The present disclosure relates to a gyratory crusher outer crushing shell and in particular, although not exclusively, to a crushing shell having a radially inward projecting shoulder positioned axially intermediate between an upper inlet region and a lower crushing region, the inlet, shoulder and crushing region being optimised to increase the capacity and reduction effect of the crusher.
Gyratory crushers are used for crushing ore, mineral and rock material to smaller sizes. The crusher includes a crushing head mounted upon an elongate main shaft. A first crushing shell (typically referred to as a mantle) is mounted on the crushing head and a second crushing shell (typically referred to as a concave) is mounted on a frame such that the first and second crushing shells define together a crushing chamber through which the material to be crushed is passed. A driving device positioned at a lower region of the main shaft is configured to rotate an eccentric assembly positioned about the shaft to cause the crushing head to perform a gyratory pendulum movement and crush the material introduced in the crushing chamber. Example gyratory crushers are described in WO 2004/110626; WO 2008/140375, WO 2010/123431, US 2009/0008489, GB 1570015, U.S. Pat. No. 6,536,693, JP 2004-136252, U.S. Pat. No. 1,791,584 and WO 2012/005651.
Gyratory crushers (encompassing cone crushers) are typically designed to maximise crushing efficiency that represents a compromise between crushing capacity (the throughput of material to be crushed) and crushing reduction (the breakdown of material to smaller sizes). This is particularly true for heavy-duty primary crushers designed for mining applications. The capacity and reduction may be adjusted by a variety of factors including in particular size of the crushing chamber, the eccentric mounting of the main shaft and the shape, configuration and setting of the opposed crushing shells.
For example, the design of the outer crushing shell has a significant effect on the capacity and reduction of the crusher. In particular, an outer crushing shell with an inner facing contact surface that tapers inwardly towards the mantle acts to accelerate the through-flow of material. However, conventional designs of this type fall short of optimising capacity whilst increasing reduction and there is therefore a need for an improved outer crushing shell with improved performance.
It is an objective of the present disclosure to provide an outer crushing shell that is optimised to control the throughput capacity and reduction of the crusher. It is a further objective to limit the throughput capacity in favour of reduction and to maximise the total net capacity for a specific application and type of crushable material.
The objectives are achieved, in part, by providing an outer crushing shell that is designed to decrease the throughput capacity via a shelf or shoulder region that restricts the flow of material through the crushing chamber in the gap between the opposed crushing shells. The creation of the shelf region is further advantageous to reduce the axial length of the shell which in turn decreases the available crushing surface area that is orientated to be radially inward facing towards the inner crushing shell. Advantageously, it has been found that restricting the capacity and crushing force area acts to increase the pressure in the crushing chamber in the gap region to increase the reduction effect.
In particular, it is identified how variations of various physical parameters of the crushing shell influence capacity and reduction to enable optimisation of the geometry of the shell. The present crushing shell may be considered to comprise three regions spatially positioned in the axial direction between a shell uppermost end and a lowermost end. In particular, the present shell has an inlet region extending axially downward from the uppermost end, a crushing region extending axially upward from the lowermost end and a shoulder region positioned axially between the inlet and crushing regions. It has been observed that the following parameters influence the capacity and reduction of the crusher:
According to a first aspect, there is provided a gyratory crusher outer crushing shell having a main body mountable within a region of a topshell frame of a gyratory crusher, the main body extending around a central longitudinal axis the main body having a mount surface being outward facing relative to the axis for positioning against at least a part of the topshell frame and a contact surface being inward facing relative to the axis to contact material to be crushed, at least one wall defined by and extending between the mount surface and the contact surface, the wall having a first upper axial end and a second lower axial end; an orientation of the contact surface extending from the first end being inclined so as to project radially inward towards the axis in the axially downward direction to define an inlet region characterised in that an axially lowermost part of the inlet region is terminated by a shoulder region, a contact surface at the shoulder region being inclined so as to project radially inward towards the axis from the contact surface of the inlet region in an axially downward direction; wherein an angle of inclination of the contact surface of the inlet region relative to the axis is less than an angle of inclination of the contact surface of the shoulder region relative to the axis.
Optionally, the angle of inclination of the contact surface of the inlet region is in the range 1 to 40° relative to the axis. The angle of inclination of the contact surface of the inlet region can be in the range 4 to 12° relative to the axis.
Optionally, the angle of inclination of the contact surface of the shoulder region is in the range 45 to 90° relative to the axis. The angle of inclination of the contact surface of the shoulder region can be in the range 65 to 75° relative to the axis.
Optionally, an angle of inclination of the contact surface of the shoulder region is three to fifteen times greater than the angle of inclination of the contact surface of the inlet region relative to the axis. The inlet region can extend directly from the first upper axial end in the axial direction and the shoulder region extends directly from an axially lowermost part of the inlet region in the axial direction such that the contact surface comprises two surface regions of different inclination in the axial direction over the inlet region and the shoulder region from the first upper axial end.
Optionally, the contact surface from an axially lowermost part of the shoulder region to the second lower axial end defines a crushing face and comprises an axial length in the range of 40 to 85% of a total axial length of the main body from the first lower axial end to second lower axial end. The crushing face can be orientated to be declined to project radially outward relative to the axis in a downward direction from the shoulder region to the second lower axial end.
A distance by which the contact surface at the shoulder region projects radially inward from a radially innermost region of the contact surface of the inlet region is optionally 5% to 90% and can be 20% to 80%, 30% to 70%, 40% to 70%, 40% to 60%, 50% to 60% of a total radial thickness of the wall between the radially innermost shoulder part and the mount surface.
Optionally, a radially innermost part of the shoulder region is positioned in an upper 45%, 50% or 60% of an axial length of the main body closest to the first end and for example, in the range 5% to 30% of an axial length of the main body closest to the first end or 5% to 45%, 5% to 50% or 5% to 60%.
Optionally, a radially innermost part of the shoulder region is positioned at a region in the range 20 to 60% and 20 to 45% of an axial length of the main body from the first end.
The shell may have one inlet region and one shoulder region such that the shell has two inclined contact surfaces relative to axis and one declined contact surface relative to axis.
According to a second aspect, there is provided a gyratory crusher including a crushing shell as described herein.
The foregoing summary, as well as the following detailed description of the embodiments, will be better understood when read in conjunction with the appended drawings. It should be understood that the embodiments depicted are not limited to the precise arrangements and instrumentalities shown.
Referring to
A drive (not shown) is coupled to main shaft 107 via a drive shaft 108 and suitable gearing 116 so as to rotate shaft 107 eccentrically about longitudinal axis 115 and to cause head 103 and mantle 105 to perform a gyratory pendulum movement and crush material introduced into crushing chamber 104. An upper end region of shaft 107 is maintained in an axially rotatable position by a top-end bearing assembly 112 positioned intermediate between main shaft 107 and a central boss 117. Similarly, a bottom end 118 of shaft 107 is supported by a bottom-end bearing assembly 119.
Upper frame 101 is divided into a topshell 111, mounted upon lower frame 102 (alternatively termed a bottom shell), and a spider assembly 114 that extends from topshell 111 and represents an upper portion of the crusher. The spider 114 includes two diametrically opposed arms 110 that extend radially outward from central boss 117 positioned on longitudinal axis 115. Arms 110 are attached to an upper region of topshell 111 via an intermediate annular flange (or rim) 113 that is centered on axis 115. Typically, arms 110 and topshell 111 form a unitary structure and are formed integrally.
In the present embodiment, the alignment of outer crushing shell 106 at topshell 111 is achieved by an intermediate spacer ring 120 that extends circumferentially around axis 115 and is positioned axially intermediate between spider 114 and topshell 111. Accordingly, an axially uppermost first end 124 of outer shell 106 is positioned radially inward within the circumference of spacer ring 120. An axially lowermost second end 125 of shell 106 is positioned just below a lowermost part of topshell 111 and approximately at the junction between bottom shell 102 and topshell 111.
Outer shell 106 principally includes three regions in the axial direction: an uppermost inlet region 121 extending from first end 124; a crushing region 123 extending from second end 125 and a shoulder region 122 positioned axially intermediate between inlet region 121 and crushing region 123.
Referring to
Referring to
As will be appreciated, shell 106 extends circumferentially around axis 115. As shown, in
As illustrated, shelf 204 is positioned at an axially uppermost part of shell 106 and, in particular, in the top 25% region closest to first end 124 referring to relative axial lengths C and D (where C is the distance between shelf 204 and second lowermost end 125 and D is the distance axially between first uppermost end 124 and second end 125).
Referring to
The combined and respective inclination of surfaces 200 and 203 via angles a and b serve to accelerate the throughput as material falls through inlet region 121 and is directed radially inward over shelf 124. However, increasing the radial length E of shelf 204 decreases the crushing capacity. The present configuration as illustrated in
In particular the angle a of contact surface 200 relative to angle b of contact surface 203 defines the inlet 121 and shoulder 122 regions with these regions being significant to control capacity.
Although the present embodiment(s) has been described in relation to particular aspects thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred therefore, that the present embodiment(s) be limited not by the specific disclosure herein, but only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
PCT/EP2013/054680 | Mar 2013 | WO | international |
The present application is a continuation of patent application Ser. No. 14/209,757, filed Mar. 7, 2014, which claims priority under 35 U.S.C. § 119 to Patent Application No. PCT/EP2013/054680, filed on Mar. 8, 2013, which the entirety thereof is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3887143 | Gilbert | Jun 1975 | A |
4206881 | Werginz | Jun 1980 | A |
4339087 | Pollak | Jul 1982 | A |
4892257 | Stoeckmann | Jan 1990 | A |
5649669 | Ambrose | Jul 1997 | A |
5732896 | Jakob | Mar 1998 | A |
5934583 | Jean | Aug 1999 | A |
20040159728 | Hamada | Aug 2004 | A1 |
20050133647 | Evertsson | Jun 2005 | A1 |
20050156070 | Olsson | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20180221886 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14200757 | Mar 2014 | US |
Child | 15928864 | US |