The present teachings relate to a front and rear sight system used on firearms including pistols, rifles and shotguns that features a single point of sight that requires little or no mental estimation.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Traditional sights for a firearm, also known as “iron sights”, comprise a rear sight formed of an opaque solid block having a square or rectangular notch formed in the upper surface of the block and a front sight formed as a vertical blade or post. When such sights are used to aim the respective firearm, the front sight blade must be viewed through the rear sight notch and lined up horizontally with the top of the rear sight block and vertically with sides of the notch in the rear sight block.
More specifically, when using such “iron sights”, proper sighting is assumed when the flat top surface of the front sight post appears to be even with the flat top surface of the rear sight, and when the two opposing flat sides of the front sight post appear to be exactly centered between the two interior flat sides of the rear sight notch. Therefore, to properly sight a target, the user must visually and mentally estimate when the two gaps appearing between sides of the front sight post and the left and right sides of the rear sight notch are equal. And, additionally, the user must at the same time visually and mentally estimate when the flat upper surfaces of the front and rear sights are aligned. Moreover, while holding these vertical and horizontal alignments, the user must align a general area of a top of the front sight post with the intended target.
Therefore, alignment of such “iron sights” is a timely process due to the requirement of lining up three points of sight, i.e., the vertical alignment of the front sight blade with both sides of the notch in the rear sight block and the horizontal alignment of the top of the front sight blade with the top of the rear sight block. This timely process inhibits quick and accurate acquisition of the target and aiming of the firearm. Additionally, because the sights are opaque, “iron sights” tend to obscure the view of portions of the target and/or the area surrounding the target, thereby further inhibiting quick and accurate acquisition of the target and aiming of the firearm.
A number of variations of the “iron sights” are known, for example, the front sight can comprise a small round bead disposed on top of a post; the notch in the rear sight can be ‘V-shaped’; or the sights can be what is referred to as a “Peep Sight” comprised of a fully enclosed round opening (or ring) on the rear sight, which is indexed to a bead and post front sight. Some other known variations include front sights which are triangle or diamond shaped, or circular. In other know variations, the front sight post includes a white dot and the rear sight includes a white dot on each of the left and right sides of the notch such that the three dots are visually and mentally aligned together in an even row along with the target. All these variations have a common and consistent theme, wherein they all have open spaces or gaps which are the only references for proper alignment. Hence, proper alignment and aiming of the respective firearm is time consuming, requires visual and mental estimation, and the sights obscure the view of portions of the target and/or the area surrounding the target, thereby inhibiting quick and accurate acquisition of the target and aiming of the firearm.
The present disclosure provides a gun sight system that utilizes vernier acuity, and in various embodiments excitement of human eye receptors, to provide a single point sight for aiming that requires little or no visual and mental estimation such that the respective firearm can be quickly, easily and accurately aimed at a still or moving target. In various embodiments, the sight system includes a front sight comprising a base that is structured and operable to mount the front sight to a distal end of a barrel or slide of a firearm, and a sighting structure extending from the base such that the sighting structure extends substantially from the barrel/slide. The front sight sighting structure includes a ‘V-shaped’ notch in a distal end.
Additionally, the sight system includes a rear sight comprising a body structured and operable to mount the rear sight to a proximal end of the barrel/slide. The rear sight body includes a sight channel formed in a top of the body, wherein the sight channel has an axis that is substantially parallel to a longitudinal axis of the barrel. When a user looks longitudinally along the top of the barrel, the sight channel provides a field of view that includes the front sight sighting structure, a target and a panoramic view of the area around the target whereby the target can be viewed, even if it is in motion. The rear sight further comprises a sighting stud extending orthogonally from a bottom surface of the sight channel such that the sighting stud extends substantially orthogonally from the barrel or slide. A distal end of the sighting stud has an ‘inverted-V-shaped’ tip such that when a user looks longitudinally along the top of the barrel, the user can align an apex of the rear sight ‘inverted-V-shaped’ tip with a nadir of the front sight ‘V-shaped’ notch with the target nested within the front sight ‘V-shaped’ notch to accurately aim the firearm.
Further areas of applicability of the present teachings will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
Corresponding reference numerals indicate corresponding parts throughout the several views of drawings.
The following description is merely exemplary in nature and is in no way intended to limit the present teachings, application, or uses. Throughout this specification, like reference numerals will be used to refer to like elements.
Referring to
Vernier acuity is sometimes referred to as hyperacuity, because its resolution is much higher than that of visual acuity. Hyperacuity is what causes precision readings of a sliding caliper used by machinists etc. Vernier acuity corresponds to “recognition of relative position” of a broken line.
Generally, visual acuity is measured by the smallest letters that can be distinguished on a chart and is governed by the anatomical spacing of the mosaic of sensory elements on the retina, i.e. retinal ‘pixels’. However, utilizing hyperacuity, spatial distinctions can be made on a finer scale, e.g., misalignment of borders can be detected with a precision up to 10 times better than visual acuity. Hyperacuity depends on sophisticated information processing in the brain and far transcends the size limits set by the retinal ‘pixels’.
An example of hyperacuity is vernier acuity in which the alignment of two edges or lines can be judged with a precision up to ten times better than visual acuity. Generally, a sophisticated circuitry in the brain identifies the location of a visual feature by assessing the “center of gravity” of the light over several receptors, a task that can be accomplished with much higher precision than the resolution limit set by the receptor spacing. For example, what is involved with vernier acuity is not resolution (i.e., is there one or two?—a qualitative distinction) but rather localization (i.e., exactly where?—a quantitative judgment).
Referring now to
In such embodiments, the front sight sighting structure 30 can be any suitable structure that is integrally formed with, or connected to, the base 26 such that the sighting structure 30 extends orthogonally from the base 26, such as a blade, stud, post, pin or boss of any suitable shape, e.g., a cylinder, a cube, a polyhedron, an ovoid, etc. Additionally, the front sight sighting structure 30 can have a height h of any desired length suitable for use on the respective firearm 14. Importantly, the front sight sighting structure 30 includes a ‘V-shaped’ notch 38 in a top or distal end 30A. The V-shaped notch 38 includes a first wall or surface 38A connected to a second wall or surface 38B at a bottom or nadir 38C of the V-shaped notch 38 thereby forming the V-shaped notch 38.
The rear sight 22 comprises a body 42 that includes a bridge 58 formed in a top of the body 42 that defines a sight channel or window 46. The rear sight 22 additionally includes an opaque solid sighting stud 50 extending orthogonally from a bottom surface of the sight channel 46, i.e., the sighting stud 50 extends orthogonally from a top surface of the bridge 58. The body 42 is structured and operable to mount the rear sight 22 to a proximal end 34B of a slide 34, such that the sighting stud 50 extends substantially orthogonally from the slide 34 when the rear sight 22 is mounted to the slide 34.
As exemplarily illustrated in
The rear sight sighting stud 50 can be any suitable structure that is integrally formed with, or connected to, the channel 46 such that the sighting stud 50 extends orthogonally from the channel 46, such as a blade, stud, post, pin or boss of any suitable shape, e.g., a cylinder, a cube, a polyhedron, an ovoid, etc. Importantly, a top or distal end 50A of the rear sight sighting stud 50 is formed to have ‘inverted-V-shaped’ tip 54. The inverted-V-shaped tip 54 includes a first wall or surface 54A connected to a second wall or surface 54B at a top or apex 54C of the inverted-V-shaped tip 54 thereby forming the inverted-V-shaped tip 54. Additionally, as exemplarily illustrated in
The sight channel 46 has an axis A that is substantially parallel to a longitudinal axis B of the slide 34. Importantly, the sight channel 46 has a width M that provides the user with an open window to have an unobstructed view of a target 62 (shown in
Importantly, when the user aligns the apex 54C of the rear sight inverted-V-shaped tip 54 with the nadir 38C of the front sight V-shaped notch 38 the corresponding walls 38A, 38B, 54A and 54B of the V-shaped notch 38 and the inverted-V-shaped tip 54 form an ‘X’. Furthermore, to align the apex 54C of the rear sight inverted-V-shaped tip 54 with the nadir 38C of the front sight V-shaped notch 38, that is, to align the walls 38A, 38B, 54A and 54B of the V-shaped notch 38 and the inverted-V-shaped tip 54 to form the ‘X’, the user utilizes his/her vernier acuity to quickly and accurately form the ‘X’. Additionally, to accurately sight the firearm 14, the user only need to align a single point, i.e. the apex 54C with the nadir 38C, of sight system 10. Hence, the sight system 10, as described herein, utilized the vernier acuity of the user to very accurately align a single point of the front and rear sights 18 and 22 with the target 62. It should be understood that the sight system 10 can be adjusted, in accordance with the user's preference, such that any portion of the target 62 can be aligned with the aligned apex 54C and nadir 38C of the front sight V-shaped notch 38, or the target 62 can be nested within the V-shaped notch 38, as exemplarily illustrated in
For example, as exemplarily illustrated in
Referring now to
In various other embodiments, the rear sight sighting stud 50 can include a high visibility marking disposed at least on the solid rear face of the inverted-V-shaped tip 54 (shown as speckled marks on the rear face of the inverted-V-shaped tip 54 in
As exemplarily illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In still other embodiments, the front sight sighting structure 30 can comprise one or more self-luminescent sources or devices that is/are structured and operable to illuminate the distal end 30A, including the V-shaped notch 38. For example, in various implementations, the front sighting structure 30 can include one or more Tritium inserts embedded in the rear face of the sighting structure 30. Similarly, in various embodiments rear sight sighting stud 50 can comprise one or more self-luminescent sources or devices that is/are structured and operable to illuminate the distal end 50A, including the inverted-V-shaped tip 54. For example, in various implementations, the rear sighting stud 50 can include one or more Tritium inserts embedded in the rear face of the sighting stud 50. Furthermore, in various implementations, the self-luminescent source(s) or device(s) of the front sight sighting structure 30 can be structured and operable to illuminate a first color, and the self-luminescent source(s) or device(s) of the rear sight sighting stud 50 can be structured and operable to illuminate a second color that is different than the first color of the front sight sighting structure self-luminescent source or device. For example, the first and second colors can be highly contrasting colors such that the respective colors, and hence the sighting structure V-shaped notch 38 and the sighting stud inverted-V-shaped tip 54, are clearly distinguishable from each other and thereby assist the user in aligning the apex 54C of rear sight inverted-V-shaped tip 54 with the nadir 38C of front sight sighting structure V-shaped notch 38 to quickly and accurately sight the firearm 14.
Still referring to
Notably, as described above, when the user is sighting/aiming the firearm 14, using the sight system 10, the user places the inverted-V-shaped tip 54 of the rear sight sighting stud 50 below the V-shaped notch 38 of the front sight sighting structure 30. Placing the rear sight of a firearm below the front sight of a firearm is the well-established and naturally intuitive manner in which a user sights/aims a firearm. Hence, use of the sight system 10 employs the natural muscle memory and physical intuition of the user as the user sights/aims the respective firearm 14. Therefore, users of the sight system 10, as described herein, will easily and intuitively be able to utilize the sight system 10 to quickly and accurately sight/aim the respective firearm 14. Moreover, users will be able to easily and intuitively, and quickly and accurately, sight/aim the respective firearm 14 with a stationary target and a moving target due to the open view provided by the wide rear sight channel 46.
Furthermore, the opaque solid structure of front sight sighting structure 30 and the opaque solid rear sight sighting stud 50 allow for the vernier acuity of the user to easily and readily form the ‘X’ that results from aligning the apex 54C of inverted-V-shaped tip 54 with the nadir 38C of the V-shaped notch 38. Particularly, the opaque solid structure of the front sight sighting structure 30 and the opaque solid rear sight sighting stud 50 blocks the portion of the down-range view that is optically behind the front sight sighting structure 30 and the rear sight sighting stud 50. The opaque and solid structure of the front sight sighting structure 30 and the rear sight sighting stud 50 eliminates optical confusion and busyness at, and beyond, the front sight sighting structure 30 and the rear sight sighting stud 50, such that the users vernier acuity is not inhibited or confused, thereby allowing the user to quickly and easily align the apex 54C of inverted-V-shaped tip 54 with the nadir 38C of the V-shaped notch 38 to form the ‘X’.
Still further, as illustrated in
Hence, as described above, the sights system 10 provides a dual purpose sight system for a firearm, e.g., a pistol, rifle or shotgun. That is, the sight system 10 will allow the user to view the target 62 for a precise shot placement if needed, such as in bulls eye competition, while at the same time allowing the user to have a broader, panoramic view of moving targets, such as is needed in a timed shooting event, for example IPSC (International Practical Shooting Confederation or IDPA (International Defensive Pistol Association) style events.
Additionally, the utilization of the users vernier acuity to align the walls 54A and 54B of the rear sight sighting stud 50 with the walls 38A and 38B of the front sight sighting structure 30 to form the ‘X’, and hence provide a single point of alignment with the target 62, i.e., the point and the center/intersection of the ‘X’, where the rear sight sighting stud apex 54C is aligned with the front sight sighting structure nadir 38C, eliminates the need to align, and visual and mentally estimate, three object lines along with a target, as is necessary with known sight systems. Particularly, with known sight systems the user must visually and mentally estimate alignment of the top of the front sight blade with the top of the rear sight closed bridge having a notch therein (first object line), then visually and mentally estimate alignment of both sides of the front sight blade to be equally spaced from the respective sidewalls of the notch in the rear sight bridge (second and third object lines). The sight system 10, as described herein, requires only a single point of alignment that utilizes the user's vernier acuity such that sighting/aiming the respective firearm 14 does not require visual or mental estimation. Thus, the sight system 10 provides the user with greater ease, maximum visibility and maximum precision of sighting together with increased speed of aligning the sights at all ranges whether close or far.
Furthermore, the sight system 10, as described herein, allows for both slow precise and rapid shots to be taken at various different targets (or various portions of a target) whether the target is moving or is stationary, is at close or long range, and where either approximate or precise alignment must be made quickly, therefore the sight system 10 provides a dual purpose sight system.
Although the sight system 10 has been described above to include both the front and rear sights 18 and 22, it is envisioned that the front sight 18 and/or rear sight 22, as described above and shown in the various figures, can be employed independently of one another and are not limited to being used in combination. That is, it is envisioned that the front sight 18, as described above, can be used in combination with any other known or unknown rear sight to enable the user to easily and intuitively, and quickly and accurately, sight/aim the respective firearm 14 with a target utilizing the user's vernier acuity, and remain within the scope of the present disclosure. Similarly, it is envisioned that the rear sight 22, as described above, can be used in combination with any other known or unknown front sight to enable the user to easily and intuitively, and quickly and accurately, sight/aim the respective firearm 14 with a target utilizing the user's vernier acuity, and remain within the scope of the present disclosure.
The description herein is merely exemplary in nature and, thus, variations that do not depart from the gist of that which is described are intended to be within the scope of the teachings. Such variations are not to be regarded as a departure from the spirit and scope of the teachings.
Number | Name | Date | Kind |
---|---|---|---|
882182 | Thompson | Mar 1908 | A |
943872 | Gordon | Dec 1909 | A |
1094265 | Stewart | Apr 1914 | A |
1171310 | Bisbee | Feb 1916 | A |
1268537 | Bader | Jun 1918 | A |
1292211 | Young et al. | Jan 1919 | A |
1307441 | Frensdorf | Jun 1919 | A |
1755635 | Dindinger | Apr 1930 | A |
2607993 | McKay | Aug 1952 | A |
2706335 | Munsey | Apr 1955 | A |
2806288 | Sarvis | Sep 1957 | A |
3495338 | Ullman | Feb 1970 | A |
3499224 | Squier et al. | Mar 1970 | A |
D382038 | Nigh | Aug 1997 | S |
5822872 | Waki | Oct 1998 | A |
5887352 | Kim | Mar 1999 | A |
6058616 | Bubits | May 2000 | A |
6321479 | Sheehan | Nov 2001 | B1 |
6360471 | Stein | Mar 2002 | B1 |
6711846 | Nasef | Mar 2004 | B1 |
D519184 | Malley | Apr 2006 | S |
7451566 | Price | Nov 2008 | B1 |
7832138 | Price | Nov 2010 | B1 |
20100077647 | Kraft | Apr 2010 | A1 |
20110067286 | Price | Mar 2011 | A1 |
20120131833 | Lippard | May 2012 | A1 |
20120151817 | Howe et al. | Jun 2012 | A1 |
20120198750 | Mansfield | Aug 2012 | A1 |
20130185984 | Glimpse et al. | Jul 2013 | A1 |
20130255129 | Curry | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140096430 A1 | Apr 2014 | US |