This invention relates to musical instruments, and more particularly, to guitar slides having a visual and/or a tactile component powered by an electrical current. The visual component can include a light assembly, such as light emitting diodes, which provides a visual effect during movement of the slide by the musician along the guitar strings. The tactile component can include an eccentric motor which causes the slide itself to vibrate during movement by the musician. This vibration, either alone or with the movement of the entire slide across the guitar strings, causes various sounds as the slide is moved during playing. The guitar slide of the present invention can include both the lighting assembly and the vibrating assembly together.
Live musical performances provide both visual stimulation, as well as the obvious sound or audible experiences, to the performer and to the audience. Performers often enhance the visual aspects of their live performance with special, visual effects such as lighting displays, stage effects, and even pyrotechnics. Musical artists also employ various components to change or enhance the sound of the instrument being played. This latter aspect of a musical performance has become especially common with the advent of electrically amplified instruments, such as electrical guitars.
Some musical genres, such as the blues, rock and country music, make use of a unique sound generated by a guitar, in which the musician uses an instrument commonly referred to as a guitar slide to contact the strings along the neck of the guitar with one hand while the strings are being picked or strummed over the guitar body, or the pick ups of an electric guitar. Common guitar slides comprise a tube or cylindrical body portion with a hollow interior that is received over one of the fingers of a musician's hand that holds the guitar neck. In this manner of playing, the guitar slide is used to shorten or lengthen the effective vibratory length of the strings, thus changing the sounds emitted. The guitar slide is most often moved either slowly or quickly along the neck toward or away from the guitar body to change the sounds, as desired.
The present invention is directed to a guitar slide comprising a slide body that is preferably cylindrical, having a smooth, continuously curved outer wall that defines a central channel or bore, sized to accommodate a finger. In the embodiment of the invention that is directed solely to the visual component, a lighting assembly is attached to the slide body at one end. The slide body can be made of any rigid material, but preferably is comprised of a hard plastic or glass through which light may pass. The lighting assembly includes a contact ring that is approximately the same diameter as the tubular slide body. The contact ring supports one or more lights, such as light emitting diodes (LEDs) that emit light when powered by an electrical current. In a preferred embodiment, several LEDs are provided in order to emit enough light to achieve the desired visual effect, that is, so that the lights of the guitar slide are visually apparent to both the musician and persons watching the performance. An electrical switch that is powered by a small battery, such as the coin shaped, 3 volt lithium batteries commonly used to power watches, delivers power selectively to the lighting assembly.
Another embodiment of the present invention is directed to a guitar slide having a miniature, vibrating motor instead of the lighting assembly referenced above. In this second embodiment, a slide body, similar to the tubular slide of the first embodiment, is provided, but includes end wall at one end of the cylindrical body that defines a channel recessed therein. In this embodiment, the body also is made of rigid material, including plastic, but preferably is made of metal, such as stainless steel, brass or copper. A small motor which rotates a shaft is affixed to the end wall, being positioned in the channel. A weight is mounted eccentrically on the shaft, so that the motor vibrates by the action of the spinning eccentric mass or weight as the shaft is current. Such vibrating motors are well known, and are used for example in common devices such as cell phones and video gaming controls. An electrical switch is connected to the motor in order to selectively turn the motor “on” and “off”, as desired. The motor is powered by a coin-shaped, 3 volt lithium batter, as described above. When the guitar is played by the musician, the vibrations of the slide against the guitar string along the neck produces unique sounds.
In a third embodiment, a guitar slide is provided having both the lighting assembly and the vibrating assembly, in order to combine the effects of visual and auditory effects.
A base cover 50 is received around ring 15 and LEDs 22, as shown in
Another embodiment of the present invention is shown in
A third embodiment of the present invention is designed to impart vibration to the slide body, instead of providing a visual or lighting effect. In this third embodiment, a tubular or cylindrical slide body 211 includes side wall 212 that defines an internal bore 213 therethrough. Bore 213, however, does not extend from end to end of slide body 211 as in the previous embodiments. Bore 213 is open at one end, but closed at the opposing end. End portion 204 includes end wall 205 that effectively closes one end of body 211 so that bore 213 does not extend through closed end wall 205, as shown in
The remaining components, that is electrical connections, circuit board, battery, and covers for this third embodiment of the present invention are identical to those described with respect to the previous embodiments discussed above. These elements include a switch holder 215 which includes either positive or negative contacts or a printed circuit board, as desired. A switch 235 is mounted to holder 215. A battery 240, of the type described above, powers vibrating motor 270 through selective activation of switch 235. A spring 241 compresses battery 240 against switch 236 and cap 255 as discussed above. Pins (not shown) extend through holes 260 defined in cap 255 and into holes 233, which are internally threaded, of holder 215. In this manner, cap 255 is held to holder 215. Holder 215, itself, is held to body 211 by mechanical means, such as being snap fit, or by pins, as desired.
In use, this third embodiment of the guitar slide vibrates to impart vibration to the guitar strings, principally along the neck of the guitar. When the switch 235 is turned to the “on” position by the musician, current is delivered from battery 240 to the vibrating motor 270. The shaft 276 of the motor is caused to rotate, spinning eccentric mass 275. This action causes motor 270, and slide body 211, to vibrate as the same frequency. In use, the musician strums or picks the guitar strings along the guitar body, or the pick ups of an electric guitar with one hand, and selectively moves the slide along the guitar strings along the neck of the guitar with the other hand. This sliding action, combined especially with the vibrating action of the vibrating guitar slide, causes a unique and pleasing sound, by a talented musician.
In a fourth embodiment, the lighting assembly and the vibrating motor assembly are combined, to produce a lighted guitar slide that also vibrates. In this embodiment of the present invention, the slide is comprised of either translucent plastic, or of metal with plastic windows. An end cap, such as end cap 205, is provided as shown in
It will further be obvious to those skilled in the art that many variations may be made in the above embodiments here chosen for the purpose of illustrating the present invention, and full result may be had to the doctrine of equivalents without departing from the scope of the present invention, as defined by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 11/755,438,filed May 30, 2007, the contents of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11755438 | May 2007 | US |
Child | 12497145 | US |