With the advent of guns and firearms much effort has been devoted to their perfection in the art of firing projectiles to hit specified targets. An important factor to consider relating to the firing of a gun is the hit probability of the weapon.
A shotgun increases the hit probability by firing multiple projectiles in a random dispersion. An automatic weapon increases the hit probability by firing a random dispersion of projectiles toward a target, thereby covering a broad area around a target and assuring a greater chance of striking the target.
In 1952 a report for the U.S. Army by the Operations Research Office “Operational Requirements for an Infantry Hand Weapon” analyzed firing a salvo of 5 projectiles in a diamond shaped pattern, and found the concept would greatly increase the hit probability of a weapon. With the “pattern-dispersion principle” each projectile had a predetermined hit point in the dispersion, was separated from the other projectiles, and the diamond shaped salvo efficiently maximized the lethal area, and the hit probability of the dispersion
Although the U.S. Army determined that the “pattern salvo weapon” or “dispersion weapon” would be very effective and recommended that the Ordinance Corp. proceed to develop a pattern salvo weapon for the Infantry, a practical weapon that fired the 5 shot diamond shaped pattern was never developed.
With the present invention 5 projectile segment diamond shaped pattern dispersion salvos, 3 projectile segment horizontal pattern dispersion salvos, and other pattern salvos can be fired from rifles and handguns used for personal defense at short range. The energy available by firing a rifle, or a more powerful handgun, can be efficiently used by firing multiple projectile segments in a wide predetermined symmetrical pattern, to greatly increase the hit probability of the gun. A wide pattern dispersion salvo in these situations will compensate somewhat for imprecise aiming.
An optimum sized pattern dispersion salvo can be fired from a rifle or handgun to substantially increase the hit probability of the weapon in defensive situations that necessarily require fast reactions. Rifles and handguns used for personal defense are fired with short target exposure times and large aiming errors.(footnote 1) The average aiming error for these short target exposure times can be taken into account, and an optimal dispersion in which the standard radial deviation of the dispersion is 50%-100% of the aiming error can be fired.(footnote 2) Many rifles and handguns firing the second embodiment of the cartridge will fire pattern dispersion salvos generally within this optimal dispersion. Hit probability increases for the pattern dispersion salvos vary widely with the number of projectiles in the salvo, range, and aiming error, but many rifles and handguns, fired quickly in a defensive situation, will have on the order of 100% or more increase in hit probability by firing a pattern dispersion salvo compared to firing a single shot.(footnote 3) Footnote-1 “Rifle, Carbine, and Pistol Aiming Error as a Function of Target Exposure Time” 1955 report by the Operations Research Office for the U.S. ArmyFootnote 2 “Hit Probability on a Tank Type Target” 1966 report by the Frankford Arsenal The report indicates the size of a dispersion to maximize the hit probability for a salvo of projectiles.Footnote 3 “Operational Requirements for an Infantry Hand Weapon” has graphs of hit probabilities of a diamond shaped pattern dispersion salvo compared to one shot for several aiming errors. These graphs can be adjusted for the wider dispersions and shorter ranges of the present invention. Graphs of 3 projectile segment horizontal pattern dispersion salvos compared to a single shot can also be constructed from information in “Operational Requirements”. Tables for multiple projectile strikes on a target by firing a diamond shaped pattern at various ranges and aiming errors are also presented.
The invention is a method for a simultaneous dispersion of projectiles in a predetermined symmetrical pattern from a gun. A projectile of substantially normal size and weight, with a diameter slightly larger than that of the gun barrel, is divided into multiple projectile segments, and positioned within a cartridge case. The projectile segments that together make up the larger projectile have some or all of their side surfaces substantially coinciding with the circumference of the larger projectile. The invention consists of firing these multiple projectile segments simultaneously from a gun and having those projectile segments strike the target in a predetermined symmetrical pattern. Firing a symmetrical pattern of projectile segments significantly increases the hit probability of the gun. The multiple projectile segments that are contained within a cartridge case consists of specialized projectile segments and standard projectile segments. Each of the specialized projectile segments a contained within a cartridge case consists of specialized projectile segments and standard projectile segments. Each of the specialized projectile segments strike the target at a predetermined hit point away from the bullseye. This is accomplished by removing mass from the circumference of the projectile segment. The center of mass of the projectile segment is no longer on the central longitudinal axis of the cartridge and the centrifugal force from the projectile segment spinning in the gun barrel, because of the rifling, imparts a force on the projectile at right angles to the gun barrel. Upon exiting the gun barrel, this velocity, along with the much higher muzzle velocity determines how far away from the bullseye the projectile segment will strike. More mass taken from the circumference of the projectile segment will result in the projectile segment striking the target further away from the bullseye.
The orientation of the projectile segment strikes around the bullseye from multiple projectile segments with a center of mass offset from the central longitudinal axis of the cartridge is determined by the orientation of the specialized projectile segments in the chamber of the gun when fired.
The diamond shaped pattern is one pattern that could be fired repeatedly with a magazine that feeds the cartridges to the gun in the proper rotational orientation. However, a random rotational orientation of the 5 part diamond shaped pattern from a standard magazine in a gun would also increase the hit probability of the gun substantially compared to a single shot.
One way the projectile segments that are designed not to hit the bullseye can be formed is to have mass removed from the side of the projectile segments, or the ends in such a way that the center of mass of the projectile segments are no longer on the central longitudinal axis of the cartridge. The center of mass of the projectile segment can also be moved from the central longitudinal axis of the cartridge by adding mass to the projectile segment on the circumference.
A standard weight projectile can be divided into several smaller projectile segments with the accumulated weight of the smaller projectile segments approximating the weight and volume of the standard projectile. One way these smaller projectile segments can be arranged in the cartridge is one ahead of the other, with at least two of the projectile segments having a center of mass away from the central longitudinal axis of the cartridge. The length of the multiple projectile segments that are fired simultaneously are usually shorter than a standard projectile. Flat ends that are 90 degrees to the central longitudinal axis of the cartridge are depicted in the drawings for the projectile segments, however many other projectile segment shapes are possible.
If two projectile segments, with centers of mass offset from the central longitudinal axis of the cartridge, are arranged with the centers of mass approximately 180 degrees apart in the cartridge, the dispersion pattern on the target would be one projectile segment strike on one side of the bullseye and the second projectile segment strike on the opposite side. A horizontal two shot dispersion pattern would be created with the proper rotational orientation of the cartridge in the chamber of the gun when fired. Adding a third projectile segment that had a center of mass on the central longitudinal axis of the cartridge, would create a three shot horizontal dispersion pattern with the central shot going to the bullseye.
Another embodiment of the invention that produces maximum dispersion for greater hit probabilities at short ranges is to arrange three projectile segments in the cartridge case where a cylindrical rear standard projectile segment is behind two front projectile segments that are side by side in the cartridge case. The center of mass of each of the two front projectile segments is offset from the central longitudinal axis of the cartridge. When loaded in the proper rotational orientation, and fired from a gun, this embodiment produces a wide 3 shot horizontal dispersion pattern.
A five projectile segment cartridge that is similar in design to the 3 projectile segment cartridge above will produces a wide diamond shaped dispersion pattern. A cylindrical rear standard projectile segment is behind four projectile segments that are positioned side by side in the cartridge case, each one occupying a 90 degree section. Each of the four forward projectile segments have a center of mass that is offset from the central longitudinal axis of the cartridge. This cartridge will produces a wide diamond shaped dispersion pattern from the 5 projectile segments when loaded in the proper rotational orientation and fired from a gun.
The 3 and 5 projectile segment cartridges above provide wide symmetrical patterns that greatly increase the hit probability of the gun.
Revolvers are particularly well suited to firing 3 projectile segment pattern dispersion salvos. The cartridges are straight sided, easier to assemble, and setback of the projectile segments is not a concern as in necked down cartridges. The rotational orientation of the multiple cartridges in the cylinder is precise. Flat ended multiple projectile segment cartridges can be fired which promotes the two forward side by side projectile segments to spin on their for and aft central axis after firing, and leave a semicircular imprint on the target at their strike points in a three projectile segment horizontal pattern dispersion salvo.
The invention represents a device and method for creating a predetermined symmetrical pattern of strikes on a target. The patterns are created by dividing a projectile into multiple projectile segments and by firing the multiple projectile segments simultaneously from a gun. The multiple projectile segments are positioned within a cartridge case.
The distance of the modified projectile segment strike points away from the bullseye is dependent on several factors. These include the distance the center of mass of the projectile segments is away from the central longitudinal axis of the cartridge, the turns in the rifling, the diameter of the projectile, as well as the range to the target.
An example of a 3 shot horizontal dispersion can be seen from a 30 caliber gun. The rifling is one turn in 12 inches. Two projectile segments, similar to projectile segments 11 and 12, with 10% of the mass removed by drilling a 3/16 hole in the side, are radially oriented approximately. 180 degrees in the cartridge case along with a standard projectile segment 13. The cartridge is then loaded in the proper rotational orientation in the gun barrel. Projectile segments 11 and 12 are fired simultaneously with projectile segment 13, and a horizontal strike pattern is created that is approx. 16″ wide at 50 yards.
The 3 projectile segment horizontal dispersion pattern in
This type of 5 part projectile segment cartridge that provides a diamond shaped pattern when the cartridge is rotationally oriented, could also be randomly rotationally oriented, and produce randomly oriented square strike patterns that have substantially higher hit probabilities than a single shot.
A marking on the aft end of the cartridges containing multiple projectile segments would be desirable to rotationally orient the cartridges properly upon loading, in order to create the desired patterns.
Firing different combinations of standard projectile segments and projectile segments that have their center of mass various distances away from the central longitudinal axis, along with varying radial orientation of the centers of mass of the projectile segments will create many different patterns. Combinations are not limited to those mentioned herein, but may be infinite in variety.
This is a continuation in part of U.S. patent application Ser. No. 11/340,150 Filed Jan. 23, 2006, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
15369 | Buckel et al. | Jul 1856 | A |
122620 | Maduell | Jan 1872 | A |
216974 | Rice | Jul 1879 | A |
221249 | Howlan | Nov 1879 | A |
275674 | Littlepage | Apr 1883 | A |
588764 | Boss | Aug 1897 | A |
620875 | Baker | Mar 1899 | A |
3097603 | Harper | Jul 1963 | A |
3208386 | Schneider et al. | Sep 1965 | A |
3357357 | Voss | Dec 1967 | A |
3401637 | Briscoe | Sep 1968 | A |
3855931 | Dardick | Dec 1974 | A |
4765566 | Fixell et al. | Aug 1988 | A |
5295439 | Carbone | Mar 1994 | A |
5505137 | Godefroy et al. | Apr 1996 | A |
5648637 | Clark, III | Jul 1997 | A |
7017495 | Sexton | Mar 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20100282110 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11340150 | Jan 2006 | US |
Child | 11809412 | US |