The invention is concerned with compositions that are formulated as conditioners for the treatment of hair (typically after shampooing) and subsequent rinsing and particularly relates to an improved rinse-off hair treatment composition that enables less water to be used during use.
Reducing the amount of water that is used in everyday tasks and activities, such as washing of hair and bodies, reduces the energy required to process and deliver it to homes, businesses and communities. This in turn helps to reduce pollution and conserve fuel resources. Reducing the amount of water that goes to waste at home helps protect the wildlife that lives in rivers and wetlands. Thus, hair treatment products that require reduced rinsing to remove from the hair not only save consumers time and effort but can also save ecosystems, energy and water.
Technologies are known that improve rinsing properties of products from hair or hands.
WO 13/092708 (L′Oreal) discloses a cosmetic composition, especially a hair composition, comprising at least one anionic or nonionic associative polymer, at least one fixing polymer and at least one specifically defined nonionic surfactant. A styling gel conforming to this composition is purported to have improved hold of the hairstyle over time and to be easily removed from the hands and the hair with water, without shampoo or soap.
WO 15/001071 (L′Oreal) discloses a non-colouring hair composition comprising 2-60 wt % of at least one anionic copolymer, water-soluble inorganic salts and one or more alkaline agents. The anionic copolymer may be an anionic associative polymer, such as are capable of associating reversibly with one another or with other molecules. Numerous benefits of these compositions are disclosed, and they are said to be particularly capable of generating an adequate foam, in terms of quality and quantity, and of giving the hair satisfactory cosmetic properties, such as sheen, softness, smoothness, disentangling and suppleness, most particularly on dry hair. Further they are purported to be rinsed out faster than conventional shampoos, to have a more pronounced treating nature and to give the hair more lightness, in particular wet hair. They don't necessarily require the addition of viscosity enhancers, can afford varied textures and are better tolerated by the scalp and the eyes. Detergent compositions used on hair which are said to provide a foaming effect and good cosmetic properties, are exemplified.
Related case W015/001072 (L′Oreal) discloses a self-foaming non-colouring hair composition comprising from 2 to 60 wt % of one or more anionic, or non-ionic associative polymers, surfactant and propellant gas.
WO 09/153281 (Unilever) discloses a hair conditioning composition comprising hydrophobically modified anionic polymer. The inclusion of a crystalline wax as a structurant is preferred and exemplified. The polymer is said to provide better rinse-off properties and an example discloses better ease of rinse in a composition comprising the polymer compared with a similar composition without the polymer.
Related case WO 09/153280 (Unilever) discloses hair conditioning compositions comprising hydrophobically modified anionic polymer, a silicone and a fatty acid to give improved deposition of silicone. Better rinse off properties are mentioned but silicone deposition is exemplified.
US 2016/0374924 (The Procter & Gamble Company) discloses a method of preparing a hair conditioning composition, wherein the composition comprises by weight: (a) from about 0.1% to about 8% of a cationic surfactant comprising a mono-alkyl amine cationic 2 5 surfactant; (b) from about 1% to about 15% of a high melting point fatty compound; (c) from about 0.05% to about 6% of an anionic polymer comprising a vinyl monomer (A) with a carboxyl group, wherein the vinyl monomer (A) is contained in the polymer at a level of from about 40 mass % to about 100mass % based on the total mass of the anionic polymer; (d) from about 0.5% to about 20% of a polyol having a molecular weight of from about 40 to about 500; and (e) an aqueous carrier; wherein the method comprises the steps: mixing the cationic surfactant, high melting point fatty compound, polyol and aqueous carrier to form an emulsion; and adding the anionic polymer to the emulsion before, during or after forming the emulsion. A hair conditioning composition made by this method is also disclosed.
Compositions that are easy to rinse do not necessarily require less water to accomplish the rinse. They may, for example, require less mechanical agitation, or even no agitation, but a longer rinse time, so less effort is required but not less water. Despite the technological advances there remains a need for conditioning compositions for use on hair, that require reduced water to rinse effectively and quickly without compromising the performance of the product as a conditioner.
We have now surprisingly found that a conditioning composition that comprises a conditioning base and a hydrophobically modified anionic polymer can be used in the treatment of hair to reduce the amount of water required to rinse without reducing the conditioning benefits on the hair. We have found that when a consumer rinses conditioner from his/her hair, he/she will stop rinsing when a satisfactory constant level of smooth feel is reached (referred to herein as the “rinsed friction plateau”). The composition of the invention enables the consumer to reach his/her rinsed friction plateau sooner, thus causing him/her to stop rinsing and therefore consume less water.
DEFINITION OF THE INVENTION
Accordingly, there is provided a hair treatment composition comprising
In a second aspect, the invention provides a method of saving water during a conditioning process, comprising the steps of applying to hair a composition of the first aspect and rinsing the hair with water.
In a third aspect, the invention provides a use of a hydrophobically modified anionic polymer in a hair treatment composition of the first aspect, to save water during a rinse step of a conditioning process.
The amount of water required to rinse the composition form hair is reduced by the method of the invention. Thus less water is required when using a composition of the invention. Therefore, water is saved.
The method of the invention preferably saves water during the rinse step of conditioning process.
In the method of the invention, preferably, the hair is rinsed with water until a constant friction is reached.
The use of the invention saves water without compromising on the performance of the product, in terms of wet conditioning and dry conditioning.
The use of the invention, is preferably to save water during a rinse step of a conditioning process where the hair is rinsed until a constant friction is reached.
Preferably, the hydrophobically modified polymer is an acrylate or methacrylate polymer.
Preferably, the hydrophobic modification comprises alkylation. Preferably, the alkyl group comprises from 6 to 30 carbons, more preferably from C12 to C30, even more preferably from 16 to 28 and most preferably from 18 to 24 carbons.
A preferred polymer is sold by Rohm & Haas under the tradename Aculyn, the most preferred of which is Aculyn 28™.
The polymer is preferably present at from 0.01 to 5 wt %, more preferably from 0.02 to 0 5 wt %, even more preferably from 0.03 to 4 wt % and most preferably from 0.05 to 4 wt %, by total weight of the hair treatment composition.
Compositions in accordance with the invention are preferably formulated as conditioners for the treatment of hair (typically after shampooing) and subsequent rinsing.
The conditioning base forms a gel phase.
The conditioning base comprises a combination of i) an amidoamine having from 10 to 22 carbon atoms, and ii) a water soluble non-amphiphilic acid.
Preferably, the amidoamine corresponds to the general formula (I):
As used herein, the term hydrocarbyl chain means an alkyl or alkenyl chain.
Preferred amidoamine compounds are those corresponding to formula (I) in which
R1 is a hydrocarbyl residue having from about 16 to about 22 carbon atoms,
R2 and R3 are each independently hydrocarbyl residues, preferably alkyl groups, having from 1 to about 4 carbon atoms, and
m is an integer from 1 to about 4.
Preferably, R2 and R3 are methyl or ethyl groups.
Preferably, m is 2 or 3, i.e. an ethylene or propylene group.
Preferred amidoamines useful herein include stearamido-propyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylmine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachid-amidoethyldiethylamine, arachidamidoethyldimethylamine, and mixtures thereof.
Particularly preferred amidoamines useful herein are stearamidopropyldimethylamine (TAS), stearamidoethyldiethylamine, and mixtures thereof, most preferably stearamidopropyldimethylamine.
Commercially available amidoamines useful herein include: stearamidopropyldimethylamine with tradenames LEXAMINE S-13 available from Inolex (Philadelphia, Pa., USA) and AMIDOAMINE MSP available from Nikko (Tokyo, Japan), stearamidoethyldiethylamine with a tradename AMIDOAMINE S available from Nikko, behenamidopropyldimethylamine with a tradename INCROMINE BB available from Croda (North Humberside, England), and various amidoamines with tradenames SCHERCODINE series available from Scher (Clifton, N.J., USA).
Acid (ii) may be an organic or mineral water soluble non-amphiphilic acid, preferably organic, which is capable of protonating the amidoamine in the hair treatment composition. Suitable acids useful herein include hydrochloric acid, acetic acid, tartaric acid, fumaric acid, lactic acid, malic acid, succinic acid, and mixtures thereof. Preferably, the acid is selected from the group consisting of lactic acid, acetic acid, tartaric acid, fumaric acid, and mixtures thereof, most preferably lactic acid.
The primary role of the water soluble non-amphiphilic acid is to protonate the amidoamine in the hair treatment composition thus forming a tertiary amine salt (TAS) in situ in the hair treatment composition. The TAS in effect is a non-permanent quaternary ammonium or pseudo-quaternary ammonium cationic surfactant.
Suitably, the water soluble non-amphiphilic acid is included in a sufficient amount to protonate all the amidoamine present, i.e. at a level which is at least equimolar to the amount of amidoamine present in the composition.
The compositions of the invention comprise a fatty alcohol having a carbon-carbon chain length of from C8 to C22.
The combined use of fatty alcohols and cationic surfactants in conditioning compositions is preferred because this leads to the formation of a lamellar phase, in which the cationic surfactant is dispersed.
The fatty alcohol comprises from 8 to 22 carbon atoms, preferably 16 to 22. Fatty alcohols are typically compounds containing straight chain alkyl groups. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is also advantageous in that they contribute to the overall conditioning properties of compositions for use in the invention.
The level of fatty alcohol in conditioners for use in the invention will generally range from 0.01 to 10%, preferably from 0.1 to 8%, more preferably from 0.2 to 7%, most preferably from 0.3 to 6% by weight of the composition. The weight ratio of cationic surfactant to fatty alcohol is suitably from 1:1 to 1:10, preferably from 1:1.5 to 1:8, optimally from 1:2 to 1:5. If the weight ratio of cationic surfactant to fatty alcohol is too high, this can lead to eye irritancy from the composition. If it is too low, it can make the hair feel squeaky for some consumers.
Conditioner compositions will preferably comprise one or more other cationic conditioning surfactants which are cosmetically acceptable and suitable for topical application to the hair.
Preferably, the cationic conditioning surfactants have the formula N+(R1)(R2)(R3)(R4), wherein R1, R2, R3 and R4 are independently (C1 to C30) alkyl or benzyl.
Preferably, one, two or three of R1, R2, R3 and R4 are independently (C4 to C30) alkyl and the other R1, R2, R3 and R4 group or groups are (C1-C6) alkyl or benzyl.
More preferably, one or two of R1, R2, R3 and R4 are independently (C6 to C30) alkyl and the other R1, R2, R3 and R4 groups are (C1-C6) alkyl or benzyl groups. Optionally, the alkyl groups may comprise one or more ester (—OCO— or —COO—) and/or ether (—O—) linkages within the alkyl chain. Alkyl groups may optionally be substituted with one or more hydroxyl groups. Alkyl groups may be straight chain or branched and, for alkyl groups having 3 or more carbon atoms, cyclic. The alkyl groups may be saturated or may contain one or more carbon-carbon double bonds (e.g., oleyl). Alkyl groups are optionally ethoxylated on the alkyl chain with one or more ethyleneoxy groups.
Suitable cationic conditioning surfactants for use in conditioner compositions according to the invention include cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammonium chloride, octyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, didodecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, dihydrogenated tallow dimethyl ammonium chloride (e.g., Arquad 2HT/75 from Akzo Nobel), cocotrimethylammonium chloride, PEG-2-oleammonium chloride and the corresponding hydroxides thereof. Further suitable cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium-31 and Quatemium-18. Mixtures of any of the foregoing materials may also be suitable. A particularly useful cationic surfactant for use in conditioners according to the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese. Another particularly useful cationic surfactant for use in conditioners according to the invention is behenyltrimethylammonium chloride, available commercially, for example as GENAMIN KDMP, ex Clariant.
In conditioners for use in the invention, the level of other cationic conditioning surfactant will generally range from 0.01 to 10%, more preferably 0.05 to 7.5%, most preferably 0.1 to 5% by total weight of cationic conditioning surfactant based on the total weight of the composition.
Compositions according to the invention, will preferably also contain one or more silicone conditioning agents.
Particularly preferred silicone conditioning agents are silicone emulsions such as those formed from silicones such as polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone, polydimethyl siloxanes having hydroxyl end groups which have the CTFA designation dimethiconol, and amino-functional polydimethyl siloxanes which have the CTFA designation amodimethicone.
The emulsion droplets may typically have a Sauter mean droplet diameter (D3,2) in the composition of the invention ranging from 0.01 to 20 micrometer, more preferably from 0.2 to 10 micrometer. A suitable method for measuring the Sauter mean droplet diameter (D3,2) is by laser light scattering using an instrument such as a Malvern Mastersizer.
Suitable silicone emulsions for use in compositions of the invention are available from suppliers of silicones such as Dow Corning and GE Silicones. The use of such pre-formed silicone emulsions is preferred for ease of processing and control of silicone particle size. Such pre-formed silicone emulsions will typically additionally comprise a suitable emulsifier such as an anionic or nonionic emulsifier, or mixture thereof, and may be prepared by a chemical emulsification process such as emulsion polymerisation, or by mechanical emulsification using a high shear mixer. Pre-formed silicone emulsions having a Sauter mean droplet diameter (D3,2) of less than 0.15 micrometers are generally termed microemulsions.
Examples of suitable pre-formed silicone emulsions include emulsions DC2-1766, DC2-1784, DC-1785, DC-1786, DC-1788 and microemulsions DC2-1865 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Also suitable are amodimethicone emulsions such as DC2-8177 and DC939 (from Dow Corning) and SME253 (from GE Silicones).
Also suitable are silicone emulsions in which certain types of surface active block copolymers of a high molecular weight have been blended with the silicone emulsion droplets, as described for example in WO03/094874. In such materials, the silicone emulsion droplets are preferably formed from polydiorganosiloxanes such as those described above. One preferred form of the surface active block copolymer is according to the following formula:
HO(CH2CH2O)x(CH(CH3)CH2O)y(CH2CH2O)x H
wherein the mean value of x is 4 or more and the mean value of y is 25 or more.
Another preferred form of the surface active block copolymer is according to the following formula:
(HO(CH2CH2O)a(CH(CH3)CH2O)b)2—N—CH2—CH2—N((OCH2CH(CH3))b(OCH2CH2)aOH)2
wherein the mean value of a is 2 or more and the mean value of b is 6 or more.
Mixtures of any of the above described silicone emulsions may also be used.
The above described silicone emulsions will generally be present in a composition of the invention at levels of from 0.05 to 10%, preferably 0.05 to 5%, more preferably from 0.5 to 2% by total weight of silicone based on the total weight of the composition.
The composition according to the invention may comprise any of a number of ingredients which are common to conditioning compositions
Other ingredients may include viscosity modifiers, preservatives, colouring agents, polyols such as glycerine and polypropylene glycol, chelating agents such as EDTA, antioxidants such as vitamin E acetate, fragrances, antimicrobials and sunscreens. Each of these ingredients will be present in an amount effective to accomplish its purpose. Generally these optional ingredients are included individually at a level of up to about 5% by weight of the total composition.
Preferably, compositions of this invention also contain adjuvants suitable for hair care. Generally such ingredients are included individually at a level of up to 2%, preferably up to 1%, by weight of the total composition.
Among suitable hair care adjuvants, are:
natural hair root nutrients, such as amino acids and sugars. Examples of suitable amino acids include arginine, cysteine, glutamine, glutamic acid, isoleucine, leucine, methionine, serine and valine, and/or precursors and derivatives thereof. The amino acids may be added singly, in mixtures, or in the form of peptides, e.g. di- and tripeptides. The amino acids may also be added in the form of a protein hydrolysate, such as a keratin or collagen hydrolysate. Suitable sugars are glucose, dextrose and fructose. These may be added singly or in the form of, e.g. fruit extracts.
(ii) hair fibre benefit agents. Examples are:
Mixtures of any of the above active ingredients may also be used.
In a second aspect there is provided a method for the manufacture of a conditioning composition according to the first aspect. The method comprising forming a conditioning gel phase which comprises a cationic surfactant and a fatty material and, separately forming a solution of the hydrophobically modified polymer, optionally with a cationic surfactant, which, if present, is added to the water first.
The two mixtures are then added to one another before the remaining ingredients are added to form the conditioning composition.
Preferably, the extra ingredients include perfumes, thickeners, preservatives, colours and conditioning silicones.
The following compositions were prepared:
The conditioners A and 1 were prepared using the following method:
1. Water was added to a suitable vessel, lactic acid and the copolymer were added, and the vessel heated to 80° C.
2. Cetearyl alcohol was then added to the formulation along with tertiary amine salt (stearamidopropyldimethylamine).
3. At 80° C. the Behenyl Trimethyl Ammonium Chloride (BTAC) was added and the resultant mixture mixed until opaque and thick.
4. The heat was then turned off and the quench water was added.
5. The mixture was then cooled to below 40° C. the rest of the materials, including fragrance, were added.
6. Finally the formulation was mixed at high shear on a Silverson mixer at 5000 rpm for 5 minutes.
The hair used was dark brown European hair, in switches of 5 g weight and 6 inch length.
Hair was first treated with a cleansing shampoo using the following method:
The hair fibres were held under running water for 30 seconds, shampoo applied at a dose of 0.1 ml of shampoo per 1 g of hair and rubbed into the hair for 30 seconds. Excess lather was removed by holding under running water for 30 seconds and the shampoo stage repeated. The hair was rinsed under running water for 1 minute.
The wet hair was then treated with Conditioner A or 1 using the following method:
Conditioner was applied to the wet hair at a dose of 0.2 ml of conditioner per 1 g of hair and massaged into the hair for 1 minute. The hair was rinsed under running water for 1 minute and excess water removed.
Friction was measured using the apparatus and method of the invention as follows:
Friction was measured using a TA.XT2i Texture Analyser supplied by Stable Micro Systems, Surrey, UK, and a friction probe in the form of a stainless steel cylinder, which was coated with rubber material and fitted with a weight . The friction probe had surfactant on its outer (contact) surface. The load on the friction contact was approximately 138 g. When in use, an area of contact between the outer surface of the friction probe and the hair of approximately 1.0 cm2 was achieved.
Surfactant was added to the probe as follows:
The probe was first washed with an aqueous composition of Sodium Lauryl Ether Sulphate (SLES) at a concentration of 14 wt %, by weight of the total aqueous surfactant composition, and rinsed with water. The probe was then soaked in a dilute solution of SLES having a concentration of 14 ppm, for 2 minutes, and then dried for 2 hours.
The methodology used to assess the friction properties of hair treated with Conditioners A and 1 was as follows:
A switch of hair was securely mounted onto the texture analyser, the hair fibres being aligned by combing before being secured in a flat configuration. The hair was immersed in the water bath. The friction probe was placed onto the hair and moved along the hair at a speed of 10 mms−1 to measure the friction between the probe and the hair. The measurement was repeated 30 times.
The friction values reported below are of friction hysteresis in units of gfmm, obtained by integrating the total measured friction force over the total distance travelled by the probe, with and against cuticle.
The conditioner was pre-diluted at 20, 40 , 80 and 160 parts water and used to treat hair using the method described above. Friction measurements were then performed.
Immersed friction measured on hair switches treated with Conditioners A and 1 are given in the Table below.
It will be seen that a rinsed friction plateau is reached for hair treated with the composition of the invention sooner than with the comparative composition (at a dilution of 80 for composition 1 compared with 160 for composition A).
The following compositions were prepared:
Compositions B and C are representative of the prior art; as given in Table 3 below
The conditioners B and C were prepared using the following method:
When a conditioning gel phase composition is applied to hair during a wash/care process, the gel phase is deposited onto the hair surface. When the deposited gel phase comes into contact with water (during a rinse step), the structure of the gel phase must be broken up in order for it to be efficiently removed from the hair. The greater the disruption to the gel phase, the easier and faster it is removed and, ipso facto, the less water is required to complete the rinse. The disruption to the composition gel phase can be indicated by a reduction in its viscosity upon dilution with water.
For any given quantity of water, the extent of viscosity reduction indicates how quickly and easily it will be removed from the hair. This correlates with the amount of water used to rinse a conditioning composition from hair.
In the following examples, viscosity measurements were carried out on aqueous dilutions of the neat composition (Compositions 1, B and C).
Samples were measured using a Brookfield viscometer with a T-A spindle as well as RV5.
The samples were prepared as 150 g dilutions as follows:
Composition (for example 75 g for a 1 in 2 dilution) was added to a beaker. Water (75 g for a 1 in 2 dilution) was then added in small amounts with mixing until homogeneous.
The sample was left to equilibrate for one hour before measurement with the Brookfield viscometer.
In this way, a series of dilutions were prepared (ensuring consistent mixing and speed of water addition throughout).
The samples were measured using the Brookfield RVDV-II+ viscometer with the following conditions: T-A bar spindle: 0.5 rpm; 60 s measurement; 5 replicates per sample.
The results are given in the following table:
It will be seen that the viscosity of the composition in accordance with the invention drops dramatically faster than that of the prior art examples, ensuring saving of water during a rinse step of a conditioning process.
Number | Date | Country | Kind |
---|---|---|---|
17176249.5 | Jun 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/064955 | 6/7/2018 | WO | 00 |