1. Field of the Invention
The present invention relates to gutter debris barrier systems, also known as gutter guards, which are placed on or about rain gutters located adjacent to a roof of a building to permit the passage of water while preventing debris from entering into and collecting in the gutter.
2. Discussion of the Related Art
A common problem with rain gutters is that they become clogged or jammed with various debris including leaves, needles, shingle sand, and other materials that fall onto the gutter. Functionality of the rain gutter is dramatically decreased once debris enters the gutter. Consequently, a property owner is required to repeatedly clean out rain gutters over the course of a year. To address this issue, gutter debris barrier systems, or gutter guards, have been introduced to prevent debris from collecting within the gutter. The goal of gutter guards is to prevent debris from entering the gutter while still maintaining water flow through the gutter guard and into the gutter, such that water is not dripping down the outside of the gutter, and ultimately the building.
The most primitive debris barrier systems consist of a guard that simply included a screen with multiple holes that is laid across the gutter. These systems attempted to balance the need for holes large enough for sufficient flow of water while small enough to prevent debris from flowing through the screen. Over time, more sophisticated guard systems were developed. For instance, mesh filter elements have been used with sufficiently small holes to allow the flow of water therethrough. These mesh filter elements often are supported by a frame that includes channels and holes to guide the flow of water down into the gutter. These systems block substantially all debris from entering while allowing high volumes of water to pass through to the gutter. U.S. Pat. No. 7,310,912, which is incorporated herein by reference in its entirety, discloses such a system.
Both gutter systems and gutter guards can experience problems when freezing temperatures are encountered. For instance, a gutter that has been clogged with debris will pool water, which can ultimately freeze and cause further backup. Even where gutter guards are used, snow or water can enter into the gutter and freeze along or adjacent to the gutter. These issues can be exacerbated by runoff that results from the melting of snow and ice on the roof, which then runs down into the relatively cold gutter and re-freezes. This can result in ice dam formation in and around the gutter and on the roof. Further still, when functionality of a gutter and/or gutter guard is compromised, large icicles can form on the outer surface of the gutter. These icicles contribute significant weight to the gutter. Additionally, in the event that the mesh filter element freezes over, snow and ice can gather on the top of the filter element. The weight of this buildup can be significant, requiring the mesh filter element to withstand substantial loads.
To avoid the freezing effects discussed above, various deicing gutters or gutter guard systems utilize an electrical heating element such as a wire or coil. The heating element can be mounting to the gutter, to the gutter guard, or beneath the roofline. Assuming the gutter is metallic, the heat will be transmitted throughout the gutter to thaw any ice buildup and prevent further freezing.
A number of the drawbacks experienced with previous gutter guard systems were largely alleviated with the introduction of the gutter debris barrier system described in U.S. Pat. Nos. 8,079,183 and 8,438,787, which are incorporated herein by reference in their entirety. The gutter debris bather system disclosed in these patents features a rigid frame with a filter element supported above the frame. One side of the frame is mounted beneath the shingles of the roof, and the other side is attached to the lip of the outer wall of the gutter. Longitudinally extending ribs are located within the frame, with slotted channels being formed between the ribs for the direction of water into the underling gutter. The ribs are generally rectangular when viewed in transverse cross section, and their sides thus extend generally perpendicularly from the floor of the frame. Activation of a heating element located adjacent to the frame heats the frame, the filter element, the flange, and the gutter.
While serving as an effective debris barrier and encouraging deicing in and around the gutter, there are several disadvantages to this system.
First, the frame is mounted beneath the shingles of the roof, which can cause damage to the roof and/or shingles. Furthermore, by peeling back the shingles to install the frame, any warranty on the shingles may be voided.
Another drawback to this system is that the channels are flat rather than tapered, creating the risk of the pooling of water in the channels in the presence of even small amounts of debris or non-planarity of the channels. The pooled water can freeze with resultant detrimental effects. Additionally, in having the ribs that extend at substantially right angles from the floor of the gutter, the distance through the floor and up each rib can result in a relatively long heat transfer path from the heat source through the floor, to the ribs, and ultimately the filter element. Heating efficiency thus is degraded.
In addition, the presence of rectangular ribs and the associated sharp transitions between ribs produces a relatively weak frame.
Thus, there remains room for improvement in gutter debris barrier systems by providing a system that is mountable about the gutter without interfering with the shingles on the roof.
Additionally, there is need for a gutter debris barrier system with different ribs that facilitate a shorter heat travel path and reduce pooling of water.
There is additionally a need for a gutter debris barrier system having a frame that is stronger than known frames.
In accordance with an aspect of the present invention, a debris barrier system includes a frame adapted to overlie at least a portion of the gutter and a filter screen that covers at least a portion of the frame. The frame includes a floor with at tapered channels separated by ribs that extend upwardly from the floor. The ribs may have flat upper surfaces or tips lying in a common horizontal plane and supporting a flat filter screen.
The floor of the frame may have slots within the channels to allow water to pass through the frame and into the underlying gutter. The slots may be located along a lowest point of each channel to encourage water passage therethrough.
In accordance with another aspect of the system, a mounting bracket that extends longitudinally along the gutter can be mounted to the fascia of the building. The frame may include a flange that extends from a first or inner side wall of the frame and which can be attached to the mounting bracket. In one embodiment, the flange is releasably held within a c-shaped channel of the mounting bracket. A second or outer side wall of the frame can then be secured to the second or outer side of the gutter. Thus, the frame is suspended over the top of the gutter.
In accordance with another aspect of the system, the frame may include a channel for receiving a heating element. The frame and the filter screen may be made of a heat conductive material such as aluminum to facilitate heat transfer from the heating element to the remainder of the system.
These and other aspects, advantages, and features of the invention will become apparent to those skilled in the art from the detailed description and the accompanying drawings. It should be understood, however, that the detailed description and accompanying drawings, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof. It is hereby disclosed that the invention include all such modifications.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout, and in which:
Referring now to the drawings and initially to
Still referring to
Looking now to
Looking to
Still referring to
While providing sufficient clearance to allow for the insertion of the mounting flange 54, the tapered shape of the c-shaped channel 42, formed by the converging upper leg 46 and lower leg 48 form a spring-clip that helps to secure the mounting flange 54 within the c-channel 42. This allows a user to install or remove the mounting flange 54 from the c-channel 42 without the use of tools, but does not allow the mounting flange 54 to freely fall out of the c-channel 42. Alternatively, the mounting flange 54 may be secured within the c-shaped channel 42, for instance, by a clipping mechanism or other attachment technique.
The c-shaped channel 42 of the mounting bracket 30 may be configured to be slightly longer in length than the mounting flange 54 such that the mounting flange 54 can be easily inserted into the c-shaped channel 42, and so that the c-shaped channel 42 can accommodate inward and outward movement of the mounting flange 54 resulting from thermal expansion and contraction of the frame 32.
The mounting leg 40 of the mounting bracket 30 may be mounted to the fascia 18 by screws 56, bolts, rivets, or other suitable attachment devices that are inserted through openings formed in the mounting leg 40 either before or during installation. When thus installed, the mounting bracket 30 is installed directly beneath the roof 16 and shingles 20 so that the upper leg 46 bordering the c-shaped channel 42 abuts or is disposed adjacent the bottom of the shingles 20 of the roof 16. As shown, the mounting bracket 30 should abut the roof 16 while being spaced above the gutter 14. This inhibits moisture from falling behind the mounting bracket 30 and behind the gutter 14. The height of the mounting bracket 30 may vary depending on the spacing between the gutter 14 and the roof 16. The mounting bracket 30 further facilitates movement of water towards the gutter 14 by the drip edge 44, which is angled towards the gutter 14 and guides any water that runs down the mounting bracket 30 back toward the gutter 14.
It should be noted that the mounting bracket 30 is not critical to the system 10 and could be replaced by or supplemented with a more traditional under-the-shingles mounting system such as the one disclosed in U.S. Pat. Nos. 8,079,183 and 8,438,787.
Turning to
Each of ribs 70 extends longitudinally along the length of the frame 32 between adjacent channels 68. Each of the ribs 70 extends from a base 74 defining the tops of the two adjacent channels 68 to an upper surface or tip 78 which, as can be clearly seen in the drawings, extends in a horizontal plane extending between the opposed sides of the associate rib 70. Preferably the tips 78 are all located in the same plane. The tips 78 support the filter screen 34, and keep the filter screen 34 spaced from the floor 58 defined by the bottoms of the channels 68. This is important to maintain continued movement of water through the system 10. Once water passes through the filter screen 34, it can drop directly into the channels 68 or flow down the ribs 70 and drip through the slots 72 into the bottom 24 of the gutter 14. Because the ribs 70 of the frame 32 contact the filter screen 34, the water experiences capillary action and moves downwardly along the rib 70 and eventually through the slots 72 into the gutter 14.
The channels 68 are generally tapered as a result of the configuration of the ribs 70. As best seen in
The tapered structure of the channels 68 provides several benefits over comparable gutter guards having vertical ribs and planar channels. First, by having a tapered, preferably arcuate floor 58, as opposed to a flat floor, and by offsetting the slots 72 in adjacent channels 68 in the manner shown, the length of thermal transfer along path “P”, defined as a the shortest line that extends in an uninterrupted serpentine path along the surface of the frame from the first, inner side wall 60 to the second, outer side wall 62 without crossing any of the slots 72, is no more than about 5/3, and more preferably no more than about 4/3, of the transverse spacing between the first, inner side wall 60 and second, outer side wall 62 in a horizontal plane. In the illustrated embodiment in which the transverse spacing between the first, inner side wall 60 and second, outer side wall 62 in a horizontal plane is about 3.0 inches, the length of the thermal transfer path “P” is less than 4 inches and more preferably approximately 3.75 inches. In previous models of the same overall dimensions with flat channels and vertically-walled ribs, the thermal transfer path length was approximately 5.88 inches, resulting in a ratio of thermal transfer path to transverse distance “D” of more than 5.75/3.0. The significant reduction in thermal travel path length results in a more efficient system 10 that can be heated more quickly with a heating element 36 having a given thermal output. By reducing the length of the thermal transfer path, the power requirement of the system 10 is reduced.
Additionally, the tapered structure of the channels 68 and the ribs 70 helps to funnel moisture towards the slots 72. The combination of tapered channels 68 and ribs 70 and the location of the slots 72 at the bottom of the channels 68 helps to ensure that all water is funneled through the frame 32 and into the gutter 14. Previous gutter guards having channels with a flat floor and ribs that extend perpendicularly upward did funnel water down towards the frame floor, but not necessarily to the slots. Because the slots were spaced from the ribs in these previous embodiments, there was risk that water would pool along the right-angle edge of the channel. Tapered channels 68 help to alleviate this issue.
Furthermore, structures with curved surfaces are, everything else being equal, stronger than structures with sharp corners. Thus, by providing arcuate channels 68 and tapered ribs 70, the frame 32 is stronger and can withstand greater forces thereon than comparable prior art frames.
The illustrated embodiment features ribs 70 with an approximate height from base 74 to tip 78 between 0.10 to 0.30 inches and more preferably approximately 0.155 inches. Ribs in previous gutter guard systems were typically 0.250 inches in height or higher. Each of the U-shaped channels 68 have an approximate upper radius on the top side of the floor 58 about the center of the channel 68 between 0.100-0.300 inches and more preferably approximately 0.200 inches, and a lower radius beneath the floor 58 about the center of the channel 68 between 0.200-0.400 inches, and more preferably approximately 0.300 inches. Consequently, the typical thickness of the floor 58 is approximately 0.050-0.150 inches and more preferably 0.095 inches. As shown, each channel 68 has a width from tip 78 to adjacent tip 78 of between approximately 0.300 and 0.700 inches and more preferably 0.512 inches.
While the illustrated embodiment shows a frame 32 with six channels 68, additional or fewer channels 68 may be used as desired to accommodate different gutter 14 sizes and/or to form narrower or wider channels 68.
Referring to
Referring to
Referring to
In the illustrated embodiment, the mounting flange 54 is approximately between 1.00 and 1.50 inches in length, and more preferably about 1.25 inches. The mounting flange 54 tapers from an initial width of approximately between 0.080 and 0.110 inches and more preferably 0.095 inches at the outer end 94, and narrows to the inner end 96 with a width of approximately between 0.04 and 0.08 inches, and more preferably 0.06 inches. Other flange configurations could be used so long as they are compatible with the mounting bracket 30.
The mounting flange 54 is configured to be releasably secured within the c-shaped channel 42 of the mounting bracket 30 discussed above. Thus, when the system 10 is installed, the mounting flange 54 is first inserted into the c-shaped channel 42 of the mounting bracket 30, which acts as a spring clip to clamp the mounting flange 54 in place. Once the mounting flange 54 is inserted into the c-shaped channel 42, the second, outer flange 64 of the frame 32 rests on the lip 29 on the outer wall 28 of the gutter 14. The outer flange 64 of the frame 32 can then be secured to the lip 29 of the gutter 14 by any suitable attachment device, for instance by screws 104 as shown in
Preferably, the frame 32 is constructed of a metallic material with high thermal conductivity. For instance, in one embodiment, the frame 32 may be constructed of aluminum. This encourages heat transfer throughout the frame 32.
Referring now to
The heating element 36 is preferably an electrically powered heating wire or cable, although other heat sources may be used. In being located directly adjacent to one of the sides of the frame 32, the heating element 36 provides heat throughout the frame 32 due high conductivity of the frame 32. The channel 66 and heating element 36 are optional and could be eliminated, especially in warm climates.
The cover 38 overlies the heating element 36 and channel 68 as can best be in seen in
Looking to
Once activated, the heating element 36 can provide heat to the entire system 10. More specifically, the heating element 36 first supplies heat to the channel 68. Heat is then transmitted through the entire frame 32, first through second, outer side wall 112, into the floor 58 and moving up the ribs 70 and to the filter screen 34. The heating element 36 cover 38 is also heated. As the gutter 14 is likely made of a metallic heat transferring material, heat can also be supplied to ensure that no freezing occurs once moisture reaches the gutter 14.
A variety of filter screens 34 may be used with the illustrated invention. Preferably, the filter screen 34 is made of a woven stainless steel wire material that is flexible to allow the filter screen 34 to be spread over the frame 32. Varying grades of stainless steel can be used, for instance 316 or 410 stainless steel alloy. The filter screen 34 collects water, at which point the water experiences capillary action and drops through the filter screen 34. This encourages movement of the water down through the openings in the filter screen 34 and into the gutter 14. Preferably, the stainless steel wire has a high thermoconductivity to encourage heat transfer through the filter screen 34. The openings in the filter screen 34 should be sufficiently small to prevent debris from entry into the gutter 14, while still allowing sufficient water flow to the gutter 14.
Typically, the debris barrier system 10 will be installed in five foot length segments, although other sized segments could be used depending on the exterior layout of a building 12. During installation, a mounting bracket 30 is installed against the fascia 18. A frame section is then prepared for installation by laying the filter screen 34 along the tips 78 of the ribs 70 and the shelves 84. The sides 88 of the filter screen 34 are then inserted into the slots 86 and secured in place using adhesive 90 as described above. Preferably, the filter screen 34 extends longer than the length of the frame 32 so that at least two inches of the filter screen 34 can be bent down on either end of the frame 32 segment to form a vertically extending end 120 seen in
It should be understood that the components of the system 10 may be made of any number of different materials. As stated herein, it is preferred that many of these components are made of head-conductive materials, such as aluminum. Other materials could be used to improve the durability, strength, or conductivity of the component. Additionally, while the above description outlines possible attachment devices, it should be noted that any of the components can be attached to one another using screws, bolts, clips, rivets, nails, set-screws, tape, glue, adhesive, and the like.
Additionally, it should be understood that the various inventive features described above can each be used independently of one another or in combination with other features.
It is appreciated that many changes and modifications could be made to the invention without departing from the spirit thereof. Some of these changes will become apparent from the appended claims. It is intended that all such changes and/or modifications be incorporated in the appending claims.
The present application is a continuation of U.S. patent application Ser. No. 14/879,274, filed Oct. 9, 2015, and entitled Gutter Debris Barrier System, which claims priority on U.S. Provisional Patent Application Ser. No. 62/061,887, filed Oct. 9, 2014 and entitled Gutter Containment Protection System, both of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5010696 | Knittel | Apr 1991 | A |
7310912 | Lenney et al. | Dec 2007 | B2 |
7975435 | Lenney et al. | Jul 2011 | B2 |
8079183 | Lenney | Dec 2011 | B2 |
8438787 | Lenney et al. | May 2013 | B2 |
8479454 | Lenney et al. | Jul 2013 | B2 |
9021747 | Lenney et al. | May 2015 | B2 |
20060101722 | Ealer, Sr. | May 2006 | A1 |
20070234647 | Higginbotham | Oct 2007 | A1 |
20080163561 | Lenney | Jul 2008 | A1 |
20100287846 | Lenney | Nov 2010 | A1 |
20130248672 | Martin | Sep 2013 | A1 |
20140215929 | Lenney | Aug 2014 | A1 |
20150020462 | Iannelli | Jan 2015 | A1 |
20160060870 | Martin | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170044771 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62061887 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14879274 | Oct 2015 | US |
Child | 15340092 | US |