The present disclosure relates to personal security and, more particularly, to a device, system and method for gunshot detection.
Increasing awareness of the risks posed by attackers using firearms has prompted demand for and development of systems to detect gunshots reliably under a variety of conditions.
The social and personal cost of missing alerts for gunshots and issuing false alerts for non-gunshots are quite high so great effort is warranted in improving the reliability of discrimination. Past gunshot detection systems are almost exclusively based on electronic and computer technology and oftentimes do not distinguish between indoor and outdoor environments. Because there is great variability in the physical phenomena being monitored and many physical configurations of monitored spaces, simply making the detection system more precise in any specific measurement does not in practice result in improvement. For similar reasons, there is no practical means for users to tune simple detectors to each particular physical space and firearm model.
Reliable detection of gunshots requires accommodation of features and effects associated with different environments, including indoor and outdoor environments. Further, past systems have problems with reliable rejection of events that have similar characteristics to gunshots but are not gunshots, such as slamming doors, falling books and other percussive acoustic impulse generators.
The present disclosure addresses past challenges as described above and provides a versatile and reliable gunshot detection system, device and method for multiple environments, including indoor detection.
According to various embodiments as disclosed herein, several characteristic physical events associated with the operation of a firearm are monitored, including acoustic, infrared, visible light, and chemical and particle emissions. Embodiments of the present disclosure examines these events in various ways using physical and electronic sensors in reliably distinguishing between firearm and non-firearm sources. According to embodiments of the present disclosure, the physical event of the suspected firearm operation can be detected with an electronic sensor such as an acoustic detector and the captured data can be analyzed from multiple reference points in as close to real time as possible to minimize delays in reporting. Embodiments of the present disclosure further use multi-factor confirmation to improve the reliability of discrimination. Improvements in detection methods as described herein can minimize the effects of real-world variations and signal noise during the detection processes.
In various embodiments, a detected event is analyzed using a selected technique as the primary detection mechanism and using one or more different techniques as confirmations of the nature of the event. The primary mechanism is generally selected for being the most individually reliable. This choice of primary detection means can be fixed in the present system and device, determined during installation, or automatically determined during operation, for example. An example of automatic determination is the scaling of likelihood result of each method onto a common numerical comparison scale, then choosing the most likely (e.g., highest numerical value) as the primary detection approach. The confirmations can be applied where all must be asserted, as a majority voting scheme, with a weighted voting scheme, or in other ways to enhance both detection and rejection reliability.
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
Example embodiments such as disclosed herein can incorporate a host, local device and/or controller having a processor and an associated memory storing instructions that, when executed by the processor, cause the processor to perform operations as described herein. It will be appreciated that reference to “a”, “an” or other indefinite article in the present disclosure encompasses one or more than one of the described element. Thus, for example, reference to a processor encompasses one or more processors, reference to a memory encompasses one or more memories, reference to an acoustic sensor encompasses one or more acoustic sensors and so forth.
In the diagram 10 shown in
In various embodiments as shown in
As shown in the left side of diagram 10, a threshold detector or comparator 102 and timer 103 are employed as an approach to detection timing and control. This process can commence any time the filtered microphone signal 121 exceeds a preset threshold as determined by threshold detector 102. According to various embodiments, this threshold can be set at least somewhat below the acoustic overload point (AOP) of the microphone 100 so that detection is possible even with events that physically overload the microphone 100. Crossing this threshold starts the extend timer 103 and an overall event timer 113. In at least one embodiment, the signal is required to exceed the equivalent of 125 dB sound pressure level (SPL) for the detection process to begin. In such embodiments, the extend timer 103 is set to ten milliseconds and the overall event timer 113 is set to fifty milliseconds. It will be appreciated that other embodiments may use different timing intervals and different overall detection thresholds. Regardless, during the overall event timer interval, the other elements of detection take place as shown in
As further shown in diagram 10 of
Impulse Decay Rate Testing
Embodiments as described herein can discriminate gunshots from other impulses or other sound event through evaluation of the decay time of the signal envelope 120 in comparison to a generated standard as at 105 such as through employment of a window comparator 107. In such embodiments, the signal envelope 120 is conducted through a normally closed switch 104 to a decay waveform shape generator 105. While the switch is closed, the value of the decay waveform shape generator is clamped to that of the signal envelope 120. The extend timer 103 serves to delay the start of the decay waveform generation 105 via communication link 119 until the portion of the signal envelope 120 that may be distorted by transient conditions such as microphone overload has passed. With additional reference to graph 15 in
Decay Rate Comparison
The signal envelope 120 and the generated decay waveform 505 are compared in the window comparator 107. The window comparator establishes dynamic upper 506 and lower 507 limits based on the decay waveform. As long as the signal envelope, represented as 503 in
Spectrum Evaluation
Referring back to
Referring to chart 20 in
In such embodiments as described and with reference to
In various embodiments according to the present disclosure, a combination of the decay evaluation output from window comparator 107 and the spectrum evaluation output from ratio comparator 110 is used to make the final determination of whether or not the event is a gunshot. As illustrated in
As long as the validity timer 112 is reset in less than its established time interval, the validity timer output 116 will not be asserted, and the overall event timer 113 will not be aborted. In various embodiments, the overall event timer 113 starts from first peak detected and has a start input and an abort input. If the overall event timer completes, it is a gunshot. If the overall event timer 113 runs to completion, the event is deemed a gunshot and the overall event timer output 118 is asserted. If the overall event timer 113 is aborted by either of the evaluations as determined by AND component 111 or a combination of the evaluations failing for more than the duration of the validity timer 112, the overall event timer output is not asserted and the event is deemed a non-gunshot. In one embodiment, the validity timer 112 is set for ten milliseconds and the overall event timer 113 is set to fifty milliseconds. In other embodiments, different time settings can be employed.
It will be appreciated that, although the above-described operation is based on two required conditions in addition to the crossing of the threshold detector 102, other embodiments could include further detected conditions combined in a larger AND gate than AND gate 111, for example.
In various embodiments, a fully qualified gunshot detection can trigger an alert to proper personnel or authorities. In various embodiments, the detection output 118 is directed to a network interface that is implemented by the digital processing. This interface causes the detection output to be transmitted over any available network such as Wi-Fi, Ethernet, Bluetooth, Zigbee (Z-Wave) or other protocol over a local network or the Internet for the purpose of alerting and/or logging the alerts. In other embodiments, locally wired alerting mechanisms such as sirens or strobe lights can also be utilized. In still other embodiments, partially qualified events may trigger separate types of communications or outputs. In such a case, the outputs of the ratio comparator 110 and/or the window comparator 107 may be separately timed for validity and may generate a separate event indicating a lower likelihood of the event being a gunshot. Thus, an output of the ratio comparator 110 alone can independently trigger a gunshot detection and an output of the window comparator 107 alone can independently trigger a gunshot detection according to embodiments of the present disclosure.
It will be appreciated that the digital output of one or more of the sensors can be communicated to a microcontroller 96 via I2C protocol. I2C is a serial protocol for two-wire interface to connect low-speed devices like microcontrollers, EEPROMs, A/D and D/A converters, I/O interfaces and other similar peripherals in embedded systems. The analog signal from microphone 100 can be converted using an AD converter (not shown) which communicates with the microcontroller 96. The microcontroller can further include a memory 98 storing programming for execution by processor 97, and an application programming interface (API) and web portal 99 to facilitate communications with external systems and programs.
As shown in
The video monitoring system 76 can include one or more video cameras adapted to record video of a surveilled premises, such as where one or more acoustic sensors (e.g., microphones) 100 are installed. The video camera(s) can transmit recorded video and optionally audio to a system such as external management system 78 in accordance with communication methods as will be understood to those of ordinary skill. The sensor device 70 can receive monitoring data from one or more of the group of sensors, and can also generate a profile of one or more detected substances, wherein the profile specifies relative concentrations of gases and/or particles, such as in numeric form, for example. When the detected substance is gunfire or burnt powder, for example, the profile may provide details of particles, volatile organic compounds and carbon dioxide. When the sensor device determines that at least a portion of the received monitoring data is indicative of an exceeded threshold and/or when the received monitoring data matches that of a generated profile, a communication such as a detected event communication can be transmitted to the video monitoring system to initiate video recording of the premises. The detected event communication can also be a signal indicating lack of tonality and/or a decay signal, for example, which according to various embodiments can be generated during an overall event time period.
In various embodiments, the one or more gas sensors can include, for example, a carbon dioxide (CO2) sensor 91, a nitrogen dioxide (NO2) sensor 92, a carbon monoxide (CO) sensor 93 and/or a volatile organic compound (VOC) sensor 94. Further, thresholds can be established above ambient environment measurements for one or more of a particle sensor 95, CO2 sensor 91, NO2 sensor 92, CO sensor 93 and VOC sensor 94, whereupon a suitable measured increase in measurements from one or more such sensors after an initially detected gunshot provides a confirmation.
It will be appreciated that one or more of the gas sensors and/or the particle detection sensor is helpful in providing confirmation of an initial gunshot detection. For instance, one or more such sensors can be combined into an integrated device, with our without acoustic sensor(s), secured in a specific location being monitored and baseline ambient measurements can be taken for each device. A computing device and/or electronic control system in communication with the sensor(s) can detect measurements from the sensor(s) over time, and can be directed via suitable programming instructions to establish a profile for gunshot detection confirmation, wherein the profile establishes one or more threshold measurements from the one or more sensors. In various embodiments, if the one or more thresholds is exceeded within a defined time frame after a sensed gunshot detection according to the various methods of the present disclosure, a gunshot detection confirmation can be issued by the computing device and/or electronic control system. In this way, effects such as a gunshot muzzle “cloud” of residue emitted from a gun barrel can be detected.
If a single device is installed in a room, a-priori knowledge of the size of the room can be provided and established as conditions to consider by the embodiments of the present disclosure. A worst-case time delay could be calculated based upon the room size and airflow in the room, for example. If the air quality were to change above a threshold during that period, then the potential gunshot is now verified to be a true gunshot event. In a room with multiple installed sensor devices, the time of the gunshot detection can be recorded for each device. Knowing the location of each device within the room, the size of the room, the approximate air flow in the room and then triangulating the location of the gunshot, the distance to each installed device can be calculated. Based upon this calculated distance, the time delay from the perceived gunshot event detection can be calculated. In either case, the air flow portion will only be an approximation and an additional delta time can be added to the calculated time delay to allow for variances. In various embodiments, an installed sensor can receive a measurement from the air quality sensor and a processor in communication with the sensor can determine that the measurement from the air quality sensor exceeds a threshold for gunshot detection confirmation. Such a determination can be part of confirming one or more other detections as part of confirmation a fully qualified gunshot detection, for example.
In various embodiments, a distance from the microphone is calculated from the presumed gunshot, and the system and device as disclosed herein can calculate a propagation delay of air quality and sense an increase of either particles, CO2, or NO2, or any combination thereof, after a delay with some programmable delay for air flow, that the gunshot detected is indeed a gunshot due to the change of air quality. In various embodiments, the distance of the gunshot from the microphone can be calculated by identifying the delay between the gun flash and the gunshot audio impulse. It may also be detected from the gunshot impulse and reverberations. It will be appreciated that, upon gunshot confirmation, Bluetooth and/or cell phone technologies can be employed to identify the presence of electronic devices in the area as a signature of an individual who could have possibly pulled the trigger that initiated the gunshot detection.
It will be appreciated that the functions and processes described in the above embodiments may be implemented in analog circuitry, digital circuitry, computer processing, or any combination of the these. In the case of digital circuitry and/or computer processing, it is possible to have the event capture implemented as an analog design and the remainder of the embodiment operate in the digital domain. An exemplary embodiment is shown in diagram 25 of
It will be appreciated that the multiple confirmations described herein greatly improve the reliability of gunshot detection and rejection of false alerts. Further confirmation of presumed gunshot detection can employ additional sensors in hardware form according to various embodiments of the present disclosure. For example, when more than one detection unit is installed in a single space, the units can cooperate by providing additional confirmation signals to each other using the network interface. This message to neighbors can be developed by the ratio comparator 110 and the window comparator 107 and may not be fully qualified but is still sufficient to be considered a confirmation. The receiving network interface routes this message back into its associated gunshot validation logic which can include AND gate 111, validity timer 112 and overall event timer 113, whereupon it is considered a confirmation by the logic.
It will be appreciated that different sensor units or different measurements can be determined to be the main mechanism by which reliable gunshot detection is assessed, and the main mechanism can vary depending upon location, environment, type of sensor and other factors. This choice of main detection means can be fixed in the present system and device, determined during installation, or automatically determined during operation, for example. As an example with reference to
The symmetry of this design allows this process to work similarly between any number of associated units. Other embodiments can pass different signals between peers. In addition to allowing completely validated alerts to be communicated between peers, embodiments of the present disclosure can communicate partially validated and uncombined signals between units to allow more accurate and more flexible final validation.
It will thus be appreciated that the presently disclosed embodiments provide a technical solution for evaluating characteristic physical events associated with the operation of a firearm such as one or more of the acoustic, infrared, visible light, and chemical and particle emission events as part of assessing whether a gunshot event is detected in a given environment.
Unless otherwise stated, devices or components of the present disclosure that are in communication with each other do not need to be in continuous communication with each other. Further, devices or components in communication with other devices or components can communicate directly or indirectly through one or more intermediate devices, components or other intermediaries. Further, descriptions of embodiments of the present disclosure herein wherein several devices and/or components are described as being in communication with one another does not imply that all such components are required, or that each of the disclosed components must communicate with every other component. In addition, while algorithms, process steps and/or method steps may be described in a sequential order, such approaches can be configured to work in different orders. In other words, any ordering of steps described herein does not, standing alone, dictate that the steps be performed in that order. The steps associated with methods and/or processes as described herein can be performed in any order practical. Additionally, some steps can be performed simultaneously or substantially simultaneously despite being described or implied as occurring non-simultaneously.
It will be appreciated that algorithms, method steps and process steps described herein can be implemented by appropriately programmed computers and computing devices, for example. In this regard, a processor (e.g., a microprocessor or controller device) receives instructions from a memory or like storage device that contains and/or stores the instructions, and the processor executes those instructions, thereby performing a process defined by those instructions. Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatuses (systems) and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable instruction execution apparatus, create a mechanism for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
Any combination of one or more computer readable media may be utilized. The computer readable media may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium include the following: a portable computer diskette, a hard disk, a random-access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an appropriate optical fiber with a repeater, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, as exemplified above. The program code may execute entirely on a user's computer, partly on a user's computer, as a stand-alone software package, partly on a user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS).
Where databases are described or implied in the present disclosure, it will be appreciated that alternative database structures to those described, as well as other memory structures besides databases may be readily employed. Any drawing figure representations and accompanying descriptions of any exemplary databases presented herein are illustrative and not restrictive arrangements for stored representations of data. Further, any exemplary entries of tables and parameter data represent example information only, and, despite any depiction of the databases as tables, other formats (including relational databases, object-based models and/or distributed databases) can be used to store, process and otherwise manipulate the data types described herein. Electronic storage can be local or remote storage, as will be understood to those skilled in the art. Appropriate encryption and other security methodologies can also be employed by the system of the present disclosure, as will be understood to one of ordinary skill in the art.
The above-described embodiments of the present disclosure may be implemented in accordance with or in conjunction with one or more of a variety of different types of systems, such as, but not limited to, those described below.
The present disclosure contemplates a variety of different systems each having one or more of a plurality of different features, attributes, or characteristics. A “system” as used herein refers to various configurations of: one or more central controllers or microcontrollers, and/or one or more subsystems or additional devices alone or in communication with one or more central controllers or microcontrollers, wherein the one or more subsystems or additional devices can include a sensor or other computing device as described herein, for example.
In certain embodiments in which the system includes a server, central controller, or microcontroller, the server, central controller, or microcontroller is any suitable computing device (such as a server) that includes at least one processor and at least one memory device or data storage device. The processor of the additional device, server, central controller, or microcontroller is configured to transmit and receive data or signals representing events, messages, commands, or any other suitable information between the server, central controller, or remote host and the additional device.
As will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented as entirely hardware, entirely software (including firmware, resident software, micro-code, etc.) or combining software and hardware implementations that may all generally be referred to herein as a “circuit,” “module,” “component,” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
The present application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 63/144,075, filed Feb. 1, 2021, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3341810 | Wallen | Sep 1967 | A |
3936822 | Berg | Feb 1976 | A |
5455868 | Sergent et al. | Oct 1995 | A |
5504717 | Sharkey et al. | Apr 1996 | A |
5917775 | Salisbury | Jun 1999 | A |
6847587 | Patterson | Jan 2005 | B2 |
7203132 | Berger | Apr 2007 | B2 |
7710278 | Holmes et al. | May 2010 | B2 |
7751282 | Holmes et al. | Jul 2010 | B2 |
7961550 | Calhoun | Jun 2011 | B2 |
8325563 | Calhoun et al. | Dec 2012 | B2 |
8730062 | Eldershaw et al. | May 2014 | B2 |
9240114 | Showen et al. | Jan 2016 | B2 |
9886833 | Noland et al. | Feb 2018 | B2 |
9972179 | Neese et al. | May 2018 | B2 |
10089845 | Skorpik et al. | Oct 2018 | B2 |
10586109 | Fowler et al. | Mar 2020 | B1 |
10627292 | Fowler et al. | Apr 2020 | B1 |
10657800 | Fowler et al. | May 2020 | B1 |
10741038 | Skorpik et al. | Aug 2020 | B2 |
10789831 | Dahm et al. | Sep 2020 | B1 |
10789941 | Lopatka et al. | Sep 2020 | B2 |
10832565 | Pirkle et al. | Nov 2020 | B2 |
20030021188 | Baranek et al. | Jan 2003 | A1 |
20070125951 | Snider | Jun 2007 | A1 |
20110246402 | Burman | Oct 2011 | A1 |
20110252683 | Chedid et al. | Oct 2011 | A1 |
20130139600 | McEwen-King et al. | Jun 2013 | A1 |
20130202120 | Bickel et al. | Aug 2013 | A1 |
20140184806 | Tidhar | Jul 2014 | A1 |
20140269199 | Weldon | Sep 2014 | A1 |
20140361886 | Cowdry | Dec 2014 | A1 |
20150070166 | Boyden et al. | Mar 2015 | A1 |
20150268170 | Scott et al. | Sep 2015 | A1 |
20170301220 | Jarrell et al. | Oct 2017 | A1 |
20190186875 | Pirkle et al. | Jun 2019 | A1 |
20200211361 | McSchooler | Jul 2020 | A1 |
20200225313 | Coles | Jul 2020 | A1 |
20210049879 | Connell et al. | Feb 2021 | A1 |
20210049881 | Connell, II | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2712974 | Jul 2009 | CA |
2009048500 | Apr 2000 | WO |
2019159103 | Aug 2019 | WO |
Number | Date | Country | |
---|---|---|---|
63144075 | Feb 2021 | US |