The present invention relates to a haemostatic valve.
Conventional haemostatic valves generally utilize a twisting mechanism to open and close the valve, which requires a complex and annoying movement of a user's fingers.
It is an object of the invention to provide a haemostatic valve which can be easily and quickly operated and which is nevertheless reliable.
A haemostatic valve according to an embodiment may include a valve housing receiving an intravascular device, a first slider arranged on the valve housing moveable in a first direction, and a second slider received in the valve housing moveable in a second direction and elastically biased, the first slider being operatively connected to the second slider via a transmission mechanism so that movement of the first slider towards along the first direction causes the second slider to move away from an elastic valve member along the second direction, and the elastic valve member arranged between and compressible by the second slider, the elastic valve member receiving the intravascular device and compressing the intravascular device when being compressed by the second slider.
A haemostatic valve according to another embodiment may include a valve housing receiving an intravascular device, a pair of first sliders arranged on the valve housing opposite to each other and slidably moveable towards and away from each other in a first direction, and a pair of second sliders received in the valve housing and arranged opposite to each other and between the first sliders and slidably moveable towards and away from each other in a second direction and elastically biased towards each other, the first sliders being operatively connected to the second sliders via a transmission mechanism so that movement of the first sliders towards each other along the first direction causes the second sliders to move away from each other along the second direction, and an elastic valve member arranged between and compressible by the second sliders, the elastic valve member receiving the intravascular device and compressing the intravascular device when being compressed by the movement of the second sliders towards each other.
A haemostatic valve according to various embodiments allows for an easy handling and intuitive operation thereof. For example, for opening the valve a single unidirectional push motion of the first sliders along the first direction towards each other is sufficient; due to the construction of the haemostatic valve according to various embodiments, the haemostatic valve closes by itself when releasing the pushing force of the first sliders. For opening the valve, the first sliders are simply pushed towards each other along the first direction with a user's thumb and forefinger, that is, the haemostatic valve is ergonomically designed and utilizes a system that is more natural to be adjusted with the thumb and forefinger. Since the valve mechanism, which may be opened or closed numerous times during its use, requires the user only to simply push the first sliders towards each other to open the haemostatic valve, the valve eliminates any twisting motion using the forefinger and thumb. This twisting motion, which is currently used in conventional models, is a more complex muscle movement of the hand and prone to ‘repetitive’ injury. The valve closes on its own when the pushing force of the thumb and forefinger is released. Accordingly, only a partial release of the pushing force leads to a mere partial closure of the valve. This means, the haemostatic valve according to the various embodiments can provide for various distinct operating positions, namely: complete opening, controlled opening/closing and complete closure.
The intravascular device, for which the haemostatic valve is intended, can be any elongated operating instrument/device such as a guide wire or a catheter such as a balloon catheter or dilatation catheter. In operation, the intravascular device extends through the haemostatic valve, through the Y-Adapter connected with the haemostatic valve and into a blood vessel of a patient.
In an embodiment, the haemostatic valve can be used to fix the intravascular device into place so that forward and backward motion of the intravascular device within/relative to the haemostatic valve and Y-Adaptor (and thus within the vessel) can be prevented.
The haemostatic valve can be used, for example, to circumferentially seal the intravascular device in order to prevent leakage of blood out of the patient.
According to an embodiment, the haemostatic valve can be used to squeeze/release the intravascular device (such as a catheter) in order to control (e.g. prevent/allow) passage of a fluid there through. In this case, movement of the second sliders (in response to movement of the first sliders) causes constriction of the cross-section of the intravascular device.
The transmission mechanism may include a ramp-shaped section so that movement of the first slider along the first direction causes the second slider to move away the elastic valve member along the second direction.
In another embodiment, the transmission mechanism may include a ramp-shaped section so that movement of the first sliders along the first direction causes the second sliders to move away the elastic valve member along the second direction.
The transmission mechanism connecting the first and the second sliders (e.g. via the ramp-shaped section) may translate the pushing forces onto the first sliders along the first direction (e.g. in horizontal direction) into a motion of the second sliders along the second direction (e.g. in vertical direction) and against the elastic valve member. Twisting motion onto the intravascular device extending through the elastic valve member caused by twisting motion of the second sliders may be prevented by at least one guide arranged next to the second sliders and provided in the valve housing.
According to an embodiment, the transmission mechanism may include a ramp-shaped section and an engagement section engaged therewith. One of the first and second sliders may include a ramp and the other one may include the engagement section.
According to a further embodiment, the transmission mechanism may include a ramp-shaped section in form of two ramps. One of the first and second sliders may include a first ramp and the other one may include a second ramp corresponding to the first ramp.
The ramp-shaped section may be integrally provided on the first sliders and/or the second sliders. Further, the ramp-shaped section may be a triangle-shaped groove provided on the first sliders and/or the second sliders. If an engagement section is used, it may be provided in form of a fixedly or rotatably arranged ball or a rotatably arranged roller provided on an end portion or middle portion of the corresponding sliders. However, the engagement section may also have any other appropriate shape, for example a curved shape, allowing a sliding or rolling cam engagement between the ramp-shaped section and the engagement section.
In the open position of the valve the elastic valve member may be arranged/captured within the valve housing with the second sliders being biased against the valve housing, that is, the second sliders may be arranged within the valve housing so as to compress/deform the elastic valve member without any force acting onto the first sliders such that the valve is in its closed position. By movement of the second sliders (in response to movement of the first sliders) the amount of compression/deformation of the elastic valve member is decreased. By increasing the amount of compression/deformation of the elastic valve member by the second sliders, the intravascular device is fixed and/or sealed and/or squeezed.
According to an embodiment, the biasing of the second sliders against the valve housing is provided by coupling (e.g. fixing) the second sliders via a resilient member to the valve housing. The resilient member may be made of metal or plastic, and may be chosen from the group comprising a coil spring, a leaf spring, a compression spring, and a rubber device. The resilient member may be coupled (e.g. fixed) to the valve housing a nut which may be screwed in the valve housing to different positions so as to provide different pushing forces (up to 3 kg) onto the second sliders and, hence, different compression forces onto the elastic valve member.
In an embodiment, the elastic valve member may be made of rubber such as silicon rubber. However, other appropriate elastic materials are also possible for the elastic valve member. The elastic valve member may include a through hole through which the intravascular device extends. The elastic valve member may have, for example, the shape of a hollow cylinder. The elastic valve member may be circumferentially surrounded as a whole by the valve housing so that deformation of the elastic valve member (in response to movement of the second sliders) leads to corresponding constriction of the through passage/hole (through passage is closed/constricted by Poisson Effect), thereby fixing/sealing/squeezing the intravascular device.
According to an embodiment, the valve housing is provided in form of a hollow cylinder having a central axis along which the intravascular device extends, and a circumference with one or more openings (e.g. four openings arranged at 90°, 180°, 270° and 360°, in other words arranged at an angle distance of about 90° from the respective adjacent opening(s)), wherein each opening corresponds (e.g. alternately) to one of the first and second sliders. An opening corresponding to one of the second sliders may be formed to receive the nut for fixing the resilient member, whereas an opening corresponding to one of the first sliders may be formed to directly receive the respective first slider. Such an opening corresponding to the first sliders may have a rectangular cross-section. The first sliders may have a stopper at an end outside the valve housing and a limiting lever inside the valve housing, the stopper and the limiting lever restricting the movement of the first sliders through the valve housing.
The ramp-shaped section may be provided on the first sliders by means of two opposing first ramps which form a tapered, V-shaped section wherein the first ramps are tapered from the stopper to the limiting lever. The tapering angle of each ramp may be in the range between 5° and 30°. According to an embodiment, the tapering angle of each ramp is in the range between 10° and 20°, and may be chosen to be 15°.
According to the various embodiments, the first and second sliders may be formed from a synthetic polymeric material, for example, polycarbonate (PC), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), or a combination thereof. The elastic valve member may be formed from a biocompatible elastomer, for example, silicone, polyurethane (PU), or a combination thereof.
In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the invention are described with reference to the following drawings, in which:
The Y-adapter 1 (see also
Now again with reference to
The first sliders 15 and the second sliders 17 are respectively received in the valve housing 21 so as to be respectively moveable in only one direction in a guided manner, wherein the first sliders 15 and the second sliders 17 are moveable in different directions. For example, the first sliders 15 may be moveable along (only) a first direction 16 and the second sliders 17 are moveable along (only) a second direction 18, wherein the first and second directions 16, 18 are substantially perpendicular to each other. The first sliders 15 may be arranged opposite each other on the main valve housing 21a, and the second sliders 17 are arranged opposite each other between the first sliders 15 inside the valve housing 21. Each first slider 15 is movably secured to the valve housing 21 by passing it through a corresponding first opening 24a in the main valve housing 21a, and each second slider 17 is movably fixed to the valve housing 21 by a resilient member 20a and a nut 20b screwed into a corresponding second opening 24b in the main valve housing 21a. This means, the first and second openings 24a, 24b are arranged alternately at the angles of 90°, 180°, 270° and 360° in the circumferential sidewall of the main valve housing 21a.
It should be mentioned that in an alternative embodiment, only exactly one first slider and/or only exactly one second slider may be provided configured to provide the similar function as the first sliders 15 and the second sliders 17.
In another embodiment, the second sliders 17 may be fixed (in general, coupled) via the respective resilient members 20a directly to the circumferential sidewall of the main valve housing 21a without the need of nuts 20b screwed into corresponding second openings 24b in the main valve housing 21a. This means, in this alternative embodiment only two opposing first openings 24a are provided in the circumferential sidewall of the main valve housing 21a.
The first sliders 15 and the second sliders 17 are connected via a transmission mechanism which translates the motion of the first sliders 15 along the first direction 16 into a motion of the second sliders 17 along the second direction 18. In an embodiment, the transmission mechanism includes a first ramp-shaped section 23a provided on the first sliders 15 and a second ramp-shaped section 23b provided on the second sliders 17 (see also
In another embodiment not shown herein, the transmission mechanism may include only one ramp-shaped section. For example, the ramp-shaped section may be integrally provided on the first sliders 15 as shown in
The at least one ramp-shaped section of the transmission mechanism may have such an inclination so as to provide a self-locking/self-impeding transmission mechanism so that the second sliders 17 can be moved only by means of correspondingly moving the first sliders 15 (towards or away from each other) but neither by the elastic force of the elastic valve member 19 (which, however, has an impact on the compression force; the higher the stiffness of the material of the elastic valve member 19, the higher the compression force of the second sliders 17 needs to be to close the aperture of the elastic valve member 19) nor by the blood pressure acting on the elastic valve member 19.
In alternative embodiments, all of the respective portions of the haemostatic valve 13 may be integrally formed. In an alternative embodiment, only some of the portions of the haemostatic valve 13 may be integrally formed. Furthermore, by way of example, the main valve housing 21a may be one integrally formed part or may for example include a plurality of e.g. two parts, e.g. two symmetric parts being separated along the main direction of the cylindrical main valve housing 21a. In this case, the two parts would be provided with respective engaging members for being mechanically coupled together to form the main valve housing 21a, for example. Furthermore, in this case, the upper valve cover 21c may also be split in a corresponding manner. Further, in this case each part of the two parts of the upper valve cover 21c may be integrally formed together with the respective one of the two parts of the main valve housing 21a.
As can be seen in
As can be seen in
For example, the first and second sliders 15, 17 may be made of a suitable generally non-elastic synthetic material, for example a synthetic polymeric material such as polycarbonate (PC), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), or a combination thereof.
The interaction of the elements of the illustrative embodiment of the haemostatic valve 13 shown in
As shown in
As shown in
According to an embodiment, the deformation/compression of the elastic valve member 19 during the idle state is used to fix, seal and/or squeeze the intravascular device, whereas releasing the elastic valve member 19 is used during inserting, adjusting and/or removing the intravascular device.
Thus, by moving the second sliders 17 towards each other (automatically caused by releasing the first sliders 15 due to the resilient members 20a), the diameter of the through hole 19c can be reduced, thereby fixing and circumferentially sealing the intravascular device extending through the through hole 19c. By pressing only slightly onto the first sliders 15, the constriction of the cross-section of the intravascular device (such as a catheter) is slightly decreased, thereby enabling, e.g., an exact control of fluid flow within/through the intravascular device.
As shown in
The embodiment of
While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG08/00232 | 6/27/2008 | WO | 00 | 2/23/2011 |