the container when it is returned for being reused when the container is again shipped. In a preferred embodiment, pliable dunnage pouches are suspended in the container and collapse when the container is collapsed. The dunnage has to be manipulated regularly in these collapsible containers. Therefore, the use of a guiding rail with an intermediate material in the recess, like a polymer insert or a coated recess, are advantageous in this type of containers.
The solid dunnage supports can be produced of materials comprising plastic. The dunnage is manufactured from flexible materials, comprising textile or plastic or a combination thereof. In a particular embodiment, this flexible dunnage has a U-shaped cross section. However, this document is not intended to limit the material or the shape of the dunnage.
The invention is further described by the following non-limiting examples which further illustrate the invention, and are not intended to, nor should they be interpreted to, limit the scope of the invention.
In what follows, the different figures are described in more detail.
In
In
In
In
In
In
In
In
In
In
In
In
In
The numbers used in the figures referring to the different components of the invention are listed below.
It is supposed that the present invention is not restricted to any form of realization described previously and that some modifications can be added to the presented example of fabrication without reappraisal of the appended claim. In the figures, an insert is used to illustrate the use of an intermediate material reducing the friction between the gliding element and the guiding rail. It is equivalent to use a low-friction coating in the recess of the guiding rail. This coating similarly reduces the friction between the gliding element and the guiding rail.
Furthermore, this document does not intend to limit the shape of the dunnage, the material of the dunnage or the material used to assemble the transport device.
Number | Date | Country | Kind |
---|---|---|---|
2015-31737 | Nov 2015 | CZ | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/054940 | 3/8/2016 | WO | 00 |