Hair compositions providing improved in-use wet feel

Abstract
A hair care composition providing improved in-use wet feel. The composition can contain from about 20% to about 45%, by weight, of a detersive surfactant, from about 0.01% to about 2.5%, by weight, of a cationic synthetic polymer, and from about 0.01% to about 2.5%, by weight, of a cationic guar polymer. The hair care composition can produce a final rinse friction of from about 600 gf to about 2000 gf and a delta final to initial from about 100 gf to about 600 gf. The hair care composition can be applied to the hair when it is dispensed from an aerosol foam dispenser as a foam.
Description
FIELD OF THE INVENTION

The present invention relates to hair care compositions. More particularly hair care compositions providing improved in-use wet feel, including hair care compositions that can be delivered in a foam form.


BACKGROUND OF THE INVENTION

Described herein is a hair care composition that enables new product opportunities and consumer benefits by addressing the current disadvantages associated with hair care compositions. In particular, the in-use wet feel for many shampoos, is not optimal. For instance, when using some shampoos, like clarifying shampoos, the final rinse friction is high and many consumers think that their hair feels clean, but complain that the hair does not feel conditioned. On the other hand, other shampoos, including conditioning shampoos, have low final rinse friction and the hair can feel slippery or in some cases slimy and many consumers think that their hair feels conditioned, but not clean.


Also, it can be desirable to deliver hair care compositions, like shampoos, in the form of a foam. Delivery of a hair care composition, including shampoos, in the form of foam represents an attractive consumer concept. One benefit of a shampoo delivered via foam is that it can be readily spread on hair and can enable hair cleansing without leaving significant residue on the hair because the structuring effect of foam enables the use of compositions without polymeric or waxy structurants. However, due to the low density of the foam, it can be desirable to increase the level of surfactant to deliver enough detersive surfactant during each use. This high concentration of surfactant can give the composition a high anionic charge, which can make it difficult to incorporate cationic polymers. Cationic polymers can help form coacervates during use, which can improve the wet feel. It can also be difficult to add a high concentration of cationic polymers because cationic polymers can increase the viscosity of the composition, which can make it difficult for the composition to be delivered via a foam form.


Therefore, there is a need for hair care composition that provide a more optimal in-use wet feel that suggests to the consumer that the hair is both clean and conditioned. It has been found that hair care compositions comprising a combination of a high charge density cationic synthetic polymer, such as polydiallyldimethylammonium chloride (polyDADMAC), and a cationic guar polymer, can improve the in-use wet feel of hair care compositions, including when the hair care composition is delivered via a foam form.


SUMMARY OF THE INVENTION

According to one embodiment, a hair care composition includes from about 20% to about 45%, by weight, of a detersive surfactant; from about 0.01% to about 2.5% by weight of a cationic synthetic polymer comprising a homopolymer and/or a copolymer, charge density from about 2 to about 10 meq/g, and a molecular weight from about 1,000 g/mol to about 2,000,000 g/mol; and from about 0.01% to about 2.5% by weight of a cationic guar polymer comprising a molecular weight from about 50,000 g/mol to about 2,500,000 g/mol and charge density from about 0.1 meq/g to about 2.5 meq/g.


According to another embodiment, a hair care composition includes from about 20% to about 45%, by weight, of a detersive surfactant; from about 0.05% to about 1.5%, by weight, of a cationic synthetic polymer including a homopolymer and/or a copolymer charge density from about 2 to about 10 meq/g, and a molecular weight from about 1,000 g/mol to about 2,000,000 g/mol; and from about 0.05% to about 1.5%, by weight, of a cationic guar polymer with a molecular weight from about 50,000 g/mol to about 2,500,000 g/mol and charge density from about 0.1 to about 2.5 meq/g. The hair care composition produces a final rinse friction of from about 600 gf to about 2000 gf and a delta final to initial of from about 100 gf to about 600 gf.


According to another embodiment, a hair care composition includes from about 20% to about 45%, by weight, of a detersive surfactant; from about 0.2% to about 1%, by weight, of a cationic guar polymer with a molecular weight from about 50,000 g/mol to about 2,500,000 g/mol and charge density from about 0.1 to about 2.5 meq/g; and from about 0.1% to about 1% by weight of polydiallyldimethylammonium chloride.







DETAILED DESCRIPTION OF THE INVENTION

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the present disclosure will be better understood from the following description.


As used herein, the articles including “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.


The term “charge density” as used herein, means the ratio of the number of positive charges on a monomeric unit (of which a polymer is comprised) to the M.Wt. of said monomeric unit. The charge density multiplied by the polymer M.Wt. determines the number of positively charged sites on a given polymer chain. For cationic guars, charge density is measured using standard elemental analysis of percentage nitrogen known to one skilled in the art. This value of percentage nitrogen, corrected for total protein analysis, can then be used to calculate the number or equivalence of positive charges per gram of polymer. For the cationic copolymers, the charge density is a function of the monomers used in the synthesis. Standard NMR techniques know to one skilled in the art would be used to confirm that ratio of cationic and non-ionic monomers in the polymer. This would then be used to calculate the number or equivalence of positive charger per gram of polymer. Once these values are known, the charge density is reported in milliequivalence (meq) per gram of cationic polymer.


As used herein, “comprising” means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms “consisting of” and “consisting essentially of”.


As used herein, the term “fluid” includes liquids and gels.


As used herein, “mixtures” is meant to include a simple combination of materials and any compounds that may result from their combination.


As used herein, “molecular weight” or “M.Wt.” refers to the weight average molecular weight unless otherwise stated. Molecular weight is measured using industry standard method, gel permeation chromatography (“GPC”).


As used herein, “personal care composition” includes products such as shampoos, conditioners, conditioning shampoos, shower gels, liquid hand cleansers, hair colorants, facial cleansers, laundry detergent, dish detergent, and other surfactant-based liquid compositions.


As used herein, the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.


All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials.


Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.


It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


Where amount ranges are given, these are to be understood as being the total amount of said ingredient in the composition, or where more than one species fall within the scope of the ingredient definition, the total amount of all ingredients fitting that definition, in the composition.


For example, if the composition comprises from 1% to 5% fatty alcohol, then a composition comprising 2% stearyl alcohol and 1% cetyl alcohol and no other fatty alcohol, would fall within this scope.


The amount of each particular ingredient or mixtures thereof described hereinafter can account for up to 100% (or 100%) of the total amount of the ingredient(s) in the hair care composition.


Hair Care Composition

The hair care composition can provide a more optimal in-use wet feel. This can suggest to the consumer that the hair is both clean and conditioned. Compositions with optimal in-use wet feel have relatively low final rinse friction in combination with a relatively high difference between the final to initial friction. It has been found that hair care compositions comprising a combination of a high charge density cationic synthetic polymer, such as polydiallyldimethylammonium chloride (polyDADMAC), and a cationic guar polymer, can improve the in-use wet feel of hair care compositions, including when the hair care composition is delivered via a foam form.


The hair care composition can produce a final rinse friction from about 600 gf to about 2000 gf, from about 700 gf to about 1900 gf, from about 800 gf to about 1800 gf, from about 900 gf to about 1700 gf, from about 950 gf to about 1650 gf, from about 1000 gf to about 1600 gf. The hair care composition can produce a final rinse friction from about 1000 gf to about 2000 gf, from about 1100 gf to about 1900 gf, from about 1200 gf to about 1800 gf, from about 1300 gf to about 1700 gf, from about 1350 gf to about 1650 gf, from about 1400 gf to about 1600 gf. The hair care composition can produce a final rinse friction of less than 1800, less than 1700, less than 1650, less than 1600, and/or less than 1550.


The hair care composition can produce a delta final to initial (calculated by subtracting the final rinse friction from the initial rinse friction) of from about 100 gf to about 600 gf, from about 150 gf to about 550 gf, from about 180 to about 500 gf, from about 200 gf to about 500 gf, from about 200 gf to about 450 gf, from about 250 to about 400 gf, and/or from about 275 gf to about 375 gf. The hair care composition can produce a delta final to initial of at least 200 gf, 225 gf, at least 250 gf, and/or at least 300 gf.


The hair care composition may have a liquid phase viscosity of from about 1 centipoise (cP) to about 15,000 cP, from about 10 cP to about 12,000 cP, from about 20 cP to about 10,000 cP, from about 50 cP to about 8,000 cP, from about 100 cP to about 5000 cP, from about 250 cP to about 3000 cP, and/or from about 500 cP to about 2500 cP.


A. Detersive Surfactant


The hair care compositions described herein can include one or more detersive surfactants. The detersive surfactant can be selected from anionic surfactants, amphoteric surfactants, zwitterionic surfactants, and combinations thereof.


The concentration of the detersive surfactant in the composition should be sufficient to provide the desired cleaning and lather performance. The hair care composition can comprise a total detersive surfactant level of from about 20% to about 45%, by weight, from about 25% to about 45%, by weight, and/or from about 25% to about 40%, by weight, from about 30% to about 40% by weigh, from about 30% to about 35%, by weight. The hair care composition can comprise a total detersive surfactant level of from greater than 15%, greater than 18%, greater than 20%, greater than 22%, and/or greater than 25%, by weight.


The detersive surfactant can comprise an anionic surfactant. Suitable anionic detersive surfactant components for use in the composition herein can include those which are known for use in hair care or other personal care compositions, including shampoos. Suitable anionic surfactants for hair care compositions described herein can include alkyl sulfates and alkyl ether sulfates, water-soluble olefin sulfonates, beta-alkyloxy alkane sulfonates, other sulfonates, succinate surfactants, other sulfonates, and/or other surfactants that are substantially free of sulfates.


The hair care composition may comprise from about 10% to about 40%, from about 15% to about 36%, from about 18% to about 32%, and/or from about 20% to about 28%, by weight of one or more anionic detersive surfactants.


Anionic surfactants suitable for use herein include alkyl sulfates and alkyl ether sulfates of the formula ROSO3M and RO(C2H4O)xSO3M, wherein R can be a linear or branched alkyl or alkenyl chain of from about 8 to about 18 carbon atoms, x can be from 1 to 10, and M is a water-soluble cation such as ammonium, sodium, potassium, and triethanolamine cation or salts of the divalent magnesium ion with two anionic surfactant anions. The alkyl ether sulfates may be made as condensation products of ethylene oxide and monohydric alcohols having from about 8 to about 24 carbon atoms. The alcohols can be derived from fats such as coconut oil, palm oil, palm kernel oil, or tallow, or can be synthetic.









TABLE 1







Examples of Typical Alkyl Sulfates and Alky Ether Sulfates





















SLE >


Surfactant
Supplier
Activity
SLS
SLE1S
SLE2S
SLE3S
3S

















Sodium
Stepan
29% by
100
0
0
0
0


Lauryl
STEOL
weight







Sulfate
SLS








Sodium
Stepan
26% by
45.5
26.3
11.8
0.07
16.33


Laureth-1
STEOL
weight







Sulfate
SLES-1








Sodium
Stepan
28% by
18
16.7
12.6
12.4
40.30


Laureth-3
STEOL
weight







Sulfate
SLES-3









The composition can also include anionic alkyl sulfates and alkyl ether sulfate surfactants having branched alkyl chains which are synthesized from C8 to C18 branched alcohols which may be selected from: Guerbet alcohols, aldol condensation derived alcohols, oxo alcohols and mixtures thereof. Non-limiting examples of the 2-alkyl branched alcohols include oxo alcohols such as 2-methyl-1-undecanol, 2-ethyl-1-decanol, 2-propyl-1-nonanol, 2-butyl 1-octanol, 2-methyl-1-dodecanol, 2-ethyl-1-undecanol, 2-propyl-1-decanol, 2-butyl-1-nonanol, 2-pentyl-1-octanol, 2-pentyl-1-heptanol, and those sold under the tradenames LIAL® (Sasol), ISALCHEM® (Sasol), and NEODOL® (Shell), and Guerbet and aldol condensation derived alcohols such as 2-ethyl-1-hexanol, 2-propyl-1-butanol, 2-butyl-1-octanol, 2-butyl-1-decanol, 2-pentyl-1-nonanol, 2-hexyl-1-octanol, 2-hexyl-1-decanol and those sold under the tradename ISOFOL® (Sasol) or sold as alcohol ethoxylates and alkoxylates under the tradenames LUTENSOL XP® (BASF) and LUTENSOL XL® (BASF).


The anionic alkyl sulfates and alkyl ether sulfates may also include those synthesized from C8 to C18 branched alcohols derived from butylene or propylene which are sold under the trade names EXXAL™ (Exxon) and Marlipal® (Sasol). This includes anionic surfactants of the subclass of sodium trideceth-n sulfates (STnS), where n is between about 0.5 and about 3.5. Exemplary surfactants of this subclass are sodium trideceth-2 sulfates and sodium trideceth-3 sulfates. The composition can also include sodium tridecyl sulfate.


Suitable surfactants that are substantially free of sulfates can include isethionates, sarcosinates, sulfonates, sulfosuccinates, sulfoacetates, glycinates, glutamates, glucose carboxylates, amphoacetates. taurates, other acyl aminoacids, betaines, sultaines, and/or phosphate esters. Suitable surfactants that are substantially free of sulfates can contain carboxylic acids.


The composition can contain suitable anionic detersive surfactants, which can include water-soluble olefin sulfonates which have the general formula R1—SO3M where R1 is a straight or branched chain, saturated, aliphatic hydrocarbon radical having from 10 to 24 carbon atoms, 10 to 18 carbon atoms, or from 13 to 15 carbon atoms; and M is a water-soluble cation such as ammonium, sodium, potassium, triethanolamine cation, or salts of the divalent magnesium ion with two anionic surfactant anions. Suitable olefin sulfonates such as sodium paraffin sulfonates can be produced through the reaction of SO2 and O2 with a suitable chain length paraffin.


Suitable anionic detersive surfactants can include beta-alkyloxy alkane sulfonates. Beta-alkyloxy alkane sulfonates surfactants conform to Formula I:




embedded image



where R2 is a straight chain alkyl group having from about 6 to about 20 carbon atoms, R3 is a lower alkyl group having from about 1 to about 3 carbon atoms, preferably 1 carbon atom, and M is a water-soluble cation as previously described in the water-soluble olefin sulfonates.


Suitable anionic detersive surfactants can include isethionate surfactants. For example, suitable isethionate surfactants can include the reaction product of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide. Suitable fatty acids for isethionate surfactants can be derived from coconut oil or palm kernel oil including amides of methyl tauride.


Detersive anionic surfactants can be succinate surfactants. Examples of suitable succinate surfactants can include disodium N-octadecylsulfo succinnate, disodium lauryl sulfosuccinate, diammonium lauryl sulfosuccinate, laureth sulfosuccinate, tetrasodium N-(1,2-dicarboxyethyl)-N-octadecylsulfosuccinnate, diamyl ester of sodium sulfosuccinic acid, dihexyl ester of sodium sulfosuccinic acid, and dioctyl esters of sodium sulfosuccinic acid.


Examples of additional anionic surfactants suitable for use herein include, but are not limited to, ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, sodium lauryl sarcosine, sodium cocoyl sarcosine, ammonium cocoyl sulfate, ammonium lauroyl sulfate, sodium cocoyl sulfate, sodium lauroyl sulfate, potassium cocoyl sulfate, potassium lauryl sulfate, monoethanolamine cocoyl sulfate, sodium trideceth-1 sulfate, sulfate, sodium trideceth-2 sulfate, sulfate, sodium trideceth-3 sulfate, sodium tridecyl sulfate, sodium methyl lauroyl taurate, sodium methyl cocoyl taurate, sodium lauroyl isethionate, sodium cocoyl isethionate (“SCI”), sodium lauroyl methyl isethionate (“SLMI”), sodium laureth sulfosuccinate, sodium lauryl sulfosuccinate, sodium C12-C14 olefin sulfonate, sodium tridecyl benzene sulfonate, sodium dodecyl benzene sulfonate, sodium lauroyl glycinate, sodium cocoamphoacetate, sodium cocoyl glutamate, sodium lauroyl glutamate, sodium lauryl glucose carboxylate, sodium phosphate ester surfactants, and fatty acid surfactants. and mixtures thereof.


The hair care composition may comprise from about 0% to about 20%, from about 0.5% to about 15%, from about 1% to about 10%, by weight, of one or more co-surfactants selected from the group consisting of amphoteric surfactants, zwitterionic surfactants, non-ionic surfactants, and mixtures thereof. The composition can comprise a co-surfactant selected from the group consisting of: amphoteric surfactants, zwitterionic surfactants, and mixtures thereof. Non-limiting examples of suitable zwitterionic or amphoteric surfactants are described in U.S. Pat. No. 5,104,646 (Bolich Jr. et al.), U.S. Pat. No. 5,106,609 (Bolich Jr. et al.).


Amphoteric surfactants suitable for use in the composition are well known in the art, and include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate. The amphoteric surfactant can be selected from the group consisting of: sodium cocaminopropionate, sodium cocaminodipropionate, sodium cocoamphoacetate, sodium cocoamphohydroxypropylsulfonate, sodium cocoamphopropionate, sodium comamphopropionate, sodium lauraminopropionate, sodium lauroamphoacetate, sodium lauroamphohydroxypropylsulfonate, sodium lauroamphopropionate, sodium comamphopropionate, sodium lauriminodipropionate, ammonium cocaminopropionate, ammonium cocaminodipropionate, ammonium cocoamphoacetate, ammonium cocoamphohydroxypropylsulfonate, ammonium cocoamphopropionate, ammonium comamphopropionate, ammonium lauraminopropionate, ammonium lauroamphoacetate, ammonium lauroamphohydroxypropylsulfonate, ammonium lauroamphopropionate, ammonium comamphopropionate, ammonium lauriminodipropionate, triethanonlamine cocaminopropionate, triethanonlamine cocaminodipropionate, triethanonlamine cocoamphoacetate, triethanonlamine cocoamphohydroxypropylsulfonate, triethanonlamine cocoamphopropionate, triethanonlamine cornamphopropionate, triethanonlamine lauraminopropionate, triethanonlamine lauroamphoacetate, triethanonlamine lauroamphohydroxypropylsulfonate, triethanonlamine lauroamphopropionate, triethanonlamine comamphopropionate, triethanonlamine lauriminodipropionate, cocoamphodipropionic acid, disodium caproamphodiacetate, disodium caproamphoadipropionate, disodium capryloamphodiacetate, disodium capryloamphodipriopionate, disodium cocoamphocarboxyethylhydroxypropylsulfonate, disodium cocoamphodiacetate, disodium cocoamphodipropionate, disodium dicarboxyethylcocopropylenediamine, disodium laureth-5 carboxyamphodiacetate, disodium lauriminodipropionate, disodium lauroamphodiacetate, disodium lauroamphodipropionate, disodium oleoamphodipropionate, disodium PPG-2-isodecethyl-7 carboxyamphodiacetate, lauraminopropionic acid, lauroamphodipropionic acid, lauryl aminopropylglycine, lauryl diethylenediaminoglycine, and mixtures thereof.


The amphoteric surfactant can be a surfactant according to the following structure:




embedded image


wherein R10 is a C-linked monovalent substituent selected from the group consisting of: substituted alkyl systems comprising 9 to 15 carbon atoms, unsubstituted alkyl systems comprising 9 to 15 carbon atoms, straight alkyl systems comprising 9 to 15 carbon atoms, branched alkyl systems comprising 9 to 15 carbon atoms, and unsaturated alkyl systems comprising 9 to 15 carbon atoms; and wherein R11, R12, and R13 are each independently selected from the group consisting of: C-linked divalent straight alkyl systems comprising 1 to 3 carbon atoms, and C-linked divalent branched alkyl systems comprising 1 to 3 carbon atoms; and wherein M is a monovalent counterion selected from the group consisting of sodium, ammonium and protonated triethanolamine. The amphoteric surfactant is selected from the group consisting of: sodium cocoamphoacetate, sodium cocoamphodiacetate, sodium lauroamphoacetate, sodium lauroamphodiacetate, ammonium lauroamphoacetate, ammonium cocoamphoacetate, triethanolamine lauroamphoacetate, triethanolamine cocoamphoacetate, and mixtures thereof.


The detersive surfactant system may comprise at least 1%, by weight, of the composition, of one or more zwitterionic surfactants which possess a hydroxyl group in their molecular structure. The zwitterionic surfactant can be a derivative of an aliphatic quaternary ammonium, phosphonium, and sulfonium compound, in which the aliphatic radicals are straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate. The zwitterionic surfactant is selected from the group consisting of: cocamidoethyl betaine, cocamidopropylamine oxide, cocamidopropyl betaine, cocamidopropyl dimethylaminohydroxypropyl hydrolyzed collagen, cocamidopropyldimonium hydroxypropyl hydrolyzed collagen, cocamidopropyl hydroxysultaine, cocobetaineamido amphopropionate, coco-betaine, coco-hydroxysultaine, coco/oleamidopropyl betaine, coco-sultaine, lauramidopropyl betaine, lauryl betaine, lauryl hydroxysultaine, lauryl sultaine, and mixtures thereof. The zwitterionic surfactant can be selected from the group consisting of: lauryl hydroxysultaine, cocamidopropyl hydroxysultaine, coco-betaine, coco-hydroxysultaine, coco-sultaine, lauryl betaine, lauryl sultaine, and mixtures thereof.


The co-surfactant can be selected from the group consisting of: zwitterionic surfactants, amphoteric surfactants, non-ionic surfactants, and mixtures thereof. The surfactant can be an anionic surfactant and the composition further comprises a co-surfactant, wherein the co-surfactant is selected from the group consisting of: zwitterionic surfactants, amphoteric surfactants, non-ionic surfactants, and mixtures thereof. The cosurfactant can be a non-ionic surfactant selected from the group consisting of: Cocamide, Cocamide Methyl MEA, Cocamide DEA, Cocamide MEA, Cocamide MIPA, Lauramide DEA, Lauramide MEA, Lauramide MIPA, Myristamide DEA, Myristamide MEA, PEG-20 Cocamide MEA, PEG-2 Cocamide, PEG-3 Cocamide, PEG-4 Cocamide, PEG-5 Cocamide, PEG-6 Cocamide, PEG-7 Cocamide, PEG-3 Lauramide, PEG-5 Lauramide, PEG-3 Oleamide, PPG-2 Cocamide, PPG-2 Hydroxyethyl Cocamide, and mixtures thereof. The co-surfactant can be a zwitterionic surfactant, wherein the zwitterionic surfactant is selected from the group consisting of: lauryl hydroxysultaine, cocamidopropyl hydroxysultaine, coco-betaine, coco-hydroxysultaine, cocosultaine, lauryl betaine, lauryl sultaine, and mixtures thereof.


B. Cationic Polymers


(a) Cationic Guar Polymer


The hair care composition can comprise (a) a cationic guar polymer, wherein the cationic guar polymer can have a weight average M.Wt. of less than about 2.5 million g/mol, and wherein the cationic guar polymer can have a charge density of from about 0.1 meq/g to about 2.5 meq/g.


The composition can comprise from about 0.01% to about 2.2%, from about 0.05% to about 2%, from about 0.1% to about 1.8%, from 0.2% to about 1.6%, from 0.25% to about 1.5%, and/or from 0.3% to about 1.4%, cationic guar polymer, by total weight of the composition. The hair care composition can comprise from about 0.05% to less than 1%, from about 0.05% to about 0.9%, from about 0.1% to about 0.8%, from about 0.2% to about 0.7%, and/or from about 0.2% to about 0.5% of cationic guar polymer, by total weight of the composition. The hair care composition can comprise from about 0.25% to about 1.1%, from about 0.3% to about 0.9%, and/or from about 0.4% to about 0.8% of cationic guar polymer, by total weight of the composition.


Cationic guar polymers are cationically substituted galactomannan (guar) gum derivatives. Guar gum for use in preparing these guar gum derivatives is typically obtained as a naturally occurring material from the seeds of the guar plant. The guar molecule itself is a straight chain mannan, which is branched at regular intervals with single membered galactose units on alternative mannose units. The mannose units are linked to each other by means of β(1-4) glycosidic linkages. The galactose branching arises by way of an α(1-6) linkage. Cationic derivatives of the guar gums are obtained by reaction between the hydroxyl groups of the polygalactomannan and reactive quaternary ammonium compounds. The degree of substitution of the cationic groups onto the guar structure should be sufficient to provide the requisite cationic charge density described above.


The cationic guar polymer can have a weight average M.Wt. of less than 2.2 million g/mol, or from about 150 thousand g/mol to about 2 million g/mol, or from about 200 thousand to about 1.9 million g/mol, or from about 300 thousand to about 1.8 million g/mol, or from about 400 thousand to about 1.7 million g/mol, or from about 500,000 g/mol to about 1.6 million g/mol.


The cationic guar polymer can have a weight average charge density of from about 0.2 meq/g to about 2.2 meg/g, or from about 0.3 meq/g to about 2.0 meg/g, or from about 0.4 meq/g to about 1.9 meg/g, or from about 0.5 meq/g to about 1.8 meg/g, or from about 0.6 meq/g to about 1.7 meg/g, or from about 0.6 meq/g to about 1.5 meq/g, or from about 0.6 meq/g to about 1.3 meg/g, and/or from about 0.7 meq/g to about 1.0 meg/g.


The cationic guar polymer may be formed from quaternary ammonium compounds. The quaternary ammonium compounds for forming the cationic guar polymer can conform to the general formula 1:




embedded image



wherein where R3, R4 and R5 are methyl or ethyl groups; R6 is either an epoxyalkyl group of the general formula 2:




embedded image



or R6 is a halohydrin group of the general formula 3:




embedded image



wherein R7 is a C1 to C3 alkylene; X is chlorine or bromine, and Z is an anion such as Cl—, Br—, I— or HSO4—.


The cationic guar polymer can conform to the general formula 4:




embedded image



wherein R8 is guar gum; and wherein R4, R5, R6 and R7 are as defined above; and wherein Z is a halogen. The cationic guar polymer can conform to Formula 5:




embedded image



Suitable cationic guar polymers can include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride. The cationic guar polymer is a guar hydroxypropyltrimonium chloride. Specific examples of guar hydroxypropyltrimonium chlorides include the Jaguar® series commercially available from Rhone-Poulenc Incorporated, for example Jaguar® C-500, commercially available from Rhodia. Jaguar® C-500 has a charge density of 0.8 meq/g and a molecular weight of 500,000 g/mol. Another guar hydroxypropyltrimonium chloride with a charge density of about 1.1 meq/g and a molecular weight of about 500,000 g/mol is available from Ashland. A further guar hydroxypropyltrimonium chloride with a charge density of about 1.5 meq/g and a molecular weight of about 500,000 g/mole is available from Ashland.


Other suitable guar hydroxypropyltrimonium chloride are: Hi-Care 1000, which has a charge density of about 0.7 meq/g and a Molecular weight of about 600,000 g/mole is available from Rhodia; N-Hance 3269 and N-Hance 3270, which have a charge density of about 0.7 meq/g and a molecular weight of about 425,000 g/mol are available from Ashland; N-Hance 3271 which has a charge density of about 0.7 meq/g and a molecular weight of about 500,000 g/mol and is available from Ashland; BF-13, which is a borate (boron) free guar of charge density of about 1.1 meq/g and molecular weight of about 800,000 and BF-17, which is a borate (boron) free guar of charge density of about 1.7 meq/g and M. W.t of about 800,000 both available from Ashland; N-Hance CG17 has a charge density of about 1.0 meq/g and a molecular weight of about 1,600,000 g/mol and is available from Ashland; and N-Hance 3196 has a charge density of about 0.7 meq/g and a molecular weight of 1,700,000 g/mol and is available from Ashland.


(b) Cationic Synthetic Polymer


The hair care composition can include (b) a cationic synthetic polymer, wherein the cationic synthetic polymer can have a weight average M.Wt. of from about 1,000 g/mol to about 2.0 million g/mol, and wherein the cationic guar polymer can have a charge density of from about 2 meq/g to about 10 meq/g. The hair care composition can comprise a cationic synthetic polymer from about 0.01% to about 2.5% by total weight of the composition.


The cationic synthetic polymers may be formed from


i) one or more cationic monomer units, and optionally


ii) one or more monomer units bearing a negative charge, and/or


iii) a nonionic monomer,


wherein the subsequent charge of the copolymer is positive. The ratio of the three types of monomers is given by “m”, “p” and “q” where “m” is the number of cationic monomers, “p” is the number of monomers bearing a negative charge and “q” is the number of nonionic monomers


The cationic polymers can be water soluble or dispersible, non-crosslinked, and cationic synthetic polymers having the following structure:




embedded image



where A, may be one or more of the following cationic moieties:




embedded image



where @=amido, alkylamido, ester, ether, alkyl or alkylaryl;


where Y=C1-C22 alkyl, alkoxy, alkylidene, alkyl or aryloxy;


where ψ=C1-C22 alkyl, alkyloxy, alkyl aryl or alkyl arylox;


where Z═C1-C22 alkyl, alkyloxy, aryl or aryloxy;


where R1=H, C1-C4 linear or branched alkyl;


where s=0 or 1, n=0 or ≥1;


where T and R7=C1-C22 alkyl; and


where X—=halogen, hydroxide, alkoxide, sulfate or alkylsulfate.


Where the monomer bearing a negative charge is defined by R2′=H, C1-C4 linear or branched alkyl and R3 as:




embedded image



where D=O, N, or S;


where Q=NH2 or O;


where u=1-6;


where t=0-1; and


where J=oxygenated functional group containing the following elements P, S, C.


Where the nonionic monomer is defined by R2″=H, C1-C4 linear or branched alkyl, R6=linear or branched alkyl, alkyl aryl, aryl oxy, alkyloxy, alkylaryl oxy and β is defined as




embedded image



and


where G′ and G″ are, independently of one another, O, S or N—H and L=0 or 1.


Examples of cationic monomers include aminoalkyl (meth)acrylates, (meth)aminoalkyl (meth)acrylamides; monomers comprising at least one secondary, tertiary or quaternary amine function, or a heterocyclic group containing a nitrogen atom, vinylamine or ethylenimine; diallyldialkyl ammonium salts; their mixtures, their salts, and macromonomers deriving from therefrom.


Further examples of cationic monomers include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, ditertiobutylaminoethyl (meth)acrylate, dimethylaminomethyl (meth)acrylamide, dimethylaminopropyl (meth)acrylamide, ethylenimine, vinylamine, 2-vinylpyridine, 4-vinylpyridine, trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride, diallyldimethyl ammonium chloride.


Suitable cationic monomers include those which comprise a quaternary ammonium group of formula —NR3+, wherein R, which is identical or different, represents a hydrogen atom, an alkyl group comprising 1 to 10 carbon atoms, or a benzyl group, optionally carrying a hydroxyl group, and comprise an anion (counter-ion). Examples of anions are halides such as chlorides, bromides, sulphates, hydrosulphates, alkylsulphates (for example comprising 1 to 6 carbon atoms), phosphates, citrates, formates, and acetates.


Suitable cationic monomers include trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride.


Additional suitable cationic monomers include trimethyl ammonium propyl (meth)acrylamido chloride.


Examples of monomers bearing a negative charge include alpha ethylenically unsaturated monomers comprising a phosphate or phosphonate group, alpha ethylenically unsaturated monocarboxylic acids, monoalkylesters of alpha ethylenically unsaturated dicarboxylic acids, monoalkylamides of alpha ethylenically unsaturated dicarboxylic acids, alpha ethylenically unsaturated compounds comprising a sulphonic acid group, and salts of alpha ethylenically unsaturated compounds comprising a sulphonic acid group.


Suitable monomers with a negative charge include acrylic acid, methacrylic acid, vinyl sulphonic acid, salts of vinyl sulfonic acid, vinylbenzene sulphonic acid, salts of vinylbenzene sulphonic acid, alpha-acrylamidomethylpropanesulphonic acid, salts of alpha-acrylamidomethylpropanesulphonic acid, 2-sulphoethyl methacrylate, salts of 2-sulphoethyl methacrylate, acrylamido-2-methylpropanesulphonic acid (AMPS), salts of acrylamido-2-methylpropanesulphonic acid, and styrenesulphonate (SS).


Examples of nonionic monomers include vinyl acetate, amides of alpha ethylenically unsaturated carboxylic acids, esters of an alpha ethylenically unsaturated monocarboxylic acids with an hydrogenated or fluorinated alcohol, polyethylene oxide (meth)acrylate (i.e. polyethoxylated (meth)acrylic acid), monoalkylesters of alpha ethylenically unsaturated dicarboxylic acids, monoalkylamides of alpha ethylenically unsaturated dicarboxylic acids, vinyl nitriles, vinylamine amides, vinyl alcohol, vinyl pyrolidone, and vinyl aromatic compounds.


Suitable nonionic monomers include styrene, acrylamide, methacrylamide, acrylonitrile, methylacrylate, ethylacrylate, n-propylacrylate, n-butylacrylate, methylmethacrylate, ethylmethacrylate, n-propylmethacrylate, n-butylmethacrylate, 2-ethyl-hexyl acrylate, 2-ethyl-hexyl methacrylate, 2-hydroxyethylacrylate and 2-hydroxyethylmethacrylate.


The anionic counterion (X−) in association with the cationic synthetic polymers may be any known counterion so long as the polymers remain soluble or dispersible in water, in the hair care composition, or in a coacervate phase of the hair care composition, and so long as the counterions are physically and chemically compatible with the essential components of the hair care composition or do not otherwise unduly impair product performance, stability or aesthetics. Non limiting examples of such counterions include halides (e.g., chlorine, fluorine, bromine, iodine), sulfate and methylsulfate.


The cationic synthetic polymer can have a weight average M.Wt. of from about 1,500 g/mol to about 1.8 million g/mol, or from about 2,000 g/mol to about 1.7 million g/mol, or from about 3,000 g/mol to about 1.6 million g/mol, or from about 4,000 g/mol to about 1.5 million g/mol, or from about 5,000 g/mol to about 1.6 million g/mol, or from about 6,000 g/mol to about 1.5 million g/mol, or from about 7,000 g/mol to about 1.4 million g/mol, or from about 8,000 g/mol to about 1.4 million g/mol, or from about 9,000 g/mol to about 1.3 million g/mol, or from about 10,000 g/mol to about 1.2 million g/mol or from about 11,000 g/mol to about 1.1 million g/mol, or from about 25,000 g/mol to about 750,000 g/mol, or from about 50,000 g/mol to about 500,000 g/mol, or from about 75,000 g/mol to about 300,000 g/mol, and/or from about 100,000 g/mol to about 200,000 g/mol.


The cationic synthetic polymer can have a weight average charge density of from about 2.2 meq/g to about 9.5 meg/g, or from about 2.5 meq/g to about 8 meg/g, or from about 3 meq/g to about 8 meg/g, or from about 3.5 meq/g to about 7.5 meg/g, and/or from about 4 meq/g to about 7 meg/g.


The composition can comprise a cationic synthetic polymer from about 0.05% to about 2.2%, or from about 0.05% to about 2%, or from about 0.1% to about 1.8%, or from about 0.1% to about 1.6%, or from about 0.15% to about 1.5%, or from about 0.15% to about 1.4%, from about 0.2% to about 1.3%, or from about 0.2% to about 1.2%, from about 0.2% to about 1%, and/or from 0.2% to 0.8%, by total weight of the composition.


The cationic synthetic polymer can comprise polydiallyldimethylammonium chloride (polyDADMAC). PolyDADMAC is also known as polyquaternium-6. Specific examples of polyDADMAC are Mirapol® 100 series from Solvay, Merquat™ 100 series from Lubrizol and Salcare® SC 30 from BASF. For example, Mirapol® 100 s has a charge density of 6.2 meq/g and a molecular weight of 150,000 g/mol, is available from Solvay.


The hair care composition may further comprise (c) a cationic non-guar galactomannan polymer, (d) a cationic starch polymer, (e) a cationic copolymer of acrylamide monomers and cationic monomers, (f) a cationic cellulose polymer or (g) a mixture of such polymers


(c) Cationic Non-Guar Galactomannan Polymers


The dispersion compositions can comprise a galactomannan polymer derivative having a mannose to galactose ratio of between 5:1 and 1:1 on a monomer to monomer basis, the galactomannan polymer derivative selected from the group consisting of a cationic galactomannan polymer derivative and an amphoteric galactomannan polymer derivative having a net positive charge. As used herein, the term “cationic galactomannan” refers to a galactomannan polymer to which a cationic group is added. The term “amphoteric galactomannan” refers to a galactomannan polymer to which a cationic group and an anionic group are added such that the polymer has a net positive charge.


Galactomannan polymers are present in the endosperm of seeds of the Leguminosae family. Galactomannan polymers are made up of a combination of mannose monomers and galactose monomers. The galactomannan molecule is a straight chain mannan branched at regular intervals with single membered galactose units on specific mannose units. The mannose units are linked to each other by means of β (1-4) glycosidic linkages. The galactose branching arises by way of an α (1-6) linkage. The ratio of mannose monomers to galactose monomers varies according to the species of the plant and also is affected by climate. Non Guar Galactomannan polymer derivatives can have a ratio of mannose to galactose of greater than 2:1 on a monomer to monomer basis. Suitable ratios of mannose to galactose can be greater than about 3:1, and the ratio of mannose to galactose can be greater than about 4:1. Analysis of mannose to galactose ratios is well known in the art and is typically based on the measurement of the galactose content.


The gum for use in preparing the non-guar galactomannan polymer derivatives is typically obtained as naturally occurring material such as seeds or beans from plants. Examples of various non-guar galactomannan polymers include but are not limited to Tara gum (3 parts mannose/1 part galactose), Locust bean or Carob (4 parts mannose/1 part galactose), and Cassia gum (5 parts mannose/1 part galactose).


The galactomannan polymer derivative can be a cationic derivative of the non-guar galactomannan polymer, which is obtained by reaction between the hydroxyl groups of the polygalactomannan polymer and reactive quaternary ammonium compounds. Suitable quaternary ammonium compounds for use in forming the cationic galactomannan polymer derivatives include those conforming to the general formulas 1-5, as defined above.


Cationic non-guar galactomannan polymer derivatives formed from the reagents described above are represented by the general formula 6:




embedded image



wherein R is the gum. The cationic galactomannan derivative can be a gum hydroxypropyltrimethylammonium chloride, which can be more specifically represented by the general formula 7:




embedded image


The galactomannan polymer derivative can be an amphoteric galactomannan polymer derivative having a net positive charge, obtained when the cationic galactomannan polymer derivative further comprises an anionic group.


The cationic non-guar galactomannan can have a ratio of mannose to galactose that is greater than about 4:1. The dispersion compositions may comprise a galactomannan polymer derivative, by weight, of the composition. The hair care compositions can comprise from about 0.05% to about 2%, by weight, of the composition, of a galactomannan polymer derivative.


(d) Cationically Modified Starch Polymer


The dispersion compositions can comprise water-soluble cationically modified starch polymers. As used herein, the term “cationically modified starch” refers to a starch to which a cationic group is added prior to degradation of the starch to a smaller molecular weight, or wherein a cationic group is added after modification of the starch to achieve a desired molecular weight. The definition of the term “cationically modified starch” also includes amphoterically modified starch. The term “amphoterically modified starch” refers to a starch hydrolysate to which a cationic group and an anionic group are added.


The dispersion compositions can comprise cationically modified starch polymers at a range of about 0.01% to about 10%, and/or from about 0.05% to about 5%, by weight, of the composition.


The cationically modified starch polymers disclosed herein can have a percent of bound nitrogen of from about 0.5% to about 4%.


The dispersion compositions can include starch polymers that is chemically modified by the addition of amino and/or ammonium groups into the starch molecules. Non-limiting examples of these ammonium groups may include substituents such as hydroxypropyl trimmonium chloride, trimethylhydroxypropyl ammonium chloride, dimethylstearylhydroxypropyl ammonium chloride, and dimethyldodecylhydroxypropyl ammonium chloride. See Solarek, D. B., Cationic Starches in Modified Starches: Properties and Uses, Wurzburg, O. B., Ed., CRC Press, Inc., Boca Raton, Fla. 1986, pp 113-125. The cationic groups may be added to the starch prior to degradation to a smaller molecular weight or the cationic groups may be added after such modification.


The cationically modified starch polymers can generally have a degree of substitution of a cationic group from about 0.1 to about 7. As used herein, the “degree of substitution” of the cationically modified starch polymers is an average measure of the number of hydroxyl groups on each anhydroglucose unit which is derivatized by substituent groups. Since each anhydroglucose unit has three potential hydroxyl groups available for substitution, the maximum possible degree of substitution is 3. The degree of substitution is expressed as the number of moles of substituent groups per mole of anhydroglucose unit, on a molar average basis. The degree of substitution may be determined using proton nuclear magnetic resonance spectroscopy (“.sup.1H NMR”) methods well known in the art. Suitable .sup.1H NMR techniques include those described in “Observation on NMR Spectra of Starches in Dimethyl Sulfoxide, Iodine-Complexing, and Solvating in Water-Dimethyl Sulfoxide”, Qin-Ji Peng and Arthur S. Perlin, Carbohydrate Research, 160 (1987), 57-72; and “An Approach to the Structural Analysis of Oligosaccharides by NMR Spectroscopy”, J. Howard Bradbury and J. Grant Collins, Carbohydrate Research, 71, (1979), 15-25.


The source of starch before chemical modification can be chosen from a variety of sources such as tubers, legumes, cereal, and grains. Non-limiting examples of this source starch may include corn starch, wheat starch, rice starch, waxy corn starch, oat starch, cassaya starch, waxy barley, waxy rice starch, glutenous rice starch, sweet rice starch, amioca, potato starch, tapioca starch, oat starch, sago starch, sweet rice, or mixtures thereof.


Cationically modified starch polymers can be selected from degraded cationic maize starch, cationic tapioca, cationic potato starch, and mixtures thereof.


The starch, prior to degradation or after modification to a smaller molecular weight, may comprise one or more additional modifications. For example, these modifications may include cross-linking, stabilization reactions, phosphorylations, and hydrolyzations. Stabilization reactions may include alkylation and esterification.


The cationically modified starch polymers may be incorporated into the composition in the form of hydrolyzed starch (e.g., acid, enzyme, or alkaline degradation), oxidized starch (e.g., peroxide, peracid, hypochlorite, alkaline, or any other oxidizing agent), physically/mechanically degraded starch (e.g., via the thermo-mechanical energy input of the processing equipment), or combinations thereof.


An optimal form of the starch is one which is readily soluble in water and forms a substantially clear (% Transmittance.gtoreq.80 at 600 nm) solution in water. The transparency of the composition is measured by Ultra-Violet/Visible (UV/VIS) spectrophotometry, which determines the absorption or transmission of UV/VIS light by a sample, using a Gretag Macbeth Colorimeter Color i 5 according to the related instructions. A light wavelength of 600 nm has been shown to be adequate for characterizing the degree of clarity of cosmetic compositions.


Suitable cationically modified starch for use in compositions is available from known starch suppliers. Nonionic modified starch that could be further derivatized to a cationically modified starch as is known in the art can be suitable. Other suitable modified starch starting materials may be quaternized, as is known in the art, to produce the cationically modified starch polymer suitable for use in the invention.


Starch Degradation Procedure: A starch slurry is prepared by mixing granular starch in water. The temperature is raised to about 35° C. An aqueous solution of potassium permanganate is then added at a concentration of about 50 ppm based on starch. The pH is raised to about 11.5 with sodium hydroxide and the slurry is stirred sufficiently to prevent settling of the starch. Then, about a 30% solution of hydrogen peroxide diluted in water is added to a level of about 1% of peroxide based on starch. The pH of about 11.5 is then restored by adding additional sodium hydroxide. The reaction is completed over about a 1 to about 20 hour period. The mixture is then neutralized with dilute hydrochloric acid. The degraded starch is recovered by filtration followed by washing and drying.


(e) Cationic Copolymer of an Acrylamide Monomer and a Cationic Monomer


The dispersion composition can comprise a cationic copolymer of an acrylamide monomer and a cationic monomer. The cationic copolymer can be a synthetic cationic copolymer of acrylamide monomers and cationic monomers.


The cationic copolymer can comprise:

    • (i) an acrylamide monomer of the following Formula AM:




embedded image




    • where R9 is H or C1-4 alkyl; and R10 and R11 are independently selected from the group consisting of H, C1-4 alkyl, CH2OCH3, CH2OCH2CH(CH3)2, and phenyl, or together are C3-6cycloalkyl; and

    • (ii) a cationic monomer conforming to Formula CM:







embedded image



where k=1, each of v, v′, and v″ is independently an integer of from 1 to 6, w is zero or an integer of from 1 to 10, and X is an anion.


The cationic monomer can conform to Formula CM and where k=1, v=3 and w=0, z=1 and X is Cl to form the following structure:




embedded image



The above structure may be referred to as diquat. The cationic monomer can conform to Formula CM and wherein v and v″ are each 3, v′=1, w=1, y=1 and X is Cl, such as:




embedded image



The above structure may be referred to as triquat.


The acrylamide monomer can be either acrylamide or methacrylamide.


The cationic copolymer (b) can be AM:TRIQUAT which is a copolymer of acrylamide and 1,3-Propanediaminium,N-[2-[[[dimethyl[3-[(2-methyl-1-oxo-2-propenyl)amino]propyl]ammonio]acetyl]amino]ethyl]2-hydroxy-N,N,N′,N′,N-pentamethyl-, trichloride. AM:TRIQUAT is also known as polyquaternium 76 (PQ76). AM:TRIQUAT may have a charge density of 1.6 meq/g and a M.Wt. of 1.1 million g/mol.


The cationic copolymer can be an acrylamide monomer and a cationic monomer, wherein the cationic monomer is selected from the group consisting of: dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, ditertiobutylaminoethyl (meth)acrylate, dimethylaminomethyl (meth)acrylamide, dimethylaminopropyl (meth)acrylamide; ethylenimine, vinylamine, 2-vinylpyridine, 4-vinylpyridine; trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride, diallyldimethyl ammonium chloride, and mixtures thereof.


The cationic copolymer comprises a cationic monomer selected from the group consisting of: cationic monomers include trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride, and mixtures thereof.


The cationic copolymer can be water-soluble. The cationic copolymer can be formed from (1) copolymers of (meth)acrylamide and cationic monomers based on (meth)acrylamide, and/or hydrolysis-stable cationic monomers, (2) terpolymers of (meth)acrylamide, monomers based on cationic (meth)acrylic acid esters, and monomers based on (meth)acrylamide, and/or hydrolysis-stable cationic monomers. Monomers based on cationic (meth)acrylic acid esters may be cationized esters of the (meth)acrylic acid containing a quaternized N atom. Cationized esters of the (meth)acrylic acid containing a quaternized N atom can be quaternized dialkylaminoalkyl (meth)acrylates with C1 to C3 in the alkyl and alkylene groups. The cationized esters of the (meth)acrylic acid containing a quaternized N atom are selected from the group consisting of: ammonium salts of dimethylaminomethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminomethyl (meth)acrylate, diethylaminoethyl (meth)acrylate; and diethylaminopropyl (meth)acrylate quaternized with methyl chloride. The cationized esters of the (meth)acrylic acid containing a quaternized N atom can be dimethylaminoethyl acrylate, which may be quaternized with an alkyl halide, or with methyl chloride or benzyl chloride or dimethyl sulfate (ADAME-Quat). The cationic monomer when based on (meth)acrylamides can be quaternized dialkylaminoalkyl(meth)acrylamides with C1 to C3 in the alkyl and alkylene groups, or dimethylaminopropylacrylamide, which is quaternized with an alkyl halide, or methyl chloride or benzyl chloride or dimethyl sulfate.


The cationic monomer based on a (meth)acrylamide is a quaternized dialkylaminoalkyl(meth)acrylamide with C1 to C3 in the alkyl and alkylene groups. The cationic monomer based on a (meth)acrylamide is dimethylaminopropylacrylamide, which is quaternized with an alkyl halide, especially methyl chloride or benzyl chloride or dimethyl sulfate.


The cationic monomer is a hydrolysis-stable cationic monomer. Hydrolysis-stable cationic monomers can be, in addition to a dialkylaminoalkyl(meth)acrylamide, all monomers that can be regarded as stable to the OECD hydrolysis test. The cationic monomer is hydrolysis-stable and the hydrolysis-stable cationic monomer is selected from the group consisting of: diallyldimethylammonium chloride and water-soluble, cationic styrene derivatives.


The cationic copolymer is a terpolymer of acrylamide, 2-dimethylammoniumethyl (meth)acrylate quaternized with methyl chloride (ADAME-Q) and 3-dimethylammoniumpropyl(meth)acrylamide quaternized with methyl chloride (DIMAPA-Q). The cationic copolymer is formed from acrylamide and acrylamidopropyltrimethylammonium chloride, wherein the acrylamidopropyltrimethylammonium chloride has a charge density of from about 1.0 meq/g to about 3.0 meq/g.


The cationic copolymer is a trimethylammoniopropylmethacrylamide chloride-N-Acrylamide copolymer, which is also known as AM:MAPTAC. AM:MAPTAC may have a charge density of about 1.3 meq/g and a M.Wt. of about 1.1 million g/mol. The cationic copolymer is AM:ATPAC. AM:ATPAC may have a charge density of about 1.8 meq/g and a M.Wt. of about 1.1 million g/mol.


(f) Cationic Cellulose Polymers


Suitable cationic cellulose polymers are salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10 and available from Dwo/Amerchol Corp. (Edison, N.J., USA) in their Polymer LR, JR, and KG series of polymers. Other suitable types of cationic cellulose include the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Dow/Amerchol Corp. under the tradename Polymer LM-200. Other suitable types of cationic cellulose include the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide and trimethyl ammonium substituted epoxide referred to in the industry (CTFA) as Polyquaternium 67. These materials are available from Dow/Amerchol Corp. under the tradename SoftCAT Polymer SL-5, SoftCAT Polymer SL-30, Polymer SL-60, Polymer SL-100, Polymer SK-L, Polymer SK-M, Polymer SK-MH, and Polymer SK-H.


C. Silicone Emulsions


The hair care composition can comprise from about 0% to about 20%, from about 0.5% to about 18%, from about 1% to about 16%, from about 1.5% to about 14%, from about 1.5% to about 12%, from about 1.5% to about 10%, from about 1.5% to about 8%, and/or from about 1.5% to about 6%, by weight, of one of more silicone polymers. The silicone polymer can be added into the hair care composition as an aqueous pre-emulsion. The silicone pre-emulsion can comprise one or more silicone polymers and an emulsifying system. The silicone polymer content in the silicone pre-emulsion can be from about 10%, by weight, to about 70%, by weight, or about 15%, by weight, to about 60%, by weight, or from about 18%, by weight, to about 50%, by weight.


The silicone emulsion can have an average particle size of less than 500 nm, alternatively 300 nm, alternatively less than about 200 nm, and alternatively less than about 100 nm. The silicone emulsion can have an average particle size of from about 5 nm to about 500 nm, from about 10-nm to about 400 nm, and/or from about 20 nm to about 300 nm. The silicone emulsion can be in the form of a nano-emulsion.


The particle size of the one or more silicones may be measured by dynamic light scattering (DLS). A Malvern Zetasizer Nano ZEN3600 system using He—Ne laser 633 nm may be used for the measurement at 25° C.


The autocorrelation function may be analyzed using the Zetasizer Software provided by Malvern Instruments, which determines the effective hydrodynamic radius, using the Stokes-Einstein equation:






D
=



k
B


T


6





π





η





R







wherein kB is the Boltzmann Constant, T is the absolute temperature, is the viscosity of the medium, D is the mean diffusion coefficient of the scattering species, and R is the hydrodynamic radius of particles.


Particle size (i.e. hydrodynamic radius) may be obtained by correlating the observed speckle pattern that arises due to Brownian motion and solving the Stokes-Einstein equation, which relates the particle size to the measured diffusion constant, as is known in the art.


For each sample, 3 measurements may be made and Z-average values may be reported as the particle size.


The one or more silicones may be in the form of a nanoemulsion. The nanoemulsion may comprise any silicone suitable for application to the skin and/or hair.


The one or more silicones may include in their molecular structure polar functional groups such as Si—OH (present in dimethiconols), primary amines, secondary amines, tertiary amines, and quaternary ammonium salts. The one or more silicones may be selected from the group consisting of aminosilicones, pendant quaternary ammonium silicones, terminal quaternary ammonium silicones, amino polyalkylene oxide silicones, quaternary ammonium polyalkylene oxide silicones, and amino morpholino silicones.


The one or more silicones may comprise:


(a) at least one aminosilicone corresponding to formula (V):

R′aG3-a-Si(OSiG2)n-(OSiGbR′2-b)m—O—SiG3-a-R′a  (I)


in which:


G is chosen from a hydrogen atom, a phenyl group, OH group, and C1-C8 alkyl groups, for example methyl,


a is an integer ranging from 0 to 3, and in one embodiment a is 0,


b is chosen from 0 and 1, and in one embodiment b is 1,


m and n are numbers such that the sum (n+m) can range for example from 1 to 2 000, such as for example from 50 to 150, wherein n can be for example chosen from numbers ranging from 0 to 1 999, such as for example from 49 to 149, and wherein m can be chosen from numbers ranging for example from 1 to 2 000, such as for example from 1 to 10;


R′ is a monovalent group of formula —CqH2qL in which q is a number from 2 to 8 and L is an optionally quaternized amine group chosen from the groups:

—NR″—CH2—CH2—N′(R1)2,
—N(R″)2,
N+(R″)3A,
N+H(R″)2A,
N+H2(R″)A, and
—N(R″)—CH2—CH2—N+R″H2A,

in which R″ can be chosen from a hydrogen atom, phenyl groups, benzyl groups, and saturated monovalent hydrocarbon-based groups, such as for example an alkyl group comprising from 1 to 20 carbon atoms, and A is chosen from halide ions such as, for example, fluoride, chloride, bromide and iodide.


The one or more silicones may include those corresponding to formula (1) wherein a=0, G=methyl, m and n are numbers such that the sum (n+m) can range for example from 1 to 2 000, such as for example from 50 to 150, wherein n can be for example chosen from numbers ranging from 0 to 1 999, such as for example from 49 to 149, and wherein m can be chosen from numbers ranging for example from 1 to 2 000, such as for example from 1 to 10; and L is —N(CH3)2 or —NH2, alternatively —NH2.


Additional said at least one aminosilicone of the invention include:


(b) pendant quaternary ammonium silicones of formula (VII):




embedded image



in which:


R5 is chosen from monovalent hydrocarbon-based groups comprising from 1 to 18 carbon atoms, such as C1-C18 alkyl groups and C2-C18alkenyl groups, for example methyl;


R6 is chosen from divalent hydrocarbon-based groups, such as divalent C1-C18 alkylene groups and divalent C1-C18 alkylenoxy groups, for example C1-C8 alkylenoxy groups, wherein said R6 is bonded to the Si by way of an SiC bond;


Q is an anion that can be for example chosen from halide ions, such as chloride, and organic acid salts (such as acetate);


r is an average statistical value ranging from 2 to 20, such as from 2 to 8;


s is an average statistical value ranging from 20 to 200, such as from 20 to 50.


Such aminosilicones are described more particularly in U.S. Pat. No. 4,185,087, the disclosure of which is incorporated by reference herein.


A silicone which falls within this class is the silicone sold by the company Union Carbide under the name “Ucar Silicone ALE 56”.


Further examples of said at least one aminosilicone include:


c) quaternary ammonium silicones of formula (VIIb):




embedded image



in which:


groups R7, which may be identical or different, are each chosen from monovalent hydrocarbon-based groups comprising from 1 to 18 carbon atoms, such as C1-C18 alkyl groups, for example methyl, C2-C18 alkenyl groups, and rings comprising 5 or 6 carbon atoms;


R6 is chosen from divalent hydrocarbon-based groups, such as divalent C1-C18 alkylene groups and divalent C1-C18alkylenoxy, for example C1-C8, group connected to the Si by an SiC bond;


R8, which may be identical or different, represent a hydrogen atom, a monovalent hydrocarbon-based group comprising from 1 to 18 carbon atoms, and in particular a C1-C18 alkyl group, a C2-C18 alkenyl group or a group —R6—NHCOR7;


X is an anion such as a halide ion, in particular chloride, or an organic acid salt (acetate, etc.); r represents an average statistical value from 2 to 200 and in particular from 5 to 100.


Such silicones are described, for example, in application EP-A-0 530 974, the disclosure of which is incorporated by reference herein.


Silicones falling within this class are the silicones sold by the company Eovnik under the names Abil Quat 3270, Abil Quat 3272, Abil Quat 3474 and Abil ME 45.


Further examples of said at least one aminosilicone include:


d) quaternary ammonium and polyalkylene oxide silicones


wherein the quaternary nitrogen groups are located in the polysiloxane backbone, at the termini, or both.


Such silicones are described in PCT Publication No. WO 2002/010257, the disclosure of which is incorporated by reference herein.


Silicones falling within this class are the silicones sold by the company Momentive under the names Silsoft Q.


(e) Aminofunctional silicones having morpholino groups of formula (V):




embedded image



in which

    • A denotes a structural unit (I), (II), or (III) bound via —O—




embedded image






      • or an oligomeric or polymeric residue, bound via —O—, containing structural units of formulas (I), (II), or (III), or half of a connecting oxygen atom to a structural unit (III), or denotes —OH,



    • * denotes a bond to one of the structural units (I), (II), or (III), or denotes a terminal group B (Si-bound) or D (O-bound),

    • B denotes an —OH, —O—Si(CH3)3, —O—Si(CH3)20H, —O—Si(CH3)20CH3 group,

    • D denotes an —H, —Si(CH3)3, —Si(CH3)2OH, —Si(CH3)2OCH3 group,

    • a, b, and c denote integers between 0 and 1000, with the provision that a+b+c>0,

    • m, n, and o denote integers between 1 and 1000.





Aminofunctional silicones of this kind bear the INCI name: Amodimethicone/Morpholinomethyl Silsesquioxane Copolymer. A particularly suitable amodimethicone is the product having the commercial name Wacker Belsil® ADM 8301E.


Examples of such silicones are available from the following suppliers:


offered by the company Dow Corning: Fluids: 2-8566, AP 6087, AP 6088, DC 8040 Fluid, fluid 8822A DC, DC 8803 & 8813 polymer, 7-6030, AP-8104, AP 8201; Emulsions: CE-8170 AF Micro Emulsion, 2-8177, 2-8194 Microemulsion, 9224 Emulsion, DC 1872 Emulsion, 939, 949, 959, DC 5-7113 Quat Microemulsion, DC 5-7070 Emulsion, DC CE-8810, CE 8401 Emulsion, CE 1619, Dow Corning Toray SS-3551, Dow Corning Toray SS-3552;


offered by the company Wacker: Wacker Belsil ADM 652, ADM 656, 1100, 1600, 1650 (fluids) ADM 6060 (linear amodimethicone) emulsion; ADM 6057 E (branched amodimethicone) emulsion; ADM 8020 VP (micro emulsion); SLM 28040 (micro emulsion); DM5500 emulsion;


offered by the Company Momentive: Silsoft 331, SF1708, SME 253 & 254 (emulsion), SM2125 (emulsion), SM 2658 (emulsion), Silsoft Q (emulsion)


offered by the company Shin-Etsu: KF-889, KF-8675, KF-8004, X-52-2265 (emulsion);


offered by the Company Siltech Silicones: Siltech E-2145, E-Siltech 2145-35;


offered by the company Evonik Industries: Abil T Quat 60th


Some non-limiting examples of aminosilicones include the compounds having the following INCI names: Silicone Quaternium-1, Silicone Quaternium-2, Silicone Quaternium-3, Silicone Quaternium-4, Silicone Quaternium-5, Silicone Quaternium-6, Silicone Quaternium-7, Silicone Quaternium-8, Silicone Quaternium-9, Silicone Quaternium-10, Silicone Quaternium-11, Silicone Quaternium-12, Silicone Quaternium-15, Silicone Quaternium-16, Silicone Quaternium-17, Silicone Quaternium-18, Silicone Quaternium-20, Silicone Quaternium-21, Silicone Quaternium-22, Quaternium-80, as well as Silicone Quaternium-2 Panthenol Succinate and Silicone Quaternium-16/Glycidyl Dimethicone Crosspolymer.


The aminosilicones can be supplied in the form of a nanoemulsion and include MEM 9049, MEM 8177, MEM 0959, MEM 8194, SME 253, and Silsoft Q.


The one or more silicones may include dimethicones, and/or dimethiconols. The dimethiconols are hydroxyl terminated dimethylsilicones represented by the general chemical formulas




embedded image



wherein R is an alkyl group (preferably R is methyl or ethyl, more preferably methyl) and x is an integer up to about 500, chosen to achieve the desired molecular weight. Commercial dimethiconols typically are sold as mixtures with dimethicone or cyclomethicone (e.g., Dow Coming® 1401, 1402, and 1403 fluids).


According to another aspect of the silicone emulsion, the emulsion further includes an anionic surfactant that participates in providing high internal phase viscosity emulsions having particle sizes in the range from about 30 nm to about 10 micron. The anionic surfactant is selected from organic sulfonic acids. Most common sulfonic acids used in the present process are alkylaryl sulfonic acid; alkylaryl polyoxyethylene sulphonic acid; alkyl sulfonic acid; and alkyl polyoxyethylene sulfonic acid. General formulas of the sulfonic acids are as shown below:

R16C6H4SO3H  (I)
R16C6H4O(C2H4O)mSO3H  (II)
R16SO3H  (III)
R16O(C2H4O)mSO3H  (IV)

Where R16, which may differ, is a monovalent hydrocarbon radical having at least 6 carbon atoms. Non-limiting examples of R16 include hexyl, octyl, decyl, dodecyl, cetyl, stearyl, myristyl, and oleyl. ‘m’ is an integer from 1 to 25. Exemplary anionic surfactants include but are not limited to octylbenzene sulfonic acid; dodecylbenzene sulfonic acid; cetylbenzene sulfonic acid; alpha-octyl sulfonic acid; alpha-dodecyl sulfonic acid; alpha-cetyl sulfonic acid; polyoxyethylene octylbenzene sulfonic acid; polyoxyethylene dodecylbenzene sulfonic acid; polyoxyethylene cetylbenzene sulfonic acid; polyoxyethylene octyl sulfonic acid; polyoxyethylene dodecyl sulfonic acid; and polyoxyethylene cetyl sulfonic acid. Generally, 1 to 15% anionic surfactant is used in the emulsion process. For example, 3-10% anionic surfactant can be used to obtain an optimum result. The silicone emulsion may further include an additional emulsifier together with the anionic surfactant, which along with the controlled temperature of emulsification and polymerization, facilitates making the emulsion in a simple and faster 5 way. Non-ionic emulsifiers having a hydrophilic lipophilic balance (HLB) value of 10 to 19 are suitable and include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ethers and polyoxyalkylene sorbitan esters. Some useful emulsifiers having an HLB value of 10 to 19 include, but are not limited to, polyethylene glycol octyl ether; polyethylene glycol lauryl ether; polyethylene glycol tridecyl ether; polyethylene glycol cetyl ether; polyethylene glycol stearyl ether; polyethylene glycol nonylphenyl ether; polyethylene glycol dodecylphenyl ether; polyethylene glycol cetylphenyl ether; polyethylene glycol stearylphenyl ether; polyethylene glycol sorbitan mono stearate; and polyethylene glycol sorbitan mono oleate.


D. Water Miscible Solvent


The hair care composition comprises water-miscible solvent or combination of water-miscible solvent. The content of the water-miscible solvent is from about 0 wt % to about 15 wt %, from about 0.5 wt % to about 12 wt %, from about 1 wt % to about 10 wt %, from about 2 wt % to about 10 wt %. Suitable water miscible solvents include, but are not limited to, dipropylene glycol, tripropylene glycol, diethylene glycol, ethylene glycol, propylene glycol, glycerin, 1,3-propane diol, 2,2-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-2,4-pentanediol, and mixtures thereof. The hair care composition may comprise two or more water miscible solvents, wherein at least one of the solvents is dipropylene glycol.


The hair care compositions may have a pH in the range from about 2 to about 10, at 25° C. Alternatively, the hair care composition has a pH in the range from about 4 to about 7, which may help to solubilize minerals and redox metals already deposited on the hair. Thus, the hair care composition can also be effective toward washing out the existing minerals and redox metals deposits, which can reduce cuticle distortion and thereby reduce cuticle chipping and damage.


The hair care composition can also comprise a hydrotope or mixture of hydrotrope. Suitable hydrotrope include, but are not limited to alkali metal or ammonium salt of a lower alkyl benzene sulphonates such as Sodium Xylene Sulfonate (SXS), sodium cumene sulphonate, sodium toluene sulphonate and mixtures thereof.


E. Optional Ingredients


The hair care composition may further comprise one or more optional ingredients, including benefit agents Suitable benefit agents include, but are not limited to conditioning agents, cationic polymers silicone emulsions, anti-dandruff actives, gel networks, chelating agents, and, natural oils such as sun flower oil or castor oil. Additional suitable optional ingredients include but are not limited to perfumes, perfume microcapsules, colorants, particles, anti-microbials, foam busters, anti-static agents, rheology modifiers and thickeners, suspension materials and structurants, pH adjusting agents and buffers, preservatives, pearlescent agents, solvents, diluents, anti-oxidants, vitamins and combinations thereof.


Such optional ingredients should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics, or performance. The CTFA Cosmetic Ingredient Handbook, Tenth Edition (published by the Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C.) (2004) (hereinafter “CTFA”), describes a wide variety of nonlimiting materials that can be added to the composition herein.


1. Non-Silicone Conditioning Agents


The conditioning agent of the hair care compositions described herein may also comprise at least one organic conditioning agents, either alone or in combination with other conditioning agents, such as the silicones described above. Non-limiting examples of organic conditioning agents are described below.


a. Hydrocarbon Oils


Suitable organic conditioning agents for use as conditioning agents in hair care compositions include, but are not limited to, hydrocarbon oils having at least about 10 carbon atoms, such as cyclic hydrocarbons, straight chain aliphatic hydrocarbons (saturated or unsaturated), and branched chain aliphatic hydrocarbons (saturated or unsaturated), including polymers and mixtures thereof. Straight chain hydrocarbon oils can be from about C12 to about C19. Branched chain hydrocarbon oils, including hydrocarbon polymers, typically will contain more than 19 carbon atoms.


b. Polyolefins


Organic conditioning oils for use in the hair care compositions described herein also include liquid polyolefins, including liquid poly-α-olefins and/or hydrogenated liquid poly-α-olefins. Polyolefins for use herein are prepared by polymerization of C4 to about C14 olefenic monomers, and in one embodiment from about C6 to about C12.


c. Fatty Esters


Other suitable organic conditioning agents for use as a conditioning agent in the hair care compositions described herein include fatty esters having at least 10 carbon atoms. These fatty esters include esters with hydrocarbyl chains derived from fatty acids or alcohols. The hydrocarbyl radicals of the fatty esters hereof may include or have covalently bonded thereto other compatible functionalities, such as amides and alkoxy moieties (e.g., ethoxy or ether linkages, etc.). Other oligomeric or polymeric esters, prepared from unsaturated glyceryl esters can also be used as conditioning materials.


d. Fluorinated Conditioning Compounds


Fluorinated compounds suitable for delivering conditioning to hair as organic conditioning agents include perfluoropolyethers, perfluorinated olefins, fluorine based specialty polymers that may be in a fluid or elastomer form similar to the silicone fluids previously described, and perfluorinated dimethicones.


e. Fatty Alcohols


Other suitable organic conditioning oils for use in the hair care compositions described herein include, but are not limited to, fatty alcohols having at least about 10 carbon atoms, about 10 to about 22 carbon atoms, and in one embodiment about 12 to about 16 carbon atoms.


f. Alkyl Glucosides and Alkyl Glucoside Derivatives


Suitable organic conditioning oils for use in the hair care compositions described herein include, but are not limited to, alkyl glucosides and alkyl glucoside derivatives. Specific non-limiting examples of suitable alkyl glucosides and alkyl glucoside derivatives include Glucam E-10, Glucam E-20, Glucam P-10, and Glucquat 125 commercially available from Amerchol.


g. Polyethylene Glycols


Additional compounds useful herein as conditioning agents include polyethylene glycols and polypropylene glycols having a molecular weight of up to about 2,000,000 such as those with CTFA names PEG-200, PEG-400, PEG-600, PEG-1000, PEG-2M, PEG-7M, PEG-14M, PEG-45M and mixtures thereof.


2. Emulsifiers


A variety of anionic and nonionic emulsifiers can be used in the hair care compositions. The anionic and nonionic emulsifiers can be either monomeric or polymeric in nature. Monomeric examples include, by way of illustrating and not limitation, alkyl ethoxylates, alkyl sulfates, soaps, and fatty esters and their derivatives. Polymeric examples include, by way of illustrating and not limitation, polyacrylates, polyethylene glycols, and block copolymers and their derivatives. Naturally occurring emulsifiers such as lanolins, lecithin and lignin and their derivatives are also non-limiting examples of useful emulsifiers.


3. Chelating Agents


The hair care composition can also comprise a chelant. Suitable chelants include those listed in A E Martell & R M Smith, Critical Stability Constants, Vol. 1, Plenum Press, New York & London (1974) and A E Martell & R D Hancock, Metal Complexes in Aqueous Solution, Plenum Press, New York & London (1996) both incorporated herein by reference. When related to chelants, the term “salts and derivatives thereof” means the salts and derivatives comprising the same functional structure (e.g., same chemical backbone) as the chelant they are referring to and that have similar or better chelating properties. This term include alkali metal, alkaline earth, ammonium, substituted ammonium (i.e. monoethanolammonium, diethanolammonium, triethanolammonium) salts, esters of chelants having an acidic moiety and mixtures thereof, in particular all sodium, potassium or ammonium salts. The term “derivatives” also includes “chelating surfactant” compounds, such as those exemplified in U.S. Pat. No. 5,284,972, and large molecules comprising one or more chelating groups having the same functional structure as the parent chelants, such as polymeric EDDS (ethylenediaminedisuccinic acid) disclosed in U.S. Pat. No. 5,747,440.


Levels of the EDDS chelant in the hair care compositions can be as low as about 0.01 wt % or even as high as about 10 wt %, but above the higher level (i.e., 10 wt %) formulation and/or human safety concerns may arise. The level of the EDDS chelant may be at least about 0.05 wt %, at least about 0.1 wt %, at least about 0.25 wt %, at least about 0.5 wt %, at least about 1 wt %, or at least about 2 wt % of the hair care composition. Levels above about 4 wt % can be used but may not result in additional benefit.


4. Anti-Dandruff Actives


Anti-dandruff agents suitable for use in hair care compositions include pyridinethione salts, azoles (e.g., ketoconazole, econazole, and elubiol), selenium sulfide, particulate sulfur, salicylic acid, and mixtures thereof. A typical anti-dandruff agent is pyridinethione salt. Hair care compositions can also include a zinc-containing layered material. An example of a zinc-containing layered material can include zinc carbonate materials. Of these, zinc carbonate and pyridinethione salts (particularly zinc pyridinethione or “ZPT) are common in the composition, and often present together.


5. Aqueous Carrier


The hair care compositions can be in the form of pourable liquids (under ambient conditions). Such compositions will therefore typically comprise a carrier, which is present at a level of from about 40% to about 80%, alternatively from about 45% to about 75%, alternatively from about 50% to about 70%, by weight, of the hair care composition. The carrier may comprise water, or a miscible mixture of water and organic solvent, and in one aspect may comprise water with minimal or no significant concentrations of organic solvent, except as otherwise incidentally incorporated into the composition as minor ingredients of other essential or optional components.


Carriers useful in the hair care compositions include water and water solutions of lower alkyl alcohols and polyhydric alcohols. The lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, in one aspect, ethanol and isopropanol. Exemplary polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.


F. Product Form


The hair care compositions may be presented in typical hair care formulations. They may be in the form of solutions, dispersion, emulsions, powders, talcs, encapsulated, spheres, spongers, solid dosage forms, foams, and other delivery mechanisms. The compositions may be hair tonics, leave-on hair products such as treatment, and styling products, rinse-off hair products such as shampoos and personal cleansing products, and treatment products; and any other form that may be applied to hair.


The hair care composition in the form of a foam can have a density of from about 0.02 g/cm3 to about 0.35 g/cm3, alternatively from about 0.025 g/cm3 to about 0.30 g/cm3, and alternatively from about 0.03 g/cm3 to about 0.25 g/cm3.


G. Foam Dispenser


The composition can be stored and dispensed from an aerosol foam dispenser that may comprise a reservoir for holding the hair care composition. The reservoir may be made out of any suitable material selected from the group consisting of plastic, metal, alloy, laminate, and combinations thereof. The reservoir may be for one-time use. In an embodiment, the reservoir may be removable from the aerosol foam dispenser. Alternatively, the reservoir may be integrated with the aerosol foam dispenser. In an embodiment, there may be two or more reservoirs.


The reservoir may be comprised of a material selected from the group consisting of rigid materials, flexible materials, and combinations thereof. The reservoir may be comprised of a rigid material if it does not collapse under external atmospheric pressure when it is subject to an interior partial vacuum.


Alternatively, the hair composition can be stored and dispensed from a mechanical foam dispenser. Non-limiting examples of suitable pump dispensers include those described in WO 2004/078903, WO 2004/078901, and WO 2005/078063 and may be supplied by Albea (60 Electric Ave., Thomaston, Conn. 06787 USA) or Rieke Packaging Systems (500 West Seventh St., Auburn, Ind. 46706).


H. Foaming Agent


The hair care composition described herein may comprise from about from about 1% to about 10% propellant, alternatively from about 2% to about 8% propellant, alternatively from about 2.5% to about 7% propellant, and alternatively from about 3% to about 6% propellant, by weight, of the hair care composition.


The propellant may comprise one or more volatile materials, which in a gaseous state, may carry the other components of the hair care composition in particulate or droplet form. The propellant may have a boiling point within the range of from about −45° C. to about 5° C. The propellant may be liquefied when packaged in convention aerosol containers under pressure. The rapid boiling of the propellant upon leaving the aerosol foam dispenser may aid in the atomization of the other components of the hair care composition.


Aerosol propellants which may be employed in the aerosol composition may include the chemically-inert hydrocarbons such as propane, n-butane, isobutane, cyclopropane, and mixtures thereof, as well as halogenated hydrocarbons such as dichlorodifluoromethane, 1,1-dichloro-1,1,2,2-tetrafluoroethane, 1-chloro-1,1-difluoro-2,2-trifluoroethane, 1-chloro-1,1-difluoroethylene, 1,1-difluoroethane, dimethyl ether, monochlorodifluoromethane, trans-1,3,3,3-tetrafluoropropene, and mixtures thereof. The propellant may comprise hydrocarbons such as isobutane, propane, and butane—these materials may be used for their low ozone reactivity and may be used as individual components where their vapor pressures at 21.1° C. range from about 1.17 Bar to about 7.45 Bar, alternatively from about 1.17 Bar to about 4.83 Bar, and alternatively from about 2.14 Bar to about 3.79 Bar. The foaming agent may comprise hydrofluoroolefins (HFOs).


Test Methods

A. Cone/Plate Viscosity Measurement


The viscosities of the examples are measured by a Cone/Plate Controlled Stress Brookfield Rheometer R/S Plus, by Brookfield Engineering Laboratories, Stoughton, Mass. The cone used (Spindle C-75-1) has a diameter of 75 mm and 1° angle. The viscosity is determined using a steady state flow experiment at constant shear rate of 2 s−1 and at temperature of 26.5° C. The sample size is 2.5 ml and the total measurement reading time is 3 minutes.


B. Hair Wet Feel Friction Measurement (Final Rinse Friction and Initial Rinse Friction):


A switch of 4 grams general population hair at 8 inches length is used for the measurement. Water temperature is set at 100° F., hardness is 7 grain per gallon, and flow rate is 1.6 liter per minute. For shampoos in liquid form, 0.2 ml of a liquid shampoo is applied on the hair switch in a zigzag pattern uniformly to cover the entire hair length, using a syringe. For shampoo in aerosol foam form, foam shampoo is dispensed to a weighing pan on a balance. 0.2 grams of foam shampoo is taken out from weighing pan and applied on the hair switch uniformly to cover the entire hair length via a spatula. The hair switch is then 1st lathered for 30 seconds, rinse with water for 30 seconds, and 2nd lathered for 30 seconds. Water flow rate is then reduced to 0.2 liter per minute. The hair switch is sandwiched with a clamp under 1800 gram of force and pulled through the entire length while the water is running at the low flow rate. The pull time is 30 second. Friction is measured with a friction analyzer with a load cell of 5 kg. Repeat the pull under rinse for total of 21 times. Total 21 friction values are collected. The final rinse friction is the average friction of the last 7 points and initial rinse friction is the average of the initial 7 points. The delta final to initial is calculated by subtracting the final rinse friction from the initial rinse friction.


C. Foam Density & Foam Volume


Foam density is measured by placing a 100 ml beaker onto a mass balance, tarring the mass of the beaker and then dispensing product from the aerosol container into the 100 ml beaker until the volume of the foam is above the rim of the vessel. The foam is made level with the top of the beaker by scraping a spatula across it within 10 seconds of dispensing the foam above the rim of the vessel. The resulting mass of the 100 ml of foam is then divided by the volume (100) to determine the foam density in units of g/ml.


Foam volume is measured by placing a weigh boat onto a mass balance, tarring the mass of the weigh boat and then dispensing the desired amount of product from the aerosol container. The grams of foam dispensed is determined and then divided by the density of foam as determined from the Foam Density methodology to reach a volume of foam in ml or cm3.


EXAMPLES

The following are non-limiting examples of the hair care composition described herein. The examples were prepared by conventional formulation and mixing techniques. It will be appreciated that other modifications of the present invention within the skill of those in the shampoo formulation art can be undertaken without departing from the spirit and scope of this invention. All parts, percentages, and ratios herein are by weight unless otherwise specified. Some components may come from suppliers as dilute solutions. The amount stated reflects the weight percent of the active material, unless otherwise specified.









TABLE 2







Comparative Examples of Hair Care Compositions in Foam Form















Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.



Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Ex. 7

















Viscosity (cps)
1441
not
3989
3805
5734
6518
5428




stable







Final rinse
2104
1089
1656
1732
1784
1882
1823


friction (gf)









Delta final to
361
154
435
365
354
454
401


initial









Sodium laureth-
18
18
18
18
18
18
18


1-sulfate1









Branched sodium
8
8
8
8
8
8
8


trideceth-2-sulfate ST2S2









Cocoamidopropyl betaine3
2
2
2
2
2
2
2


Sodium
2
2
2
2
2
2
2


Lauroamphoacetate4









Fragrance
2.4
2.4
2.4
2.4
2.4
2.4
2.4


Dipropylene
4
4
4
4
4
4
4


glycol









Guar, Hydroxyl-


0.8
0.8


0.4


propyl









Trimonium









Chloride,









n-Hance 32716









Guar,




0.4
0.4
0.2


Hydroxylpropyl









Trimonium









Chloride,









n-Hance CG177









Polyquaternium-68

0.8







Polyox N-12K9



0.2

0.2
0.2


HFO (propellant)10
7.0
7.0
7.0
7.0
7.0
7.0
7.0








Preservatives, pH
Adjust as needed, up to 1%


adjusters















Water
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.
















TABLE 3







Examples of Hair Care Compositions in Foam Form













Ex. A
Ex. B
Ex. C
Ex. D
Ex. E
















Viscosity (cps)
7557
6351
5122
4647
3421


Final Rinse Friction (gf)
1592
1352
1632
1405
1475


Delta Final to initial
335
253
362
269
289


Sodium laureth-1-sulfate
18
18
18
18
18


SLE1S1


Branched sodium
8
8
8
8
8


trideceth-2-sulfate


ST2S2


Cocoamidopropyl
2
2
2
2
2


betaine3


Sodium
2
2
2
2
2


Lauroamphoacetate4


Perfume
2.4
2.4
2.4
2.4
2.4


Dipropylene glycol
4
4
4
4
4


Guar, Hydroxylpropyl


0.4
0.4
0.8


Trimonium Chloride,


n-Hance 32716


Guar, Hydroxylpropyl
0.4
0.4
0.2
0.2



Trimonium Chloride,


n-Hance CG177


Polyquaternium-68
0.2
0.4
0.2
0.4
0.4


PEO N-12K9
0.2
0.2
0.2
0.2
0.2


HFO (propellant)10
7.0
7.0
7.0
7.0
7.0








Preservatives, pH
Adjust as needed, up to 1%


adjusters












Water
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.









Examples A to E may be preferred by consumers over Comparative Examples 1-7 because they can provide a more optimal in-use wet feel that can suggest to the consumer that the hair is both clean and conditioned. Compositions with optimal in-use wet feel have relatively low final rinse friction in combination with a relatively high delta final to initial. The final rinse friction of Examples A-E ranges from 1352 to 1632 gf. This is lower than the final rinse friction for the stable Comparative Examples 1 and 3-7, which range from 1656 to 2104 gf. The delta final to initial for Examples A-E ranges from 253-362 gf. Note, Comparative Example 2 is not acceptable to consumers because it not stable and separated into two phases and formed coacervates in the bottle.









TABLE 4







Comparative Examples of Hair Care


Compositions in Compact Liquid Form














Comp.
Comp.
Comp.
Comp.
Comp.
Comp.



Ex. 8
Ex. 9
Ex. 10
Ex. 11
Ex. 12
Ex. 13
















Viscosity (cps)
1441
3989
3805
5428
1949
2046


Final rinse
2375
1873
1821
1853
2053
1809


friction (gf)








Delta final to
488
388
407
362
410
462


initial








Sodium laureth-
18
18
18
18

26


1-sulfate SLE1S1








Branched sodium
8
8
8
8




trideceth-2-








sulfate ST2S2








Cocoamido-
2
2
2
2

4


propyl








betaine3








Sodium
2
2
2
2




Lauro-








amphoacetate4








Disodium




10



Laureth








Sulfosuccinate11








Coco Glucoside12




9.8



Sodium




11.85



Coco-








amphoacetate13








Perfume
2.4
2.4
2.4
2.4
2.4
2.4


Dipropylene
4
4
4
4
4
4


glycol








Guar,




0.4
0.4


Hydroxylpropyl








Trimonium








Chloride,








Jaguar C-5005








Guar,

0.8
0.8
0.4




Hydroxylpropyl








Trimonium








Chloride,








n-Hance 32716








Guar,



0.2




Hydroxylpropyl








Trimonium








Chloride,








n-Hance CG177








PEO N-12K9


0.2
0.2










Preservatives, pH
Adjust as needed, up to 1%


adjusters














Water
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.
















TABLE 5







Examples of Hair Care Compositions in Compact Liquid Form













Ex. F
Ex. G
Ex. H
Ex. I
Ex. J
















Viscosity (cps)
3421
5122
4647
2196
1844


Final rinse friction (gf)
1562
1635
1480
1257
1419


Delta final to initial
357
342
289
381
306


Sodium laureth-1-
18
18
18

26


sulfate SLE1S1


Branched sodium
8
8
8




trideceth-2-


sulfate ST2S2


Cocoamidopropyl
2
2
2

4


betaine3


Sodium
2
2
2




Lauroamphoacetate4


Disodium Laureth



10



sulfosuccinate11


Coco Glucoside12



9.8



Sodium



11.85



cocoamphoacetate13


Perfume
2.4
2.4
2.4
2.4
2.4


Dipropylene glycol
4
4
4
4
4


Guar, Hydroxylpropyl



0.4
0.4


Trimonium Chloride,


Jaguar C-5005


Guar, Hydroxylpropyl
0.8
0.4
0.4




Trimonium Chloride,


n-Hance 32716


Guar, Hydroxylpropyl

0.2
0.2




Trimonium Chloride,


n-Hance CG177


Polyquaternium-68
0.4
0.2
0.4
0.4
0.4


PEO N-12K9
0.2
0.2
0.2










Preservatives,
Adjust as needed, up to 1%


pH adjusters












Water
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.











    • 1. Sodium Laureth (1 molar ethylene oxide) sulfate at 70% active, supplier: Stephan Co

    • 2. Sodium Tridecyl Ether Sulfate (2 molar ethylene oxide), Stepan ST2S-65 (Steol-TD 402 65) 65% active, supplier: Stephan Co

    • 3. Tegobetaine F-B, 30% active, supplier: Goldschmidt Chemical

    • 4. NaLaa (Miranol Ultra L32) at 32% active level, supplier: Solvay

    • 5. Jaguar C500, MW of 500,000, CD of 0.7, from Solvay

    • 6. N-Hance 3271, MW of 500,000, CD of 0.7, from Ashland

    • 7. N-Hance CG17, MW of 1,600,000, CD of 1.0, from Ashland





8. Polyquaternium 6, PolyDADMAC, MW of 150,000, CD of 6.2, trade name: Mirapol® 100s, 31.5% active, from Solvay

    • 9. Polyox WSR N-12K, polyethylene oxide, MW of 1,000,000, from Dow.
    • 10. Hydrofluoroolefins (HFO-1234ze), from Honeywell
    • 11. Disodium Laureth Sulfosuccinate, Texapon SB 3, 40% active, from BASF
    • 12. Coco Glucoside, Plantaren 818 UP, C8-16 fatty alcohol glucoside, 52% active, from BASF
    • 13. Sodium Cocoamphoacetate (NaCaa), Dehyton MC, 39% active, from BASF


Examples F to J may be preferred by consumers over Comparative Examples 8-13 because they can provide a more optimal in-use wet feel. The final rinse friction for Examples F-J ranges from 1257-1635 gf. This is significantly lower than the wet feel friction for the stable Comparative Examples 8-13, which range from 1809 to 2375. The delta final to initial for Examples F-J ranges from 289-381gf.


Combinations:






    • A. A hair care composition comprising:
      • a. from about 20% to about 45%, alternatively from about 25% to about 40%, alternatively from about 30% to about 40%, by weight, of a detersive surfactant;
      • b. from about 0.01% to about 2.5%, by weight, of a cationic synthetic polymer comprising a homopolymer and/or a copolymer, charge density from about 2 to about 10 meq/g, and a molecular weight from about 1,000 g/mol to about 2,000,000 g/mol;
      • c. from about 0.01% to about 2.5%, by weight, of a cationic guar polymer comprising a molecular weight from about comprising a molecular weight from about 50,000 g/mol to about 2,500,000 g/mol and charge density from about 0.1 to about 2.5 meq/g; and charge density from about 0.1 meq/g to about 2.5 meq/g.

    • B. A hair care composition comprising:
      • a. from about 20% to about 45%, by weight, of a detersive surfactant;
      • b. from about 0.05% to about 1.5%, by weight, of a cationic synthetic polymer comprising a homopolymer and/or a copolymer charge density from about 2 to about 10 meq/g, and a molecular weight from about 1,000 g/mol to about 2,000,000 g/mol;
      • c. from about 0.05 weight % to about 1.5 weight % of a cationic guar polymer comprising a molecular weight from about 50,000 g/mol to about 2,500,000 g/mol and charge density from about 0.1 to about 2.5 meq/g;
        • wherein the hair care composition produces a final rinse friction of from about 600 gf to about 2000 gf; and
        • wherein the hair care composition produces a delta final to initial of from about 100 gf to about 600 gf.

    • C. The hair care composition according to Paragraphs A-B, wherein the composition comprises from about 0.05% to about 2.2%, alternatively from about 0.05% to about 2%, alternatively from about 0.1% to about 1.8%, alternatively from about 0.1% to about 1.6%, alternatively from about 0.15% to about 1.5%, alternatively from about 0.15% to about 1.4%, alternatively from about 0.2% to about 1.3%, alternatively from 0.2% to about 1.2% cationic synthetic polymer, by total weight of the composition.

    • D. The hair care composition according to Paragraphs A-C wherein the composition comprises from about 0.01% to about 2.2%, alternatively from about 0.05% to about 2%, alternatively from about 0.1% to about 1.8%, alternatively from 0.2% to about 1.6%, alternatively from 0.25% to about 1.5%, alternatively from 0.3% to about 1.4%, cationic guar polymer, by total weight of the composition.

    • E. The hair care composition according to Paragraphs A-C wherein the composition comprises from about 0.05% to about 0.9%, alternatively from about 0.1% to about 0.8%, alternatively from about 0.2% to about 0.7%, alternatively from about 0.2% to about 0.5% of cationic guar polymer, by total weight of the composition.

    • F. The hair care composition according to Paragraphs A-C wherein the composition comprises from about 0.25% to about 1.1%, alternatively from about 0.3% to about 0.9%, alternatively from about 0.4% to about 0.8% of cationic guar polymer, by total weight of the composition.

    • G. The hair care composition according to Paragraphs A-F wherein the cationic synthetic polymer has the following structure







embedded image



where A, may be one or more of the following cationic moieties:




embedded image



where @=amido, alkylamido, ester, ether, alkyl or alkylaryl;


where Y=C1-C22 alkyl, alkoxy, alkylidene, alkyl or aryloxy;


where ψ=C1-C22 alkyl, alkyloxy, alkyl aryl or alkyl arylox;


where Z=C1-C22 alkyl, alkyloxy, aryl or aryloxy;


where R1=H, C1-C4 linear or branched alkyl;


where s=0 or 1, n=0 or 1;


where T and R7=C1-C22 alkyl; and


where X—=halogen, hydroxide, alkoxide, sulfate or alkylsulfate.


Where the monomer bearing a negative charge is defined by R2′=H, C1-C4 linear or branched alkyl and R3 as:




embedded image



where D=O, N, or S;


where Q=NH2 or O;


where u=1-6;


where t=0-1; and


where J=oxygenated functional group containing the following elements P, S, C.


Where the nonionic monomer is defined by R2″=H, C1-C4 linear or branched alkyl, R6=linear or branched alkyl, alkyl aryl, aryl oxy, alkyloxy, alkylaryl oxy and β is defined as




embedded image



and


where G′ and G″ are, independently of one another, O, S or N—H and L=0 or 1.

    • H. The hair care composition according to Paragraphs A-G wherein the cationic synthetic polymer has the following structure wherein the cationic synthetic polymer is selected from the group consisting of homopolymer polydiallyldimethylammonium chloride, copolymer polydiallyldimethylammonium chloride, and combinations thereof.
    • I. The hair care composition according to Paragraphs A-H, wherein the cationic synthetic polymer comprises polydiallyldimethylammonium chloride.
    • J. The hair care composition according to Paragraph I, wherein the composition comprises from about 0.2% to about 0.6%, by weight, of a polydiallyldimethylammonium chloride.
    • K. The hair care composition of according to Paragraphs A-J wherein the composition has a liquid phase viscosity of about 1 centipoise (cP) to about 15,000 cP, alternatively from about 10 cP to about 12,000 cP, alternatively from about 20 cP to about 10,000 cP, alternatively from about 50 cP to about 8,000 cP, alternatively from about 100 cP to about 5000 cP, alternatively from about 250 cP to about 3000 cP, alternatively from about 500 cP to about 2500 cP.
    • L. The hair care composition according to Paragraphs A-K, wherein said hair care composition is dispensed as a foam.
    • M. The hair care composition according to Paragraph L, wherein the density of the foam is from about 0.01 g/cm′ to about 0.50 g/cm3, alternatively from about 0.02 g/cm3 to about 0.40 g/cm3, alternatively from about 0.03 g/cm3 to about 0.35 g/cm3.
    • N. The hair care composition according to Paragraphs A-M, further comprising from about 1 to 15% of a foaming agent.
    • O. The hair care composition according to Paragraphs A-N, further comprising a foaming agent and wherein the foaming agent is selected from the group consisting of hydrocarbons, halogenated hydrocarbons, and combinations thereof.
    • P. The hair care composition according to Paragraphs A-O, further comprising a foaming agent and wherein the foaming agent is selected from the group consisting of propane, n-butane, isobutane, cyclopropane, and combinations thereof.
    • Q. The hair care composition according to Paragraphs A-P, further comprising a foaming agent and wherein the foaming agent comprises hydrofluroolefin (HFO).
    • R. The hair care composition according to Paragraphs A-Q, wherein the composition has a pH of from about 5 to about 7.
    • S. The hair care composition according to Paragraphs A-R, further comprising an anti-dandruff active.
    • T. The hair care composition according to Paragraphs A-S, wherein the hair care composition produces a final rinse friction final rinse friction from about 600 gf to about 2000 gf, alternatively from about 700 gf to about 1900 gf, alternatively from about 800 gf to about 1800 gf, alternatively from about 900 gf to about 1700 gf, alternatively from about 950 gf to about 1650 gf, alternatively from about 1000 gf to about 1600 gf.
    • U. The hair care composition according to Paragraphs A-T wherein the hair care composition produces a final rinse friction from about 1000 gf to about 2000 gf, alternatively from about 1100 gf to about 1900 gf, alternatively from about 1200 gf to about 1800 gf, alternatively from about 1300 gf to about 1700 gf, alternatively from about 1350 gf to about 1650 gf, alternatively from about 1400 gf to about 1600 gf.
    • V. The hair care composition according to Paragraphs A-U, wherein the hair care composition produces a delta final to initial of from about 100 gf to about 600 gf, alternatively from about 150 gf to about 550 gf, alternatively from about 180 to about 500 gf, alternatively from about 200 gf to about 450 gf.
    • W. The hair care composition according to Paragraphs A-V, wherein the hair care composition produces a delta final to initial of from about 100 gf to about 600 gf, alternatively from about 200 gf to about 500 gf, alternatively from about 250 to about 400 gf, alternatively from about 275 gf to about 375 gf.
    • X. The hair care composition according to Paragraphs A-W, wherein the hair care composition produces a delta final to initial of at least 200 gf, alternatively at least 225 gf, alternatively at least 250 gf, and/or alternatively at least 300 gf.
    • Y. The hair care composition according to Paragraphs A-X, wherein the molecular weight of the cationic synthetic polymer is from about 6,000 g/mol to about 1.5 million g/mol, alternatively from about 8,000 g/mol to about 1.4 million g/mol, alternatively from about 10,000 g/mol to about 1.2 million g/mol, alternatively from about 25,000 g/mol to about 750,000 g/mol, alternatively from about 50,000 g/mol to about 500,000 g/mol, alternatively from about 100,000 g/mol to about 200,000 g/mol.
    • Z. The hair care composition according to Paragraphs A-Y, wherein the charge density of the cationic synthetic polymer is from about 2.5 meq/g to about 8 meg/g, alternatively from about 3.5 meq/g to about 7.5 meg/g, alternatively from about 4 meq/g to about 7 meg/g.
    • AA. The hair care composition according to Paragraphs A-Z, wherein the compositions comprise from about 25% to about 45%, alternatively from about 25% to about 40%, alternatively from about 30% to about 40%, alternatively from about 30% to about 35%, by weight, total detersive surfactant.
    • BB. The hair care composition according to Paragraphs A-AA, wherein the molecular weight of the cationic guar polymer is from about 150,000 g/mol to about 2 million g/mol, alternatively from about 300,000 g/mol to about 1.8 million g/mol, alternatively from about 400,000 g/mol to about 1.7 million g/mol, alternatively from about 500,000 g/mol to about 1.6 million g/mol.
    • CC. The hair care composition according to Paragraphs A-BB, wherein the charge density of the cationic guar polymer is from about 0.2 meq/g to about 2.2 meg/g, alternatively from about 0.4 meq/g to about 1.9 meg/g, alternatively from about 0.5 meq/g to about 1.8 meg/g, alternatively from about 0.6 meq/g to about 1.3 meg/g, alternatively from about 0.7 meq/g to about 1.0 meg/g.
    • DD. A method of treating hair, the method comprising:
      • a. applying to the hair the hair care composition according to Paragraphs A-CC, wherein the hair care composition is dispensed from an aerosol foam dispenser as a dosage of foam;
      • b. rinsing the hair care composition;
      • c. optionally applying to the hair a second hair care composition.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”


Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A method of treating hair, the method comprising: a) providing a stable hair care composition and a foaming agent in an aerosol foam dispenser wherein the hair care composition comprises: i) from about 20% to about 45%, by weight, of a detersive surfactant;ii) from about 0.1% to about 1.0%, by weight, of polyquaternium-6; andiii) from about 0.2% to about 0.8%, by weight, of a cationic guar polymer having a molecular weight of about 50,000 g/mol to about 2,500,000 g/mol and a charge density of about 0.1 to about 2.5 meq/g;b) applying to a user's hair the hair care composition wherein the hair care composition is dispensed from the aerosol foam dispenser as a dosage of foam; andc) rinsing the hair care composition from the hair;d) optionally applying to the hair a second hair care composition;wherein the user's hair comprises a final rinse friction of about 600 gf to 1600 gf;wherein the user's hair comprises a delta final to initial of about 100 gf to about 350 gf; andwherein the density of the foam is from about 0.03 g/cm3 to about 0.35 g/cm3.
  • 2. The method of claim 1 wherein the composition further comprises from about 0.1% to about 1.6%, by weight, of the cationic synthetic polymer.
  • 3. The method of claim 1 wherein the composition comprises from about 0.3% to about 0.9%, by weight, of the cationic guar polymer.
  • 4. The method of claim 1 wherein the hair care composition has a liquid phase viscosity of from about 1 centipoise to about 3000 centipoise.
  • 5. The method of claim 1 wherein the hair care composition has a liquid phase viscosity of from about 5 centipoise to about 1500 centipoise.
  • 6. The method of claim 1 wherein the foaming agent is selected from the group consisting of propane, n-butane, isobutane, cyclopropane, and combinations thereof.
  • 7. The method of claim 1 wherein the foaming agent comprises hydrofluroolefin (HFO).
  • 8. The method of claim 1 wherein the final rinse friction is from about 1000 gf to about 1600 gf.
  • 9. The method of claim 1 wherein the final rinse friction is from about 1350 gf to about 1600 gf.
  • 10. The method of claim 1 wherein the hair delta final to initial of from about 150 gf to about 350 gf.
  • 11. The method of claim 10 wherein the delta final to initial of from about 200 gf to about 350 gf.
  • 12. The method of claim 1 wherein the composition comprises from about 0.2% to about 0.6%, by weight, of polyquaternium-6.
US Referenced Citations (381)
Number Name Date Kind
2879231 Marshall Mar 1959 A
3709437 Wright Jan 1973 A
3950532 Bouillon et al. Apr 1976 A
3959160 Horsier et al. May 1976 A
4309119 Wittersheim Jan 1982 A
4329334 Su et al. May 1982 A
4686254 Lochhead et al. Aug 1987 A
4726945 Patel Feb 1988 A
4839166 Grollier et al. Jun 1989 A
4867971 Ryan et al. Sep 1989 A
4997641 Hartnett Mar 1991 A
5221530 Janchitraponvej et al. Jun 1993 A
5294644 Login et al. Mar 1994 A
5332569 Wood et al. Jul 1994 A
5364031 Taniguchi et al. Nov 1994 A
5374421 Tashiro Dec 1994 A
5409695 Abrutyn et al. Apr 1995 A
5415810 Lee et al. May 1995 A
5417965 Janchitraponvej et al. May 1995 A
5439682 Wivell Aug 1995 A
5441659 Minor Aug 1995 A
5500217 Austin et al. Mar 1996 A
5560918 Wivell Oct 1996 A
5578298 Berthiaume Nov 1996 A
5599549 Wivell Feb 1997 A
5624666 Coffindaffer et al. Apr 1997 A
5635469 Fowler et al. Jun 1997 A
5701665 Kling Dec 1997 A
5716626 Sakurai et al. Feb 1998 A
5747436 Patel et al. May 1998 A
5776444 Birtwistle et al. Jul 1998 A
5816446 Steindorf et al. Oct 1998 A
5830440 Sturla et al. Nov 1998 A
5853618 Barker Dec 1998 A
5902225 Monson May 1999 A
5925603 D, Angelo Jul 1999 A
5944229 Rokkjaer Aug 1999 A
5980877 Baravetto Nov 1999 A
5985939 Minor Nov 1999 A
6015547 Yam Jan 2000 A
6015780 Llosas Bigorra et al. Jan 2000 A
6020303 Cripe et al. Feb 2000 A
6039933 Samain et al. Mar 2000 A
6046152 Vinson et al. Apr 2000 A
6060443 Cripe et al. May 2000 A
6087309 Vinson et al. Jul 2000 A
6110451 Matz et al. Aug 2000 A
6133222 Vinson et al. Oct 2000 A
6153569 Halloran Nov 2000 A
6162834 Sebillotte-Arnaud et al. Dec 2000 A
6231844 Nambu May 2001 B1
6268431 Snyder et al. Jul 2001 B1
6284225 Bhatt Sep 2001 B1
6329331 Aronson et al. Dec 2001 B1
6335312 Coffindaffer et al. Jan 2002 B1
6423305 Cauwet-Martin et al. Jul 2002 B1
6451300 Dunlop et al. Sep 2002 B1
6511669 Garnier Jan 2003 B1
6565863 Guillou et al. May 2003 B1
6579907 Sebillotte-Amaud et al. Jun 2003 B1
6627585 Steer Sep 2003 B1
6642194 Harrison Nov 2003 B2
6649155 Dunlop Nov 2003 B1
6716455 Birkel Apr 2004 B2
6743760 Hardy et al. Jun 2004 B1
6827795 Kastur et al. Dec 2004 B1
6897253 Schmucker-castner May 2005 B2
6930078 Wells Aug 2005 B2
6992054 Lee et al. Jan 2006 B2
7217752 Schmucker-Castner et al. May 2007 B2
7220408 Decoster May 2007 B2
7223385 Gawtrey May 2007 B2
7485289 Gawtrey Feb 2009 B2
7504094 Decoster Mar 2009 B2
7531497 Midha et al. May 2009 B2
7541320 Dabkowski et al. Jun 2009 B2
7659233 Hurley et al. Feb 2010 B2
7666825 Wagner et al. Feb 2010 B2
7820609 Soffin et al. Oct 2010 B2
7829514 Paul et al. Nov 2010 B2
7928053 Hecht Apr 2011 B2
7977288 SenGupta Jul 2011 B2
8084407 Soffin et al. Dec 2011 B2
8088721 Soffin et al. Jan 2012 B2
8119168 Johnson Feb 2012 B2
8124063 Harichian et al. Feb 2012 B2
8300949 Xu Oct 2012 B2
8343469 Bierganns et al. Jan 2013 B2
8388699 Wood Mar 2013 B2
8401304 Cavallaro et al. Mar 2013 B2
8435501 Peffly et al. May 2013 B2
8437556 Saisan May 2013 B1
8491877 Schwartz et al. Jul 2013 B2
8580725 Kuhlman et al. Nov 2013 B2
8609600 Warr et al. Dec 2013 B2
8628760 Carter et al. Jan 2014 B2
8629095 Deleersnyder Jan 2014 B2
8653014 Hilvert Feb 2014 B2
8675919 Maladen Mar 2014 B2
8680035 Kuhlman et al. Mar 2014 B2
8699751 Maladen Apr 2014 B2
8709385 Tamarkin Apr 2014 B2
8741363 Albrecht et al. Jun 2014 B2
8771765 Fernandez Jul 2014 B1
8795635 Tamarkin et al. Aug 2014 B2
8883698 Scheibel et al. Nov 2014 B2
9006162 Rizk Apr 2015 B1
9155768 Gutmann et al. Oct 2015 B2
9186642 Dihora et al. Nov 2015 B2
9265727 Lowenborg Feb 2016 B1
9296550 Smith Mar 2016 B2
9308398 Hutton et al. Apr 2016 B2
9428616 Wagner Aug 2016 B2
9512275 Wagner Dec 2016 B2
9610239 Feng Apr 2017 B2
9682021 Tamarkin et al. Jun 2017 B2
9776787 Nakajima Oct 2017 B2
9949901 Zhao et al. Apr 2018 B2
9968535 Kitko May 2018 B2
9968537 Sharma May 2018 B2
9993419 Glenn, Jr. Jun 2018 B2
9993420 Glenn, Jr. et al. Jun 2018 B2
10123963 Glenn, Jr. et al. Nov 2018 B2
10311575 Stofel Jun 2019 B2
10426713 Song Oct 2019 B2
10441519 Zhao Oct 2019 B2
10653590 Torres Rivera May 2020 B2
10799434 Torres Rivera Oct 2020 B2
10842720 Thompson Nov 2020 B2
10881597 Lane et al. Jan 2021 B2
10888505 Johnson Jan 2021 B2
20010000467 Murray Apr 2001 A1
20010006088 Lyle Jul 2001 A1
20010006621 Coupe et al. Jul 2001 A1
20010016565 Bodet et al. Aug 2001 A1
20020028182 Dawson Mar 2002 A1
20020037299 Turowski-Wanke et al. Mar 2002 A1
20020172648 Hehner et al. Nov 2002 A1
20020193265 Perron et al. Dec 2002 A1
20020197213 Schmenger et al. Dec 2002 A1
20030022799 Alvarado et al. Jan 2003 A1
20030049292 Turowski-Wanke et al. Mar 2003 A1
20030050150 Tanaka Mar 2003 A1
20030059377 Riley Mar 2003 A1
20030083210 Goldberg May 2003 A1
20030108501 Hofrichter Jun 2003 A1
20030147842 Restle Aug 2003 A1
20030154561 Patel Aug 2003 A1
20030161802 Flammer Aug 2003 A1
20030180246 Frantz et al. Sep 2003 A1
20030185867 Kerschner et al. Oct 2003 A1
20030223951 Geary et al. Dec 2003 A1
20030228272 Amjad et al. Dec 2003 A1
20040014879 Denzer et al. Jan 2004 A1
20040144863 Kendrick Jul 2004 A1
20040229963 Stephane Nov 2004 A1
20040234484 Peffly Nov 2004 A1
20040235689 Sakai et al. Nov 2004 A1
20050020468 Frantz et al. Jan 2005 A1
20050136011 Nekludoff Jun 2005 A1
20050152863 Brautigam Jul 2005 A1
20050201967 Albrecht et al. Sep 2005 A1
20050202984 Schwartz et al. Sep 2005 A1
20050233929 Queen Oct 2005 A1
20060002880 Peffly Jan 2006 A1
20060030509 Modi Feb 2006 A1
20060034778 Kitano et al. Feb 2006 A1
20060057075 Arkin et al. Mar 2006 A1
20060057097 Derici Mar 2006 A1
20060079417 Wagner Apr 2006 A1
20060079418 Wagner et al. Apr 2006 A1
20060079419 Wagner et al. Apr 2006 A1
20060079420 Wagner et al. Apr 2006 A1
20060079421 Wagner et al. Apr 2006 A1
20060090777 Hecht May 2006 A1
20060110415 Gupta May 2006 A1
20060120982 Derici et al. Jun 2006 A1
20060120988 Bailey et al. Jun 2006 A1
20060135397 Bissey-beugras Jun 2006 A1
20060183662 Crotty et al. Aug 2006 A1
20060210139 Carroll Sep 2006 A1
20060229227 Goldman Oct 2006 A1
20060252662 Soffin Nov 2006 A1
20060276357 Smith, III et al. Dec 2006 A1
20060292104 Guskey Dec 2006 A1
20070072781 Soffin et al. Mar 2007 A1
20070110700 Wells May 2007 A1
20070154402 Trumbore et al. Jul 2007 A1
20070155637 Smith, III et al. Jul 2007 A1
20070160555 Staudigel Jul 2007 A1
20070179207 Fernandez De Castro et al. Aug 2007 A1
20070225193 Kuhlman et al. Sep 2007 A1
20070269397 Terada Nov 2007 A1
20070292380 Staudigel Dec 2007 A1
20080008668 Harichian et al. Jan 2008 A1
20080019928 Franzke Jan 2008 A1
20080063618 Johnson Mar 2008 A1
20080096786 Holt et al. Apr 2008 A1
20080138442 Johnson Jun 2008 A1
20080152610 Cajan Jun 2008 A1
20080160093 Schwartz et al. Jul 2008 A1
20080206179 Peffly Aug 2008 A1
20080260655 Tamarkin et al. Oct 2008 A1
20080260665 Guerchet et al. Oct 2008 A1
20080261844 Ruppert et al. Oct 2008 A1
20080299054 Chandar et al. Dec 2008 A1
20080317698 Wells et al. Dec 2008 A1
20090029900 Cetti et al. Jan 2009 A1
20090041702 Molenda Feb 2009 A1
20090062406 Loeffler Mar 2009 A1
20090155383 Kitko et al. Jun 2009 A1
20090178210 Bistram Jul 2009 A1
20090197784 Ainger Aug 2009 A1
20090221463 Kitko et al. Sep 2009 A1
20090246236 Kitko Oct 2009 A1
20090312224 Yang et al. Dec 2009 A1
20090324505 Seidling Dec 2009 A1
20100183539 Bernhardt Jul 2010 A1
20100310644 Liebmann Dec 2010 A1
20110008267 Arkin et al. Jan 2011 A1
20110165107 Derks et al. Jul 2011 A1
20110171155 Federle Jul 2011 A1
20110232668 Hoffmann et al. Sep 2011 A1
20110245126 Tsaur et al. Oct 2011 A1
20110268778 Dihora et al. Nov 2011 A1
20110269657 Dihora Nov 2011 A1
20110305739 Royce Dec 2011 A1
20110319790 Kost et al. Dec 2011 A1
20120014901 Sunkel et al. Jan 2012 A1
20120031419 Batt Feb 2012 A1
20120034173 Batt Feb 2012 A1
20120087883 Leray et al. Apr 2012 A1
20120100091 Hata et al. Apr 2012 A1
20120100092 Murray Apr 2012 A1
20120291911 Smith Nov 2012 A1
20120309660 Kawasoe Dec 2012 A1
20120316095 Wei et al. Dec 2012 A1
20130053295 Park et al. Jan 2013 A1
20130034515 Stone et al. Feb 2013 A1
20130045285 Stella et al. Feb 2013 A1
20130053300 Scheibel et al. Feb 2013 A1
20130089587 Staudigel Apr 2013 A1
20130115173 Trumbore et al. May 2013 A1
20130143784 Rizk Jun 2013 A1
20130150338 Ananthapadmanabhan Jun 2013 A1
20130156712 Frantz Jun 2013 A1
20130189212 Jawale et al. Jul 2013 A1
20130211952 Sugaya Aug 2013 A1
20130216491 Ogihara et al. Aug 2013 A1
20130243718 Pasquet Sep 2013 A1
20130244922 Bartelt Sep 2013 A1
20130251659 Derks et al. Sep 2013 A1
20130280192 Carter et al. Oct 2013 A1
20130280202 Stella et al. Oct 2013 A1
20130284195 Murdock Oct 2013 A1
20130296289 Hall et al. Nov 2013 A1
20140037703 Dihora Feb 2014 A1
20140039066 Grimadell et al. Feb 2014 A1
20140086893 Gutmann et al. Mar 2014 A1
20140112879 Molenda et al. Apr 2014 A1
20140127149 Lepilleur May 2014 A1
20140131395 Chang May 2014 A1
20140134125 Dahl May 2014 A1
20140147025 Periaswamy May 2014 A1
20140162979 Palla-venkata Jun 2014 A1
20140171471 Krueger Jun 2014 A1
20140216495 Bureiko Aug 2014 A1
20140228268 Fahl et al. Aug 2014 A1
20140237732 Zuedel Fernandes et al. Aug 2014 A1
20140246515 Nakajima Sep 2014 A1
20140308227 Mabille Oct 2014 A1
20140309154 Carter et al. Oct 2014 A1
20140335041 Peffly et al. Nov 2014 A1
20140348884 Hilvert Nov 2014 A1
20140348886 Johnson et al. Nov 2014 A1
20150021496 Shabbir Jan 2015 A1
20150037273 Wagner Feb 2015 A1
20150050231 Murase Feb 2015 A1
20150071977 Dihora Mar 2015 A1
20150093420 Snyder Apr 2015 A1
20150093429 Carter et al. Apr 2015 A1
20150098921 Franzke et al. Apr 2015 A1
20150099684 Boutique Apr 2015 A1
20150110728 Jayaswal Apr 2015 A1
20150147286 Barrera May 2015 A1
20150218496 Schmiedel et al. Aug 2015 A1
20150262354 Periaswamy Sep 2015 A1
20150297489 Kleinen Oct 2015 A1
20150299400 Wagner et al. Oct 2015 A1
20150313818 Stagg Nov 2015 A1
20150359725 Glenn, Jr. et al. Dec 2015 A1
20150359728 Glenn, Jr. et al. Dec 2015 A1
20160008257 Zhou et al. Jan 2016 A1
20160022566 Figura Jan 2016 A1
20160113849 Grimadell et al. Apr 2016 A1
20160128944 Chawrai May 2016 A1
20160193125 Jones et al. Jul 2016 A1
20160235643 Mathonneau et al. Aug 2016 A1
20160250137 Noor et al. Sep 2016 A1
20160279048 Jayaswal Sep 2016 A1
20160287503 Schroeder Oct 2016 A1
20160287509 Peffly Oct 2016 A1
20160303043 Khoury Oct 2016 A1
20160309871 Torres Rivera et al. Oct 2016 A1
20160310369 Thompson et al. Oct 2016 A1
20160310370 Zhao et al. Oct 2016 A1
20160310371 Zhao Oct 2016 A1
20160310375 Torres Rivera Oct 2016 A1
20160310386 Smith, III et al. Oct 2016 A1
20160310388 Smith, III et al. Oct 2016 A1
20160310389 Thompson et al. Oct 2016 A1
20160310390 Smith, III et al. Oct 2016 A1
20160310391 Smith, III et al. Oct 2016 A1
20160310393 Chang et al. Oct 2016 A1
20160310402 Zhao et al. Oct 2016 A1
20160317424 Kadir Nov 2016 A1
20160354300 Thompson et al. Dec 2016 A1
20170071837 Schelges et al. Mar 2017 A1
20170101609 Vargas Apr 2017 A1
20170110690 Lamansky et al. Apr 2017 A1
20170110695 Nishikawa et al. Apr 2017 A1
20170165164 Zhao et al. Jun 2017 A1
20170165165 Zhao et al. Jun 2017 A1
20170209359 Zhao et al. Jul 2017 A1
20170239155 Hartnett Aug 2017 A1
20170252273 Renock et al. Sep 2017 A1
20170278249 Stofel et al. Sep 2017 A1
20170283959 Shellef Oct 2017 A1
20170304172 Chang et al. Oct 2017 A1
20170304184 Glenn, Jr. Oct 2017 A1
20170304185 Glenn, Jr. et al. Oct 2017 A1
20170304186 Glenn, Jr. Oct 2017 A1
20170333321 Carnali Nov 2017 A1
20180044097 Zeik Feb 2018 A1
20180057451 Owens et al. Mar 2018 A1
20180110594 Atkin Apr 2018 A1
20180110688 Torres Rivera et al. Apr 2018 A1
20180110689 Torres Rivera et al. Apr 2018 A1
20180110690 Torres Rivera et al. Apr 2018 A1
20180110691 Torres Rivera et al. Apr 2018 A1
20180110692 Torres Rivera et al. Apr 2018 A1
20180110693 Renock et al. Apr 2018 A1
20180110694 Renock et al. Apr 2018 A1
20180110695 Thompson et al. Apr 2018 A1
20180110696 Johnson et al. Apr 2018 A1
20180110704 Zhao et al. Apr 2018 A1
20180110707 Zhao et al. Apr 2018 A1
20180110710 Zhao et al. Apr 2018 A1
20180110714 Glenn, Jr. et al. Apr 2018 A1
20180116937 L'Oreal May 2018 A1
20180116941 L'Oreal May 2018 A1
20180221266 Zhao et al. Aug 2018 A1
20180256481 Glenn, Jr. Sep 2018 A1
20180311135 Chang Nov 2018 A1
20180311136 Chang Nov 2018 A1
20180318194 Hoffmann et al. Nov 2018 A1
20180344611 Zhao et al. Dec 2018 A1
20180344612 Zhao et al. Dec 2018 A1
20180344613 Zhao et al. Dec 2018 A1
20180344614 Zhao et al. Dec 2018 A1
20190105242 Song Apr 2019 A1
20190105243 Song Apr 2019 A1
20190105244 Song Apr 2019 A1
20190105245 Song Apr 2019 A1
20190105246 Cochran Apr 2019 A1
20190105247 Song Apr 2019 A1
20190117543 Zhao Apr 2019 A1
20190117544 Zhao Apr 2019 A1
20190117545 Zhao Apr 2019 A1
20190142711 Torres Rivera May 2019 A1
20190167554 Wankhade Jun 2019 A1
20190183777 Gillis Jun 2019 A1
20190183778 Glenn, Jr. Jun 2019 A1
20190192405 Zhao Jun 2019 A1
20190240121 Torres Rivera Aug 2019 A1
20190307298 Zhao Oct 2019 A1
20190365633 Glenn, Jr. Dec 2019 A1
20200000690 Renock Jan 2020 A1
20200129402 Jamadagni Apr 2020 A1
20200163846 Song May 2020 A1
20200237628 Torres Rivera Jul 2020 A1
Foreign Referenced Citations (96)
Number Date Country
2078375 Mar 1994 CA
1286612 Mar 2001 CN
1298293 Jun 2001 CN
1917853 Feb 2007 CN
102895151 Jan 2013 CN
102697668 Aug 2013 CN
103356408 Oct 2013 CN
102697670 Jul 2014 CN
102851015 Dec 2014 CN
105007884 Oct 2015 CN
105636649 Jun 2016 CN
105726393 Jul 2016 CN
105769617 Jul 2016 CN
106750361 May 2017 CN
4315396 Nov 1994 DE
202005009618 Sep 2005 DE
102008050430 Apr 2010 DE
102015204987 Sep 2016 DE
0574086 Dec 1993 EP
0674898 Oct 1995 EP
1340485 Feb 2003 EP
1346720 Sep 2003 EP
1714678 Oct 2006 EP
2042216 Sep 2015 EP
S56011009 Dec 1981 JP
S58113300 Jul 1983 JP
S61236708 Oct 1986 JP
H04364114 Dec 1992 JP
07252134 Oct 1995 JP
H08310924 Nov 1996 JP
09030938 Feb 1997 JP
H09175961 Jul 1997 JP
2964226 Oct 1999 JP
3069802 Jul 2000 JP
2003201217 Dec 2001 JP
2002179552 Jun 2002 JP
2002226889 Aug 2002 JP
2003055699 Feb 2003 JP
3480165 Dec 2003 JP
2005232113 Feb 2004 JP
3634988 Mar 2005 JP
3634991 Mar 2005 JP
3634996 Mar 2005 JP
2005187359 Jul 2005 JP
2006124312 May 2006 JP
2006183039 Jul 2006 JP
2006193549 Jul 2006 JP
2007131687 May 2007 JP
2008001626 Jan 2008 JP
2008214292 Sep 2008 JP
2009096778 May 2009 JP
2011153167 Aug 2011 JP
2011190221 Sep 2011 JP
5041113 Jul 2012 JP
2013010757 Jan 2013 JP
2013091641 May 2013 JP
2013151434 Aug 2013 JP
6046394 Jan 2014 JP
2014024875 Feb 2014 JP
2014091723 May 2014 JP
5667790 Feb 2015 JP
2015101545 Jun 2015 JP
2018012673 Jan 2018 JP
20050031235 Apr 2005 KR
1020080111280 Dec 2008 KR
20140060882 May 2014 KR
9114759 Oct 1991 WO
91017237 Nov 1991 WO
WO199325650 Dec 1993 WO
WO9502389 Jan 1995 WO
WO9726854 Jul 1997 WO
WO9823258 Jun 1998 WO
WO9918928 Apr 1999 WO
9924013 May 1999 WO
WO9924004 May 1999 WO
0012553 Mar 2000 WO
WO0142409 Jun 2001 WO
WO0148021 Jul 2001 WO
2004078901 Sep 2004 WO
WO2005023975 Mar 2005 WO
WO2009016555 Feb 2009 WO
2009053931 Apr 2009 WO
WO2010052147 May 2010 WO
2012017091 Feb 2012 WO
WO2012055587 May 2012 WO
WO2012084970 Jun 2012 WO
WO2013010706 Jan 2013 WO
2014073245 May 2014 WO
WO2014148245 Sep 2014 WO
2015122371 Aug 2015 WO
WO2016147196 Sep 2016 WO
WO-2016172405 Oct 2016 WO
2017052161 Mar 2017 WO
2017140798 Aug 2017 WO
WO2017207685 Dec 2017 WO
WO2018023180 Feb 2018 WO
Non-Patent Literature Citations (137)
Entry
U.S. Appl. No. 16/170,516, filed Oct. 25, 2018, Chang et al.
U.S. Appl. No. 16/170,711, filed Oct. 25, 2018, Jamadagni et al.
U.S. Appl. No. 16/248,900, filed Jan. 16, 2019, Torres Rivera et al.
U.S. Appl. No. 16/285,535, filed Feb. 26, 2019, Zhao et al.
U.S. Appl. No. 16/226,927, filed Dec. 20, 2018, Glenn, Jr. et al.
U.S. Appl. No. 16/226,914, filed Dec. 20, 2018, Gillis et al.
U.S. Appl. No. 16/376,033, filed Apr. 5, 2019, Zhao et al.
U.S. Appl. No. 16/390,270, filed Apr. 22, 2019, Torres Rivera et al.
U.S. Appl. No. 17/071,033, filed Oct. 15, 2020, Glenn, Jr. et al.
All final and non-final office actions for U.S. Appl. No. 16/532,556.
All final and non-final office actions for U.S. Appl. No. 16/846,594.
All final and non-final office actions for U.S. Appl. No. 17/071,033.
D'Souza et al., Shampoo and Conditioners: What a Dermatologist Should Know? Indian J Dermatol, May-Jun. 2015 60(3), 248-254 (2015).
Fevola, Michael J. “Guar Hydroxypropyltrimonium Chloride.” Cosmetics and toiletries 127.1 (2012) 16-21.
Inspection ceilificate for Hostapon® CCG, Clariant Iberica Production, S.A., May 6, 2019.
Medvedev, Diffusion Coefficients in Multicomponent Mixtures, PhD Thesis from Technical University of Denmark, 2005, 181 pages.
Musazzi, “Emulsion versus nonoemulsion: how much is the formulative shift critical for a cosmetic product?” (Drug Deliv. and Trans. Res. (2018) 8:414-421 (Year: 2018).
PCT International Search Report and Written Opinion for PCT/US2019/025923 dated Jun. 24, 2019.
PCT International Search Report and Written Opinion for PCT/US2019/057974 dated Feb. 3, 2020.
PERM Inc, , Diffusion Coefficient: Measurement Techiques, https://perminc.com/resources/fundamentals-of-fluid-flow-in-porous-media/chapter-3-molecular-diffusion/diffusion-coefficient/measurement-techniques, Oct. 2020.
Product Bulletin, Amphosol® CG, Cocamidopropyl Betaine, Stepan Company, Jun. 2011.
Product Data Sheet for Chemoryl™LS Surfactant, Sodium Lauroyl Sarcosinate, Lubrizol Advanced Materials, Inc., Mar. 24, 2020.
Product Data Sheet, Eversoft™ UCS-40S, Disodium Cocoyl Glutamate (Sodium Cocoyl Glutamate*), Sino Lion USA, Jul. 2018.
Product Fact Sheet—Hostapon® CCG, mild anionic surfactant for the cosmetic industry, Clariant International Ltd., Aug. 2014.
Product Fact Sheet, Hostapon® CGN, Mild anionic surfactant for the cosmetic industry, Clariant International Ltd., Jan. 2016.
Robinson et al., Final Report of the Amended Safety Assessment of Sodium Laureth Sulfate and Related Salts of SulfatedEthoxylated Alcohols, International Journal of Toxicology 29(Supplement 3) 151S-161S, 2010 (Year: 2010).
Schaefer, Katie, “Eco-friendly, Non-flammable Liquified Gas Propellant”, https://www.cosmeticsandtoiletries.com/formulating/function/aids/138418589.html#fclose-olyticsmodal. Published Jan. 30, 2012.
UL Prospector® Product Data Sheet, Plantacare® 818 UP, C8-16 fatty alcohol glucoside, BASF, May 21, 2015.
“Natural Detangling Shampoo”, Mintel Database, Sep. 13, 2017.
“Soda Shampoo”, Mintel Database, Apr. 2015.
“Treatment Foam for Recurrent Scaling Conditions”, Mintel Database, Aug. 2007.
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,045, P&G Case 14975.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,657, P&G Case 13809M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,663, P&G Case 13810M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,677, P&G Case 13811M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,701, P&G Case 13803M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,998, P&G Case 13820M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/145,696, P&G Case 13802M.
All Final and Non-Final Office Actions for U.S. Serial No. 15/2788,938, P&G Case 14549M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/299,860, P&G Case 14324M.
All final and non-final office actions for U.S. Appl. No. 15/379,660 (P&G Case 14177M).
All final and non-final office actions for U.S. Appl. No. 15/379,674 (P&G Case 14177M2).
All final and non-final office actions for U.S. Appl. No. 15/448,911 (P&G Case 14228).
All final and non-final office actions for U.S. Appl. No. 15/467,317 (P&G Case 14211).
All Final and Non-Final Office Actions for U.S. Appl. No. 15/481,777, (P&G Case 13803MC).
All Final and Non-Final Office Actions for U.S. Appl. No. 15/788,895, P&G Case 14550M2.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/788,949, P&G Case 14550M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/788,998, P&G Case 14551M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,010, P&G Case 14551M2.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,020, P&G Case 14552.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,030, P&G Case 14553.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,038, P&G Case 14554M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,044, P&G Case 14555M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,081, P&G Case 14556M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,172, P&G Case 14563M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,188, P&G Case 14564M.
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,208, P&G Case 14565M.
All Final and Non-final Office Actions for U.S. Appl. No. 15/923,499 (P&G Case 13803MC2).
All final and non-final office actions for U.S. Appl. No. 15/962,327 (P&G Case 14788M).
All final and non-final office actions for U.S. Appl. No. 15/962,351, (P&G Case 14789M).
All final and non-final office actions for U.S. Appl. No. 16/001,045 (P&G Case 14845).
All final and non-final office actions for U.S. Appl. No. 16/001,053 (P&G Case 14846).
All final and non-final office actions for U.S. Appl. No. 16/001,058 (P&G Case 14847).
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,015, P&G Case 14973.
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,038, P&G Case 14974M.
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,053, P&G Case 14976M.
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,066, P&G Case 15365.
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,072, P&G Case 15367.
All final and non-final office actions for U.S. Appl. No. 16/165,016 (P&G Case 14990).
All final and non-final office actions for U.S. Appl. No. 16/165,033 (P&G Case 14991).
All final and non-final office actions for U.S. Appl. No. 16/165,044 (P&G Case 14992).
All final and non-final office actions for U.S. Appl. No. 16/170,498 (P&G Case 15298M).
All final and non-final office actions for U.S. Appl. No. 16/170,516 (P&G Case 15211M).
All final and non-final office actions for U.S. Appl. No. 16/170,711 (P&G Case 15387).
All final and non-final office actions for U.S. Appl. No. 16/226,914 (P&G Case 15070M).
All final and non-final office actions for U.S. Appl. No. 16/226,927 (P&G Case 15069M).
All final and non-final office actions for U.S. Appl. No. 16/248,900 (P&G Case 14549MC).
All final and non-final office actions for U.S. Appl. No. 16/285,535 (P&G Case 14551M2).
All final and non-final office actions for U.S. Appl. No. 16/376,033 (P&G Case 15190).
All final and non-final office actions for U.S. Appl. No. 16/390,270 (P&G Case 14550M2C).
Anonymous: “MERQUAT Polyquaternium 47 Series, Water Soluble Polymers for Personal Care”, Jul. 30, 2017, URL: https://www.in-cosmetics..com/_novadocuments/2729, retrieved on Dec. 21, 2018.
Carbopol Aqua SF-1 Polymer Technical Data Sheet, TDS-294, Dec. 2000.
Christensen et al., “Experimental Determination of Bubble Size Distribution in a Water col. by Interferometric Particle Imaging and Telecentric Direct Image Method”, Student Report, Aalborg University, Jun. 3, 2014.
Dehyquart Guar: Published Nov. 2010.
Hair Care/Conditioning Polymers Differentiation, Anonymous, Feb. 1, 2017, URL: http://www.biochim.it./assets/site/media/allegati/cosmetica/hair-care/tab-merquat-hair-care.pdf, retrieved on Dec. 20, 2018, p. 1.
PCT International Search Report and Written Opinion for PCT/US2016/028728 dated Aug. 5, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/028729 dated Jun. 15, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/028730 dated Aug. 5, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/028735 dated Jul. 25, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/028736 dated Jul. 25, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/028742 dated Jul. 18, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/058123 dated Dec. 21, 2016.
PCT International Search Report and Written Opinion for PCT/US2016/066752 dated Feb. 22, 2017.
PCT International Search Report and Written Opinion for PCT/US2016/066757 dated Feb. 22, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/020604 dated May 11, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/022737 dated Jun. 22, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/057486 dated Jan. 9, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057487 dated Dec. 19, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/057488 dated Dec. 12, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/057497 dated Jan. 8, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057503 dated Dec. 13, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/057507 dated Dec. 13, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/057510 dated Jan. 11, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057511 dated Feb. 2, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057514 dated Jan. 10, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057515 dated Dec. 11, 2017.
PCT International Search Report and Written Opinion for PCT/US2017/057522 dated Feb. 2, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057533 dated Jan. 8, 2018.
PCT International Search Report and Written Opinion for PCT/US2017/057541 dated Dec. 22, 2017.
PCT International Search Report and Written Opinion for PCT/US2018/029313 dated Jul. 11, 2018.
PCT International Search Report and Written Opinion for PCT/US2018/029315 dated Jun. 27, 2018.
PCT International Search Report and Written Opinion for PCT/US2018/036181 dated Aug. 3, 2018.
PCT International Search Report and Written Opinion for PCT/US2018/036185 dated Aug. 3, 2018.
PCT International Search Report and Written Opinion for PCT/US2018/055102 dated Jan. 9, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/055103 dated Jan. 9, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/055104 dated Jan. 18, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/055105 dated Jan. 8, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/055106 dated Jan. 16, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/055107 dated Jan. 28, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/056669 dated Jan. 31, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/056673 dated Feb. 5, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/056674 dated Feb. 5, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/057451 dated Feb. 25, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/057476 dated Jan. 18, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/066697 dated Mar. 15, 2019.
PCT International Search Report and Written Opinion for PCT/US2018/066701 dated Mar. 15, 2019.
Polyquaternium: “Final Report on the Safety Assessment of the Polyquatemium-10”, Journal of the American College of Toxicology, Jan. 1, 1988, URL: http://www.beauty-review.nl/wp-content/uploads/2015/02/Final-Report-on-the Safety-Assessment-of-Polyquaternium-10.pdf, retrieved on Dec. 20, 2018.
Practical Modern Hair Science, Published 2012.
S. Herrwerth et al.: “Highly Concentrated Cocamidopropyl Betaine - The Latest Developments for Improved Sustainability and Enhanced Skin Care”, Tenside, Surfactants, Detergents, vol. 45, No. 6, Nov. 1, 2008, pp. 304-308, p. 305—left-hand column.
“Deep Image Matting”, Ning Xu et al, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Adobe Research, Mar. 10, 2017.
“Anti-Dandruff Shampoo”, Mintel Database, Record No. 752198, dated Aug. 2007 ; pp. 1-3.
“Dandruff Control Shampoo”, Mintel Database, Record No. 2300131, dated Jan. 2014; pp. 1-2.
All Office Actions; U.S. Appl. No. 15/788,957.
Parchem fine & specialty chemicals. MIPA-laureth sulfate supplier distributor—CAS 83016-76-6; dated 2021; pp. 1-7.
All Office Actions; U.S. Appl. No. 17/694,270, filed Mar. 14, 2022.
U.S. Appl. No. 17/694,270, filed Mar. 14, 2022, to Debora W. Chang et al.
Schwartz et al. (“Shampoos for Normal Scalp Hygiene and Dandruff.” Cosmetic Dermatology. Oxford, UK: Wiley-Blackwell, 2010.115-122. Web). (Year: 2010).
Related Publications (1)
Number Date Country
20180344614 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
62515833 Jun 2017 US