1. Field of the Disclosure
The present invention relates to a method and apparatus for removing heat from electric clipper blade assemblies of the type used in hair grooming.
2. Description of the Related Art
A common issue with modem electric hair clippers is that the rate of reciprocation of the cutting blade is typically high enough to cause significant increases in the temperature of the clipper blade and clipper comb. Because the clipper comb is in direct contact with a person or animal being shaved, a hot comb can result in discomfort to the subject. It is not unusual for the clipper comb to reach temperatures of 100° F. or more within just 7 or 8 minutes of continuous use. Much of this is due to the friction between the reciprocating clipper cutter blade and stationary clipper comb which together form a clipper head assembly.
What is needed is a hair clipper blade assembly for electric hair clippers that heats up at a substantially slower rate as compared to conventional designs and cools down at a substantially faster rate than conventional designs. Also desired is a hair clipper blade assembly which does not get as hot as conventional clipper designs after prolonged use.
The present invention is directed to a hair clipper having a cutter blade in slideable contact with the upper or interior surface of a clipper comb. The blade is adapted to be reciprocated back and forth against the upper surface of the clipper comb by an electric motor. The upper surface of the clipper comb includes a plurality of cooling depressions and cooling protrusions which increase the surface area of the upper surface of the clipper comb so as to substantially increase convective cooling and thereby reduce the temperature of the clipper comb during and after operation of the clipper blade assembly. In effect, the large surface area created by the depressions and protrusions draws heat away from the exterior surface of the clipper comb so as to reduce its running temperature.
In another aspect of the invention, the cooling depressions are formed as a plurality of grooves spaced a distance apart, the spacing between the grooves defining the cooling protrusions.
In another aspect of the invention, the cooling depressions are formed as a plurality of cross-cut grooves spaced a distance apart on the interior or upper surface of a clipper comb.
In another aspect of the invention, the cross-cut grooves extend perpendicularly to the cooling grooves or depressions.
In another aspect of the invention, the cross-cut grooves extend diagonally with respect to the cooling grooves or depressions.
In another aspect of the invention, the surface area of the upper surface of the clipper comb is increased by at least about 50%, as compared to an ungrooved upper surface, via formation of grooves and protrusions.
a and 3b are top plan views of the clipper blade assembly of the invention showing the reciprocating action of the cutter.
a is a top plan view of the clipper blade assembly of
b is a side view of the clipper comb in
a and 5b are respective bottom plan and top plan views of the clipper comb of
In the various views of the drawings, like reference numerals designate like or similar parts.
Referring to
Typically, the spring member 7 will exert several pounds of downward force upon the cutter blade 4. The spring member 7 may include a low friction blade guide 7a to reduce sliding friction with the cutter blade 4. Typically, the blade guide 7a will be made of a polymer material, such as a polytetraflouroethelene material or a nylon material. Particularly useful materials are molybdenum disulphide (MoS2) filled nylons.
The spring member 7 may be fixedly attached to a spring rail 9 by any convenient attachment, such as one or more screws 8. Also shown is an attachment member 10, which may be fitted within the spring member 7 and attached to the clipper head 5 along with the spring member 7 with the same set of screws 8. The attachment member 10 is shaped and designed in a conventional manner to allow the clipper blade assembly 1 to be mounted on the electric hair clipper 2 (
Also shown in
a and 3b show the reciprocating action of the cutting blade 4, to the left and right, respectively. The cutting blade 4 slides on the inner surfaces of the comb teeth 5 and on slide rail 6 of the clipper comb 3. Through an opening between the legs of the U-shaped spring member 7 can be seen an opening or slot defined between a pair of inner vertical abutment edges 13 of the cutter blade 4. This opening receives a transversely reciprocating driving shaft from the electric motor. The reciprocating motion of the drive shaft against the edges 13 causes the cutter blade 4 to slide rapidly side to side in a known fashion. A perspective view of the clipper blade assembly 1 and abutment edges 13 are shown in
Referring to
Generally, the increase in surface area created by the protrusions 11 and grooves 12 will be at least 50% and preferably 100% greater than that of a corresponding ungrooved conventional clipper comb. The thickness of the clipper comb 3 places a limitation on how deep the cooling depressions 12 can be. A typical clipper comb is about ⅛ inch thick. If one cuts grooves 1/16 inch deep, spaced 1/16 inch apart, one may easily double the surface area where the grooves are present without significantly weakening the structural integrity of the clipper comb 3.
As seen in
The significance of increasing the surface area of the upper surface of the clipper comb 3 is that the reciprocating motion of the cutter blade 4 drags or fans air back and forth and thereby causes air currents to form adjacent to the inner surface of the clipper comb 3 and flow across the cooling protrusions 11 and cooling grooves 12, thereby resulting in a forced convection. The rate of heat transfer is directly proportional to the area of the surface being cooled. Doubling the surface area generally doubles the rate of heat transfer.
Another factor to consider is the turbulence of the fluid flow over the surface to be cooled. The more turbulent the flow, the better the cooling. This is because a straight and smooth flow is generally laminar, and the transfer of heat from the surface to successively higher flow layers is essentially by the relatively slow process of heat conduction. By introducing turbulence, packets of fluid containing energy from direct contact with the hot surface are physically transported across air layer boundaries. The greater the turbulence, the thinner the boundary layer is and the greater the rate of heat transfer. The formation of peg-shaped protrusions, as noted below, encourages the generation of turbulent air flow across the inner surface of the comb.
Experiments performed with grooved clipper combs 3 have shown significant results. A size 10 clipper comb was modified by cutting 1/16 inch deep grooves 1/16 inches apart as represented in
While various values, scalar and otherwise, may be disclosed herein, it is to be understood that these are not exact values, but rather to be interpreted as “about” such values, unless explicitly stated otherwise. Further, the use of a modifier such as “about” or “approximately” in this specification with respect to any value is not to imply that the absence of such a modifier with respect to another value indicated the latter to be exact.
Changes and modifications can be made by those skilled in the art to the embodiments as disclosed herein and such examples, illustrations, and theories are for explanatory purposes and are not intended to limit the scope of the claims. Further, the abstract of this disclosure is provided for the sole purpose of complying with the rules requiring an abstract so as to allow a searcher or other reader to quickly ascertain the subject matter of the disclosures contained herein and is submitted with the express understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.