This invention relates to hair care formulations, particularly hair conditioning formulations, comprising at least one aminofunctional polyorganosiloxane. Furthermore, the invention relates to the use of these formulations for the treatment of keratin-containing fibers, preferably human hair.
It is known to treat fiber materials, in particular flat textile structures with polyorganosiloxanes. The fiber materials can be provided with advantageous properties such as, for example a pleasant, soft touch. Polyorganosiloxanes that contain quaternary groups having a nitrogen atom, and the use of such polyorganosiloxanes for the treatment of textile fiber materials are known as well, for example from DE-A 196 52 524.
It is also known to use aminofunctional polyorganosiloxanes in personal conditioning applications, for example in the treatment of hair. See for example U.S. Pat. Nos. 4,563,347, 4,586,518, 4,620,878, 5,132,443 and 6,090,885, the disclosures of which are incorporated by reference in their entirety.
The use of these polysiloxanes still show some disadvantages in view of the stability properties, buildup properties, or the use may interfere with other hair processes such as perming or dyeing.
The aim of the present invention was to find a hair conditioning formulation which does not show these disadvantages.
The present invention relates to hair conditioning formulations comprising at least one aminofunctional polyorganosiloxane of formula (I)
wherein
R, R1, R2 and R3 independently from each other are CH3, OH or OC1-C4alkyl,
x is an integer from 1 to 200,
y is an integer from 1 to 500,
and the molecular weight of the aminofunctional polysiloxane is from 5000 to 50000 D.
Preferably the ratio x:y is from 1:10 to 1:100, more preferably from −1:20 to 1:80.
Preferably the molecular weight is 5000 to 40000 D, more preferably from 8000 to 30000 D, especially preferably from 10000 to 25000 D. The molecular weight can be determined by known methods, such as gel permeation chromatography (GPC).
Preferably R, R1, R2 and R3 independently from each other are CH3, OH or OC1-C2alkyl.
Polyorganosiloxanes typically contain significant amounts of volatile components, for example residual solvents and cyclic siloxane oligomers such as D3 (hexamethylcyclotrisiloxane), D4 (octamethylcyclotetrasiloxane) & D5 (decamethylcyclopentasiloxane) as artifacts of their manufacture. Preferably the aminofunctional polyorganosiloxane of formula (I) contains 0.1% by weight or less of volatile solvent and hexamethylcyclotrisiloxane, less than 0.5% by weight of octamethylcyclotetrasiloxane and less than 1.0% by weight of cyclopentasiloxane, based on the total amount of the polyorganosiloxane of formula (I). More preferably the aminofunctional polyorganosiloxane of formula (I) contains less than 1.5% by weight in total of residual solvent, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane based on the total amount of the polyorganosiloxane of formula (I). Methods of reducing the amount of volatile components in polyorganosiloxanes are well known to those of ordinary skill in the art.
The hair conditioning formulations preferably contain from 0.05% to 10% by weight (wt-%) of the polyorganosiloxane of formula (I); more preferably they contain from 0.1 wt-% to 8 wt-%, especially preferably from 0.1 wt-% to 5 wt-% of it, based on the total amount of the hair conditioning formulation.
A further embodiment of the present invention relates to a hair conditioning formulation comprising
0.05 wt-% to 10 wt %, based on the total weight of the hair conditioning formulation, of at least one aminofunctional polyorganosiloxane of formula (I)
wherein
R, R1, R2 and R3 independently from each other are CH3, OH or OC1-C4alkyl,
x is an integer from 1 to 200,
y is an integer from 1 to 500,
and the molecular weight of the aminofunctional polysiloxane is from 5000 to 50000 D.
A preferred embodiment of the present invention relates to a hair conditioning formulation comprising
0.1 wt-% to 8 wt %, based on the total weight of the hair conditioning formulation, of at least one aminofunctional polyorganosiloxane of formula (I)
wherein
R, R1, R2 and R3 independently from each other are CH3, OH or OC1-C2alkyl,
x is an integer from 1 to 200,
y is an integer from 1 to 500,
and the molecular weight of the aminofunctional polysiloxane is from 5000 to 40000 D and wherein the ratio of x:y is 1:20 to 1:80.
The polysiloxanes of formula (I) are not known (i.e. concretely disclosed) in U.S. Pat. No. 4,586,518 or U.S. Pat. No. 4,563,347, but they can be produced by analogy to the processes that can be found therein. Methods of reducing the amount of volatile components in polysiloxanes are well known to those of ordinary skill in the art.
Since the diluent only serves to dilute the silicone polymer to allow uniform application of appropriately small quantities, any diluent that is physiologically acceptable for contact with the human body when used in a cosmetic composition may be used. For example, the silicone polymer can be dissolved in organic solvents such as alcohols, for example ethanol and isopropanol, or polyols such as propylene glycol. Mixtures thereof with water may also be employed. Alternatively, the silicone polymer is used in the form of an aqueous dispersion or emulsion.
Highly stable aqueous dispersions can be obtained by adding one or several dispersing agents. Suitable as dispersants are surface-active compounds known to those skilled in the field of silicone emulsions. Nonionic products such as fatty alcohol ethoxylates, fatty acid ethoxylates, or ethoxylated fatty amines, or cationically-active dispersants such as, for example quaternized ammonium salts may be mentioned here in particular. The amount of dispersant(s) is in the range of, for example from 2% to 10% by weight based on the total dispersion. The dispersions can be produced by generally known methods employed for dispersing polysiloxanes.
The polyorganosiloxane compositions as defined above are useful in cosmetic formulations for hair treatment, for example hair washes in the form of shampoos, hair conditioners, such as also thermal protection conditioners, hair-conditioning products, for example pretreatment products, hair tonics, hair styling creams and gels, pomades, hair rinses, deep conditioning treatments, intensive hair conditioning treatments, hair setting products, for example waving agents for permanents (hot wave, mild wave, cold wave), hair straightening products, liquid hair fixatives, hair foams, hair sprays, temporary, semi-temporary or permanent hair dyes, products containing self-oxidizing dyes, or natural hair dyes such as henna or camomile. Depending on the specific hair treating application, the composition of this invention may be formulated by conventional means into aerosol, pump spray, spritz, lotion, cream, gel, or mousse type compositions for easy application to hair.
The formulations of this invention impart excellent, long lasting conditioning without build-up and do not interfere with other hair processes such as perming and dyeing.
The term “hair” as used in the present invention includes treated and untreated human hair, animal hair, and any type of hair-like fiber that needs gloss, reduced fly-away and ease of combing. Treated hair includes hair that is chemically changed and/or damaged by permanents and/or dyes.
Creams are usually spreadable in the temperature range from room to skin temperature, whereas cream rinses, lotions or milks tend to be pourable.
Gels are semisolid systems in which the so-called gel former forms a three-dimensional network in which a liquid is immobilized. Clear to opaque hydrogels consist primarily of water, water-soluble substances and thickeners or gel formers.
In addition to the essential ingredients specified above, the formulation of this invention may comprise further ingredients (additives) which are conventional and/or beneficial. Examples of such other ingredients (additives) are
Each of these ingredients will be present in an amount effective to accomplish its purpose. Generally these optional ingredients are included individually at a level of up to 5% by weight of the total hair conditioning formulation.
The hair treating formulation of this invention can be applied, for example, in the form of a shampoo; rinsing products to be applied after shampooing, before or after tinting or bleaching, and before or after permanent waving or straightening; products for setting or brushing; conditioning compositions; restoring compositions; and compositions for permanent-waved hair. The hair treating formulation of this invention is preferably applied in rinsing products to be applied after shampooing, tinting or bleaching, and after permanent waving or straightening; or in products for setting or brushing; conditioning compositions; restoring compositions; and compositions for conditioning permanent-waved hair.
In one embodiment of the invention the hair treating formulation is a shampoo, in which case the composition contains a cleansing surfactant in addition to about 0.1 to 10 parts by weight of the polyorganosiloxane polymer and the aqueous diluent. The concentration of cleansing surfactant can range from about 8 to 60 parts by weight of total shampoo formulation.
Cleansing surfactants selected from the group consisting of anionic surfactants, nonionic surfactants, and amphoteric surfactants are well known for use in shampoo formulations. Typical cleansing surfactants include the anionic surfactants such as the sodium, ammonium, or triethanolamine salts of lauryl sulfate and lauryl ether sulfate; the nonionic surfactants such as fatty acid alkanolamides like lauric acid diethanolamide; and the amphoteric surfactants such as N-cocamidopropyl dimethyl glycine. Generally, the anionic surfactants, especially the sodium, ammonium, and triethanolamine salts of lauryl sulfate, are preferred since they provide richer, denser foams than other types of cleansing surfactants at comparable concentrations.
Additionally the shampoo contains from 0 up to 15 parts of so-called secondary surfactants such as decyl glucoside or sodium cocoamphoacetate, from 0 up to 2 parts of a polymeric conditioning agent such as polyquaternium-7, from 0 up to 4 parts of a thickener such as cocamide MEA, magnesium aluminum silicate or an acrylate or acrylamide copolymer, from 0 up to 3 parts of super fatting agents such as PPG-5 Ceteth 20 and Oleath 20, from 0 up to 3 parts of auxiliary conditioning agents such as Panthenol and hydrolyzed wheat protein, from 0 up to 2 parts of pearlizing/opacifying agents such as glycol distearate and ethylene glycol stearate, from 0 up to 5 parts of other active ingredients such as zinc pyrithione (48% soln.) and conventional amounts of other adjuvants such as stabilizers, pH and viscosity adjusters, colorants and perfumes, to name just a few, each by weight of the total shampoo composition. The inventive shampoo compositions contain at least one of the above-mentioned additional ingredients.
In another embodiment of the invention, the hair treating composition of this invention is a conditioning product for application to hair after shampooing. The hair is typically rinsed in running water after treatment with the conditioning composition. Conditioners facilitate combing out hair and impart softness and suppleness to the hair. Conditioning compositions may also contain other components such as thickeners and auxiliary conditioning compounds. Auxiliary conditioning agents may be used to provide further improved conditioning benefits such as antistatic characteristics. Auxiliary conditioning agents useful in the composition of this invention include organic cationic compounds and polymers such as stearyidimethylbenzylammonium chloride or bromide, lauryl-trimethylammonium chloride or bromide, dodecyldimethylhydroxyethylammonium chloride or bromide, dimethyldistearylammonium chloride or bromide and dimethyldi-laurylammonium chloride or bromide, quaternary nitrogen derivatives of cellulose ethers, and homopolymers and copolymers of dimethyldiallylammonium chloride such as the SALCONDITIONING® range of hair conditioning polymers available from Ciba Specialty Chemicals Corporation, High Point N.C., homopolymers or copolymers derived from acrylic acid or methacrylic acid containing cationic nitrogen functional groups attached to the polymer via ester or amide linkages, copolymers of vinylpyrrolidone and acrylic acid esters with quaternary nitrogen functionality and other quaternary ammonium compounds which are known for use in hair conditioning formulations. They are used in conventional amounts to attain the desired effects.
When the hair treating composition of this invention is a conditioning product for application to hair after shampooing, it contains, in addition to about 0.1 to 10 parts by weight of the above-described polysiloxane polymer and the diluent, from 1 up to about 4 parts of refatting agents such as fatty alcohols, for example cetyl or stearyl alcohol and waxes or lanolin derivatives. Additionally it may contain from 0.2 up to 3.0 parts of secondary conditioning agents such as natural oils and silicones, from 0 up to 6 parts of emulsifiers such as nonionic surfactants and liquid dispersion polymers such as SALCONDITIONING® SC92, SC95, SC96 polymers available from Ciba Specialty Chemicals Corporation, High Point N.C., and conventional amounts of other adjuvants such as proteins, polymeric resins and gums, preservatives, pH and viscosity adjusters, colorants and per-fumes, to name just a few, each by weight of the total composition.
Additionally a leave-in conditioner advantageously contains from 0.5 up to 7 parts of primary conditioning agents, for example cationic surfactants like dicetyldimonium chloride and cetrimonium chloride.
Aerosol mousse formulations typically contain 8 to 15 parts by weight of gaseous propellants, and gel formulations typically contain 0.25 to 1 parts by weight of a gelling agent/thickener.
Alcoholic lotions and tonics are systems in which oils are dissolved in alcohol permitting a thin, uniform film of oils to remain on the hair after the alcohol has evaporated. When the hair treating composition of this invention is a lotion or tonic it contains, in addition to about 0.1 to 10 parts by weight of the above-described polysiloxane polymer, about 40 to 95 parts by weight of SD 40 alcohol (190 proof). Advantageously it also contains about 0.5 to 4 parts by weight of a fixative polymer, such as a PVP/VA copolymer, about 0.1 to 0.5 parts by weight of a plasticizer such as a dimethicone copolymer, about 0.1 to 2 parts by weight of conditioning agents/emollients such as Panthenol and propylene glycol, and conventional amounts of other adjuvants such as preservatives, perfumes and neutralizers and, to name just a few, each by weight of the total composition.
When the hair treating composition of this invention is a pump spray liquid it contains, in addition to about 0.1 to 10 parts by weight of the above-described polysiloxane polymer, about 55 to 95 parts by weight of SD 40 alcohol (200 proof) and 0 to 40 parts by weight of water. Typically it also contains about 2 to 16 parts by weight of a hair fixative resin.
Advantageously it may contain ingredients such as 0 to 1 parts by weight of DL-Panthenol, vitamin E acetate and herbal extracts, and conventional amounts of other adjuvants such as neutralizing agents like aminomethyl propanol, sodium hydroxide and ammonium hydroxide, and perfumes, to name just a few, each by weight of the total composition.
The present invention also includes a method of treating hair, which comprises applying to the surface of the hair an effective amount of the composition of this invention. The composition may be applied in any suitable manner, such as by massaging the composition throughout the hair by hand, by dipping the hair into the composition, by brushing or combing the composition throughout the hair or by spraying.
After the composition is applied, the hair may or may not be rinsed, depending on whether the composition applied is a rinsable or non-rinsable composition.
Generally, the amount of hair treating composition that is applied is that amount which is effective to thoroughly coat the hair. The amount required will vary with the quantity and type of hair of each individual. Appropriate amounts for any individual's hair are readily determined by one or several trial applications. The length of time in which the conditioner should be left on the hair will also vary according to hair type. Generally, if the hair treating composition is a rinsable conditioner, it is left on the hair for a period of from at least about 30 seconds to about 2 minutes.
A further embodiment of the present invention is a formulation for a conditioning shampoo comprising
A preferred embodiment of the present invention is a formulation for a conditioning shampoo comprising
Preferably these compositions have a pH between 5.0 and 7.0.
Suitable examples of nonionic surfactants are alkoxylated alcohols, alkyl polyglycosides, alkoxylated sorbitan esters, alkoxylated monoethanolamides, alkoxylated fatty acids and alkoxylated glycerides. The alkoxylates could contain a hydrophobic alkyl or acyl group with 8-22 carbon atoms, and the alkyleneoxy groups could be ethyleneoxy or propyleneoxy groups and the number of these groups could be between 2-15, preferably 3-10.
Suitable examples of anionic surfactants are alkyl sulfates, alkylaryl sulfates, alkyl ether sulfates, alkyl and alkylaryl sulfonates, olefin sulfonates, secondary alkyl sulfonates, sodium acyl isethionates, monoalkyl sulfosuccinates, acyl-N-alkyltaurates and protein-fatty acids condensates.
Suitable examples of amphoteric surfactants are N-alkyl betaines, N-alkyl glycinates, N-alkyl aminopropionates, N-alkyl iminodipropionates or alkyl imidazolines. Especially suitable examples are cocoamidopropyl betaine, cocodimethyl betaine, cocoamphocarboxy glycinate, cocoamphocarboxy propionates and coco or oleyl polyamino carboxylates.
The thickener can be an inorganic salt, such as sodium chloride or ammonium chloride; a cellulose ether, e.g. ethyl hydroxyethyl cellulose; or a synthetic polymer, such as polyacrylic acid derivatives, polyalkylene glycols and di- or polyurethanes of polyethoxylated compounds.
In addition the composition may also contain a skin compatible pH-adjustment agent, perfume oil, preservatives, opacifiers, pearlescent agents, dyes, humectants and refatting agents. The 2-in-1 shampoos most often also contain silicones, such as dimethicones, or silicone derivatives, e.g. quaternium 80, as additional conditioning agents. The conditioning shampoo and the body wash may also contain emollients and active ingredients such as vitamins.
A suitable formulation for a hair conditioner contains
A preferred formulation for a hair conditioner contains
The long chain fatty alcohol could contain 12 to 22 carbon atoms, preferably 16-18 carbon atoms.
The acid can for example be citric, lactic, tartaric, adipic or phosphoric acid or their salts.
The composition can also contain a thickener, for example a cellulose-based thickener such as ethyl hydroxyethyl cellulose.
Another optional ingredient is a quaternary ammonium surfactant, such as mono- di- or trialkyl quats and mono- di- and triacyl ester quats. The quaternary compounds may also be ethoxylated.
Other ingredients that may be added are emulsifiers; oils such as silicon oils, triglycerides or mineral oil; dyes, humectants, polyols, vitamins and hydrophobic esters containing either a long chain fatty acid or a long chain fatty alcohol.
The following examples describe certain embodiments of this invention, but the invention is not limited thereto. It should be understood that numerous changes to the disclosed embodiments could be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. These examples are therefore not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents. In these examples all parts given are by weight unless otherwise indicated.
For all the Examples, a sample of compound A according to formula (I)
is used which contains 0.1% by weight or less of volatile solvent and hexamethylcyclotrisiloxane, 0.2% by weight of octamethylcyclotetrasiloxane and 0.1% by weight of decamethylcyclopentasiloxane (by HPGC), based on the total amount of the polyorganosiloxane of formula (I), obtained by heating a stirred sample of a commercial grade of an amodimethicone of formula (1) to about 100° C., gradually reducing the vacuum to below 1 torr and holding for several hours. The molecular weight is about 15'000 D-20'000 D and the ratio of x′:y′ is about 1:30. The formulations are prepared by combining the listed ingredients by mixing methods well known in the cosmetic art
Procedure:
Mix fiirst two ingredients with moderate mixing, heat to 75-80° C.
In a separate vessel mix ingredients 3-10 with moderate mixing, heat to 75-80° C.
Combine the mixtures together with moderate mixing.
When both are fully mixed and uniform, begin cooling.
At 55° C. add 11 and 12; continue cooling and mixing until 25° C.
Procedure:
Heat ingredient 1 to 60° C. first and add ingredient 2 with moderate mixing. When fully hydrated and uniform, add additional ingredients one at a time ensuring they are fully mixed and uniform before next addition.
Mix until uniform and cool the mixture to 25° C.
Procedure:
Mix first two ingredients with moderate mixing; heat to 75-80° C.
In a separate vessel mix ingredients 3-8 with moderate mixing; heat to 75-80° C.
When both are fully mixed and uniform add together with moderate mixing.
Begin cooling. At 55° C. add 9 and 10; continue cooling and mixing until 25° C.
Procedure:
Mix first two ingredients with moderate mixing.
When fully hydrated and uniform, add additional ingredients one at a time; ensure each is fully mixed and uniform before the next addition.
Mix until uniform.
Procedure:
Mix first two ingredients with moderate mixing, heat to 75-80° C.
In separate vessel mix ingredients 3-8 with moderate mixing; heat to 75-80° C.
When both are fully mixed and uniform add together with moderate mixing.
Begin cooling. At 55° C. add 9 and 10; continue cooling and mixing until 25° C.
Procedure:
Mix first two ingredients with moderate mixing; heat to 75-80° C.
Premix ingredients 5, 6 and 8 together in a separate vessel. Add ingredients 3, 4, 7, 9 and 10 one at a time to the same vessel with moderate mixing; heat to 75-80° C.
When both are fully mixed and uniform add together with moderate mixing.
Begin cooling. At 55° C. add 10; continue cooling and mixing until 25° C.
Procedure:
Mix ingredients 1-7 with moderate mixing.
When fully mixed and uniform add ingredient 8.
Mix until fully hydrated and uniform.
Add ingredients one at a time, ensuring each is fully mixed and uniform before next addition.
Mix until uniform.
Add ingredients one at a time, ensuring each is fully mixed and uniform before next addition.
Mix until uniform.
This application claims the benefit of Application Nos. 60/619,127, filed Oct. 15, 2004 and 60/701,097, filed Jul. 20, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3890269 | Martin | Jun 1975 | A |
4247330 | Sanders, Jr. | Jan 1981 | A |
4563347 | Starch | Jan 1986 | A |
4586518 | Cornwall et al. | May 1986 | A |
4606933 | Griswold et al. | Aug 1986 | A |
4620878 | Gee | Nov 1986 | A |
4762887 | Griswold et al. | Aug 1988 | A |
5132443 | Traver et al. | Jul 1992 | A |
5275755 | Sebag et al. | Jan 1994 | A |
5302322 | Birtwistle | Apr 1994 | A |
5308551 | Beauquey et al. | May 1994 | A |
5599483 | Mizushima et al. | Feb 1997 | A |
5968492 | Noguchi et al. | Oct 1999 | A |
6090885 | Kuo et al. | Jul 2000 | A |
6123934 | Koyama et al. | Sep 2000 | A |
6353073 | Biggs et al. | Mar 2002 | B1 |
20010008917 | Craig et al. | Jul 2001 | A1 |
20020034483 | Avery et al. | Mar 2002 | A1 |
20030224954 | Wells et al. | Dec 2003 | A1 |
20050063934 | Baker et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2004052963 | Jun 2004 | WO |
2004069899 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060115447 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60619127 | Oct 2004 | US | |
60701097 | Jul 2005 | US |