The present invention relates generally to stringed musical instruments. The present invention relates more particularly to a support rod for mitigating undesirable deformation of the neck of a stringed musical instrument, such as a guitar.
Stringed musical instruments having a neck and a body are well known. Guitars, bases, banjos, mandolins, violins, Dobros and ukuleles are examples of such stringed instruments.
It is generally desirable that the neck of a stringed musical instrument have a small amount of bowing in the direction in which the strings tend to pull the neck. Such bowing is desirable so as to accommodate the excursion of a played string. As those skilled in the art will appreciate, a played string requires sufficient clearance with respect to the neck of the musical instrument so as to avoid undesirably contacting the neck or frets of the musical instrument as the string moves back and forth about its unplayed or idle position. Generally, the most clearance is required between a string and the neck of the musical instrument along the central portion of the string, where such excursions tend to be the greatest. Such clearance is provided by forming the neck of a musical instrument, such as a guitar, so as to have a very slight bow when the strings are installed and properly tuned.
However, one common problem associated with stringed musical instruments is undesirable bowing or deformation of the neck of the musical instrument. Such deformation of the neck of a musical instrument may be caused by poor workmanship, poor materials, excessive changes in humidity, excessive temperature, excessive changes in temperature, excessive string tension, or by any combination of these factors.
Typically, such deformation of the neck of a stringed musical instrument results in undesirable bowing of the neck, which inhibits proper playing of the musical instrument. Such bowing most frequently occurs in the direction in which the strings tend to pull the neck. However, such bowing may occur in any other direction, including that direction opposite to the direction in which the strings tend to pull the neck, a direction perpendicular to that direction, or any other direction. The neck of a musical instrument may also deform in various other manners, such as by being deformed into a generally S-shaped curve. It is also possible for the neck to twist, such as generally about it longitudinal centerline.
As those skilled in the art will appreciate, that portion of a stringed musical instrument, such as a guitar, where the neck attaches to the body thereof tends to be a weak point, where undesirable bowing commonly occurs. This attachment point can be thought of as defining a hinge about which the neck pivots (although typically only very slightly) relative to the body, so as to permit bowing due to excessive string tension.
Many stringed instruments have a truss rod or tension rod disposed within the neck thereof for adjusting the amount of bow in the neck of the musical instrument. When a musical instrument having such a tension rod bows at the attachment point of the neck to the body thereof, it is common to attempt to compensate for such bowing by adjusting the tension rod so as to cause the neck to bow in a direction opposite that which occurs at the attachment point. Bowing at the attachment point usually occurs in the direction in which the strings pull the neck. Therefore, the tension rod is adjusted (tightened) so as to cause the neck to bow in the direction which is opposite to that in which the strings pull the neck.
However, it must be appreciated that a tension rod adjusts the amount of bow in the neck by varying the curvature of the neck about the center portion of the length of the neck. Thus, such adjustment of the tension rod changes the curvature of the neck by causing the neck to bend about its own center. However, the bowing of the instrument caused at the attachment point of the neck to the body thereof is occurring at the proximal end (attachment end) of the neck, rather than near the center of the length of the neck. Therefore, such an attempt to compensate for bowing at the attachment point of the neck generally results in the introduction of further undesirable deformation of the neck, rather than compensating for the original deformation at the attachment point. This may result in a generally S-shaped curvature of the neck, which may make the musical instrument unplayable.
Although such deformation is typically very small when measured, it is important to appreciate that even a slight amount of deformation may render a stringed musical instrument unplayable. For example, bowing of the neck of a guitar in the direction in which the strings tend to pull the neck results in a greater distance between the strings and the frets for higher pitched notes than for lower pitched notes on a given string. This is the type of bowing which frequently occurs at the attachment point of the neck to the body of a musical instrument, as discussed above. Such bowing inherently requires that a guitar player push higher pitched notes further downward (to the fingerboard) than lower pitched notes. As those skilled in the art will appreciate, pushing the string further downward in order to play a note stretches the string more, thereby increasing the tension on the string and consequently undesirably increasing the pitch of the resulting note. Thus, the higher pitched notes of a guitar having a neck which is bowed in this manner will be pitched too high and will thus be out of tune.
Bowing of the neck of a guitar in the opposite direction from the direction in which the strings tend to pull the neck causes the strings to be closer to the frets for higher pitched notes on a given string than for lower pitched notes on the same string. This type of bowing may occur when the tension rod is over tightened. When a string is too close to a fret, there is a substantial tendency for that string to buzz, wherein the string contracts the fret when played, thereby resulting in a undesired sound.
Poor workmanship may result in undesirable bowing of the neck of a musical instrument. This may occur, for example, if the neck of the musical instrument is incorrectly attached to the body thereof. Thus, if the neck attachment screws are insufficiently tightened, the neck may be permitted to pivot excessively with respect to the body of the musical instrument, thus resulting in undesirable bowing of the neck of the musical instrument, as discussed above.
Additionally, it is possible for the tension rod to be incorrectly adjusted when the musical instrument is initially set up. Under-tightening the tension rod may result in bowing of the neck in the direction in which the strings tend to pull the neck. Over-tightening of the tension rod may result in bowing of the neck away from the direction in which the strings tend to pull the neck.
The use of poor materials, such as uncured or otherwise defective wood for the neck of a stringed musical instrument may result in undesirable bowing or other deformation thereof. For example, uncured wood tends to bend or deform over time as changes in the moisture content of the wood occur. The use of wood which is not sufficiently strong or rigid may permit the strings to pull the neck so as to cause an undesirable bow therein.
Environmental conditions, such as temperature, humidity, excessive cycling or rapid changes in temperature, and excess cycling or rapid changes in humidity are likely to adversely affect the moisture content of the wood from which the neck of a musical instrument is constructed. Such changes in the moisture content of the wood may result in undesirable changes in the shape of the neck, particularly when the neck is subject to string tension which tends to pull the neck in one direction.
A very common cause of bowing of a neck of a stringed musical instrument, such as a guitar, is over-tightening of the strings thereof. As those skilled in the art will appreciate, the more the strings of a guitar are tightened, the more tension the strings apply to the neck of the guitar, so as to urge the neck of the guitar to bend or bow in the direction in which the strings pull the neck.
Deformation of the neck of a musical instrument due to poor workmanship, such as incorrect attachment of the neck to the body of the musical instrument, cannot be properly compensated for with the tension rod, as discussed above.
Deformation of the neck of a musical instrument due to poor materials and/or environmental conditions can generally be compensated for when the deformation is simple. This is, if such deformation merely results in bowing of the neck of the musical instrument, then the tension rod may be effective in compensating for such deformation. However, deformation due to the use of poor materials and/or adverse environmental conditions may result in more complex deformation of the neck of a musical instrument, which cannot be corrected by adjusting the tension rod.
In view of the foregoing, it should be appreciated that although adjustment of the tension rod of a stringed musical instrument may compensate for simple bowing of the neck of a musical instrument when such bowing occurs proximate a center portion of the length to the neck, adjustment of a tension rod is not effective in compensating for other types of deformation of the neck of a stringed musical instrument, such as bowing about the attachment point of the neck and such as complex deformation of the neck.
Moreover, any substantial deformation of the neck of a musical instrument results in an undesirable change in the relative position of the strings with respect to the neck (and, consequently with respect to the frets), frequently in a manner which inhibits proper playing of the musical instrument. As such, it is highly desirable to mitigate such deformation of the neck of a stringed musical instrument.
One contemporary attempt to mitigate such undesirable deformation of the neck of a stringed musical instrument involves the placement of two graphite or metal rails into two longitudinally extending grooves formed substantially along the length of the neck. These rails are placed immediately under the fingerboard. Such graphite or metal rails are inherently rigid and thus tend to resist deformation of the neck of the musical instrument.
However, the use of such metal rails inherently increases the weight of the stringed musical instrument, particularly of the neck thereof. Increasing the weight of a stringed musical instrument, such as a guitar, generally makes the musical instrument less comfortable and more difficult to play. Further, increasing the weight of the neck of such a musical instrument undesirably affects the balance thereof, again generally making the musical instrument less comfortable and more difficult to play.
Additionally, the use of such metal rails undesirably alters the tone of the stringed musical instrument. As those skilled in the art will appreciate, metal is substantially denser than wood and has acoustic properties which are substantially different from those of wood.
It is also known to form a guitar neck of graphite-epoxy composite material. Although such a graphite-epoxy composite guitar neck is very strong and is very resistant to undesirable deformation, the tone of a guitar having a graphite-epoxy composite neck is not desirable.
It is worthwhile to appreciate that the desired tone of a stringed musical instrument is typically a tone which has been historically determined. That is, it is generally desirable for newer stringed musical instruments to mimic the tone of older stringed musical instruments, since it is the older stringed musical instruments which were used to produce the music which we are accustomed to hearing. Therefore, changes in the construction of a stringed musical instrument should typically be made in a manner which does not substantially alter the tone of the musical instrument from that which the buying and listening public has become accustomed to hearing.
Moreover, it has been found that the use of some high strength materials, such as metals, to strengthen the neck of a stringed musical instrument undesirably changes the tone thereof. Therefore, the use of such materials does not provide a satisfactory solution to the problem of undesirable deformation of the neck of stringed musical instruments.
It is also worthwhile to appreciate that a guitar neck should have some flexibility. It is generally desired that a guitar neck have an amount of flexibility which, like tone, has been historically determined. That is, guitar players have become accustomed to the neck of a guitar having some flexibility. Guitar players prefer that the necks of newer guitars likewise have such flexibility. Even though the amount of flexibility of a guitar neck is very small, it does affect the feel and playability of the musical instrument.
The use of graphite or metal rails, as discussed above, undesirably over stiffens the neck of the musical instrument. Similarly, a neck formed of graphite-epoxy composite material is almost completely lacking in flexibility. Therefore, the use of such contemporary graphite or steel rails and the construction of a neck entirely of graphite-epoxy composite material provide a neck which is undesirably stiff.
In view of the foregoing, it is desirable to mitigate deformation of the neck of a stringed musical instrument in a manner which does not substantially increase the weight or alter the balance of the musical instrument and in a manner which does not undesirably alter the tone of the musical instrument or the flexibility of the neck thereof.
The present invention specifically addresses and alleviates the above-mentioned deficiencies associated with the prior art. More particularly, the present invention comprises a support rod having a core and a composite material covering at least a portion of the core. Although the support rod finds particular application in guitar necks, the support rod of the present invention is also suitable for application in a wide variety of other musical instruments.
These, as well as other advantages of the present invention, will be more apparent from the following description and drawings. It is understood that changes in the specific structure shown and described may be made within the scope of the claims without departing from the spirit of the invention.
These, as well as other features, aspects and advantages of the present invention, will be more fully understood when considered with respect to the following detailed description, appended claims and accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiments of the invention, and is not intended to represent the only forms in which the present invention may be constructed or utilized. The description sets forth the functions of the invention and the sequence of steps for constructing and operating the invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.
More particularly, the present invention comprises a support rod comprising a core and a composite material covering at least a portion of the core. The core preferably comprises wood, preferably a single piece of cured wood. Alternatively, the core may comprise a plurality of separate pieces of wood which have been attached to one another, such as via adhesive bonding. As further alternatives, the core may comprise a polymer material or metal.
The support rods of the present invention enhance the strength of the neck of a musical instrument, such as a guitar, so as to substantially inhibit undesirable deformation thereof. That is, the support rods, particularly the composite coverings thereof, add strength to the neck of the musical instrument so as to inhibit bowing, twisting, or other undesirable deformation thereof. The support rods of the present invention provide such resistance to undesirable deformation of the neck of a musical instrument while generally maintaining a desired feel and sound of the musical instrument.
By forming the core of the support rods of the present invention from wood, the amount of wood in the neck of the musical instrument remains substantially constant when the support rods of the present invention are added. Thus, changes in the physical characteristics of the neck of the musical instrument tend to be minimized and the tone of the musical instrument thus remains substantially unchanged. By using a wood core, the present invention tends to avoid removing an excessive quantity of wood from the musical instrument's neck, while adding the structural strength associated with the composite covering. It should be appreciated that although graphite is substantially stronger than wood, its contribution to the tone of a stringed musical instrument is substantially similar to that of wood.
Moreover, it has been found that the use of a support rod having a core formed of wood or a wood-like material provides desired acoustic qualities. That is, the use of a core comprised of wood or a similar material results in a guitar having substantially the same desirable tone as a guitar which lacks such support rods. Thus, the use of a core comprised of wood or a similar material results in an instrument having a historically desirable tone.
It has also been found that the use of a support rod having a core formed of wood or a wood-like material provides desired weight, balance and flexibility. That is, the use of a core comprised of wood or a similar material results in a guitar having substantially the same weight, balance and flexibility of the neck thereof as a guitar which lacks such support rods. Thus, the use of a core comprised of wood or a similar material results in an instrument having historically desired weight, balance, and neck flexibility.
It is generally preferred that the core material have some acoustic damping capability. It has been found that a support rod consisting of only a composite covering (not having a core and thus defining a tube) has undesirable acoustic characteristics. That is, such a tubular support rod tends to vibrate or rattle undesirably. By filling the tubular support rod with a material having desirable acoustic characteristics, such as wood or a structural polymer foam, the strength of the composite covering prevents undesirable deformation of the neck of the musical instrument, while the core inhibits undesirable vibration of the composite covering.
Thus, the composite material adds substantial structural strength which inhibits undesirable deformation of the neck of the musical instrument and the core tends to enhance acoustics. It is the cooperation of the covering and the core that allows construction of a support rod which maintains a desired historic sound.
Preferably, the core is generally circular in cross-section. However, the core may alternatively be oval, rectangular, square, octagonal, hexagonal, or of any other desired cross-sectional configuration. Forming the core such that it is generally circular in cross-section provides radial symmetry which causes a support rod to have substantially the same stiffness in any radial direction. Therefore, the use of such a round support rod enhances the stiffness of the neck of the musical instrument by substantially the same amount in all radial directions. Further, such a round support rod does not need to be assembled into the neck of a musical instrument in any particular angular or rotational orientation thereof. In those instances where different stiffnesses are required in different radial directions, the support rod may have various different cross-sectional configurations.
The composite material preferably comprises a graphite-epoxy composite material. Alternatively, the composite material may comprise a fiberglass-resin composite material or any other composite material which provides sufficient strength to inhibit undesirable deformation of the neck of a musical instrument and which provides a desired tone.
It has been found that the use of graphite-epoxy composite material for the covering facilities control of the tone, weight, and flexibility of the neck of the musical instrument. Graphite-epoxy composite material does not undesirably affect the tone of musical instrument, such that a historically desirable tone can be achieved. Graphite-epoxy composite material is light in weight, such that the weight and balance of the musical instrument is not substantially affected thereby. The stiffness of a support rod having a graphite-epoxy composite material covering can easily be varied along the length thereof, so as to control the flexibility of the neck of the musical instrument.
More particularly, the composite material may comprise a graphite-epoxy material having at least one carbon fiber sheet which is wrapped around the core. The graphite-epoxy material may comprise one woven carbon fiber sheet which is wrapped around the core. Alternatively, the graphite-epoxy material comprises more than one woven carbon fiber sheet. As a further alternative, the graphite-epoxy material may comprise one or more non-woven carbon fiber sheets which are wrapped around the core. Thus, the composite material may comprise any desired number of woven or non-woven carbon fiber sheets and may comprise any combination thereof. That is, the graphite-epoxy material may comprise a plurality of separate sheets, either woven or unwoven, which are wrapped around the core.
The graphite-epoxy material may comprise a plurality of generally unidirectional carbon fiber sheets which are wrapped around the core, optionally such that an orientation of fibers of at least one carbon fiber sheet are generally orthogonal with respect to fibers of another carbon fiber sheet.
Optionally, the composite covering may be formed separately from the core, such as upon a mandrel. After removing the composite covering from the mandrel, the composite covering may be filled with a desired core material, such as a polymer foam.
The core preferably has a diameter of between approximately 4 mm and approximately 10 mm, preferably approximately 6.5 mm. The composite preferably has a thickness of between approximately 0.5 mm and approximately 3 mm, preferably approximately 1 mm.
The support rods of the present invention increase the rigidity of the neck of a guitar or other stringed musical instrument. As discussed above, the necks of such musical instruments are subject to undesirable deformation, such as deformation caused by the use of poor quality materials, defects in workmanship, excessive string tension, excessive temperature, excessive changes in temperature, excessive changes in humidity or any combination of such factors.
The support rods of the present invention may be disposed within bores or grooves formed in the elongate member or neck of a guitar or the like, so as to inhibit such undesirable deformation of the neck. Such bores may be formed, for example, by drilling long holes generally longitudinally along at least a portion of the neck of a musical instrument. Such grooves may be formed, for example, by milling or otherwise machining material away from the front surface of the neck (where the fingerboard is to be later attached).
Although a single support rod may be utilized to enhance the rigidity of the neck of a musical instrument, typically a plurality of such support rods will be utilized. Preferably, each support rod is disposed within a separate groove formed generally longitudinally in the neck of the musical instrument. The support rods may all have the same diameter. Alternatively, a variety of different diameters of the support rods may be utilized. Each support rod may have a generally consistent cross-section taken along the length thereof, or may have a varying cross-section, such that the stiffness and/or strength of the support rod varies along the length thereof. For example, the stiffness and strength of a support rod may be enhanced along end portions thereof by making the composite covering thicker along this portion, such as by wrapping more layers of carbon fiber sheet around the core at the end portions of the support rod. The stiffness and strength of a support rod may alternatively be enhanced along the end portions thereof by utilizing graphite-epoxy composite material having greater strength and stiffness at the ends of the support rod than at the center thereof, as discussed below.
In many instances it will be desirable to provide a neck having flexibility which is similar to the flexibility of contemporary guitar necks. That is, in many instances it will be desirable to provide a guitar neck having a historically desirable amount of flexibility. Typically, this can be achieved by forming the support rods such that the support rods are stiffer at the ends thereof than proximate the central portion thereof. Such support rods tend to mimic the stiffness of traditional guitar necks, wherein the guitar neck is generally stiffer at the ends thereof than proximate the central portion thereof. Although such stiffness of the support rods proximate ends thereof may be accomplished by varying the physical dimensions of the support rods along the length thereof, as dismissed above, it is preferably accomplished by wrapping the core with graphite sheet material having greater strength at the ends of the support rod.
As those skilled in the art will appreciate, wrapping the core with graphite sheet material having greater strength tends to enhance the stiffness of that portion of the core which is so wrapped. Graphite sheet material having greater strength can be graphite sheet having more fibers per square inch, having larger diameter fibers, and/or having fibers which have greater tensile strength.
However, those skilled in the art will appreciate that various other means for enhancing the strength of the support rods proximate the ends thereof all likewise suitable. For example, the amount of graphite-epoxy composite material formed at the ends of the support rod may be greater than the amount of graphite-epoxy composite material formed proximately central portion thereof. As mentioned above and illustrated in
Allowing the covering and the core to have a generally uniform diameter along the length thereof simplifies the fabrication process of the support rods, since tapered cores are not necessary and since it is generally easier to fabricate a covering having a substantially uniform diameter than it is to fabricate a covering having a desired taper. The use of support rods having a covering and core which have a generally uniform diameter also facilitates the use of bores or grooves having generally uniform cross-sectional dimensions along the length thereof.
Preferably, the support rods are placed within grooves formed within the neck of a musical instrument and are adhesively bonded, such as via epoxy, in place. The fingerboard of the musical instrument preferably covers the grooves. Optionally, the grooves may be covered or plugged with wood, as discussed in detail below.
Optionally, the support rods may be formed so as to have generally flat upper surfaces, such that the upper surfaces of the support rods are disposed generally flush with the front surface of the neck (prior to attaching the fingerboard), such that no additional coverings or plugs are needed.
Optionally, epoxy may be applied over the support rods after the support rods are disposed within their respective grooves, such that the epoxy forms a surface which is approximately flush with the front of the neck (prior to attaching the fingerboard), so as to eliminate the need for any additional coverings or plugs.
Optionally, epoxy may be applied over substantially the entire length of the support rods, so as to mitigate undesirable twisting of the neck, as discussed below.
Alternatively, the support rods may be friction fit to bores formed in the neck. This may be accomplished, for example, by forming each bore generally longitudinally through the neck, such that the bore has a slightly smaller diameter than the outer diameter of the support rod and then forcing the support rod into the bore. Optionally, a lubricant may be used to facilitate insertion of a support rod into a bore. Optionally, an adhesive, such as epoxy, may be applied to the support rods prior to forcing the support rods into the bore, such that the adhesive functions as a lubricant during the insertion process and functions as a bonding agent subsequent to the insertion process.
The support rods are preferably adhesively bonded within the bores, such as via the use of epoxy. The support rods may optionally be disposed within their bores before a final coat of epoxy of the composite material covering thereof is cured, such that the final coat of epoxy of the composite material covering adhesively bonds the support rods within the bores.
Preferably, at least one truss rod or tension rod is also disposed within a bore or groove of the neck, so as to facilitate adjustment of the tension on the neck in a manner which generally opposes the tension due to the strings of the musical instrument, according to well known principles.
Thus, according to the present invention, a musical instrument may be fabricated wherein the neck compromises an elongate member having at least one bore or groove formed generally longitudinally at least partially therethrough and at least one support rod disposed within the bore. The neck is attached to a body, so as to define a stringed musical instrument. A guitar, for example, may be formed in this manner by attaching a guitar neck containing support rods according to the present invention to a guitar body.
Referring now to
Referring now to
The graphite or metal rails 24 and 25 are generally effective in inhibiting undesirable deformation of the neck 20. However, as those skilled in the art will appreciate, the rails, 24 and 25, are undesirably heavy and thus inherently increase the weight of the musical instrument. The rails, 24 and 25, also undesirably affect the balance of the musical instrument. Additionally, the use of such metal rails, 24 and 25, undesirably affects the tone of the musical instrument. That is, the tone of a musical instrument having such metal rails, 24 and 25, is typically substantially different from a historically desired tone.
Referring now to
With particular reference to
Any desired number of support rods 10 of the present invention may be used. Such support rods 10 preferably extend generally longitudinally along the length of the neck of the musical instrument. However, the length, position and configuration (how the stiffness varies along the length of each rod due to variations in cross-sectional dimensions and/or materials) of the support rods within the neck of the musical instrument may be varied, as desired. Thus, the number, length, position and configurations of the support rods 10 can be varied so as to provide enhanced rigidity, where such rigidity is desired. For example, the support rods 10 may be formed so as to provide greater rigidity proximate the ends of the neck than along a central portion thereof, as discussed below.
Moreover, the number, length, position and configuration of the support rods 10 can be provided so as to accommodate a particular string gage or range of string gages.
Referring now to
Holes 42a-d (
Referring now to
The support rods 10 are preferably epoxied within the grooves 40 and the common plug 45 is then preferably epoxied within the grooves 40, atop the support rods 10. The uppermost portion 46 of the common plug 40 is then removed, such as via milling, to provide the configuration as shown in FIG. 8. Thus, separate plugs 47 and 48 remain within the neck 30. A fingerboard may then be attached to the neck according to contemporary practice.
The support rods 10 are preferably epoxied along substantially the entire length thereof within the grooves 40. By epoxing the support rods 10 within the grooves 40, particularly along substantially the entire length of the support rods 10, undesirable twisting of the neck of the musical instrument is substantially inhibited. The support rods 10 of the present invention are comparatively resistant to twisting or torsional deformation, and thus tend to substantially inhibit such twisting or torsional deformation of the neck of the musical instrument.
Optionally, a tension rod 49 is disposed within in a channel 50 and a plug 51 is inserted within the tension rod channel 50 above the tension rod 49 and is similarly epoxied in place. The tension rod 49 may be used to adjust the amount of bowing in the neck of a musical instrument, so as to provide the desired amount of bowing.
The ability to adjust the amount of bowing in the neck of a musical instrument, such as a guitar, is particularly important when the gage of the strings is changed. As those skilled in the art will appreciate, heavier gage strings tend to apply more tension to the neck of a guitar, thus tending to cause the neck of guitar to bow to a greater extent in the direction in which the strings tend to pull the neck. Conversely, lighter gage strings tend to cause less such bowing. Therefore, when the gage of the strings is changed, it is frequently necessary to adjust the tension rod 49, such that the desired amount of bowing of the neck of the musical instrument is maintained.
The neck 30 is preferably formed from a block of wood 52 after the support rods 10 and/or tension rod 49 have been assembled into their respective grooves. That is, first the support rod grooves 40 and the tension rod groove 50 are formed within a block of wood 52, then the support rods 10 and the tension rod 49 are epoxied into their respective grooves. The support rod plugs 40 and the tension rod plug 51 are formed as discussed above and are epoxied into their respective grooves. Finally, the neck 30 is formed by machining, i.e., milling, away excess wood from the block 52.
Those skilled in the art will appreciate that various other means for securing the support rods 10 within channels, grooves, bores or the like, within a musical instrument neck, are likewise suitable.
Referring now to
Section B is defined by most of the length of the neck 70 and is that section of the neck 70 which generally requires enhanced rigidity, so as to inhibit undesirable deformation thereof. Therefore, the support rods 10 of the present invention will typically extend through a substantial portion, typically all, of this portion of the neck 70.
Section C of the neck 70 is that portion of the neck 70 where the neck 70 attaches to the body 72 of a guitar. This section of the neck has an increased cross-sectional area and thus tends to be inherently stiff. The support rods 10 of the present invention may optionally extend into this section, if desired. As shown in
When it is desirable for the support rods of the present invention to provide flexibility which is similar to the historically desirable flexibility of a musical instrument, then the support rods may be formed such that they are stiffer proximate the ends thereof than at a central portion thereof, as discussed above. In this instance, the support rods will provide greater stiffness along the length of the neck proximate the peg head and proximate the attachment of the neck to the body, than along a central portion of the neck.
The support rods 10 of the present invention may additionally be used within the body 72 of the guitar or other musical instrument, so as to provide enhanced rigidity, where desired. For example,
The support rods 10 of the present invention need not be generally circular in configuration. For example, if the support rods 10 of the present invention are to be disposed within the body 72 of a guitar and are to be in contact with either the soundboard or back of the guitar body 72, then the support rods 10 preferably have a flat portion extending along at least a portion of the length thereof to facilitate such contact. In this instance, the support rods 10 may, for example, be formed so as to be generally square in cross-sectional configuration, so as to provide such a flat surface.
Where adhesive bonding, such as via the use of epoxy, is disclosed herein, DP100 epoxy, provided by the 3M Corporation of St. Paul, Minn., may generally be used.
In view of the foregoing, the present invention provides a stringed musical instrument neck support rod which substantially mitigates undesirable bowing or deformation of the neck of a stringed musical instrument while generally maintaining a desired sound and feel of the musical instrument. The support rod of the present invention does not undesirably alter the tone of a stringed musical instrument, so as to tend to maintain a historically desirable sound thereof. Further, the support rod of the present invention does not add substantial weight to the musical instrument, such that desired weight and balance tends to be maintained. The flexibility of the neck can be controlled by varying the stiffness of the support rods and by varying how the stiffness of the support rods change along the length thereof, so as to provide an instrument having a neck which has desired flexibility.
Although the exemplary embodiment is described and illustrated herein as a support rod for a guitar neck, such description and illustration is by way of example only, and not by way of a limitation. Those skilled in the art will appreciate that the support rod of the present invention may similarly be used in various other stringed musical instruments.
It is understood that the exemplary support rod, neck, and musical instrument described herein and shown in the drawings represent only presently preferred embodiments of the invention. Indeed, various modifications and additions may be made to such embodiments without departing from the spirit and scope of the invention. For example, the support rod need not be generally straight in configuration. That is, the support rod of the present invention may alternatively be formed into a U-shape, S-shape, annular shape, or any other desired shape. Further, the support rod of the present invention need not have a generally constant cross-sectional configuration. That is, one end of a support rod may have a generally square cross-sectional configuration, while the other end thereof has a generally triangular cross-sectional configuration, for example. Thus, these and other modifications and additions may be obvious to those skilled in the art and may be implemented to adapt the present invention for use in a variety of different applications.
Number | Name | Date | Kind |
---|---|---|---|
4313362 | Lieber | Feb 1982 | A |
4334456 | Martin et al. | Jun 1982 | A |
4681009 | Mouradian | Jul 1987 | A |
4770929 | Nobumasa et al. | Sep 1988 | A |
4777858 | Petschulat et al. | Oct 1988 | A |
4846038 | Turner | Jul 1989 | A |
4846039 | Mosher | Jul 1989 | A |
4951542 | Chen | Aug 1990 | A |
5333527 | Janes et al. | Aug 1994 | A |
5864073 | Carlson | Jan 1999 | A |
6011205 | Tucker et al. | Jan 2000 | A |
6111175 | Lasner | Aug 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040003700 A1 | Jan 2004 | US |