This disclosure relates generally to hairstyling apparatuses, and more specifically, to hair curling apparatuses and related methods.
Heated styling irons (e.g., curling irons) are used to form hair to a wide variety of styles, such as curling hair to impart a curl that does not naturally occur or straightening hair to remove a kink or curl. Circular or semicircular-shaped curls can be created by wrapping hair around the outer surface of a heated cylindrically shaped curling iron.
Conventional curling irons include a cylindrical curling surface having a clamping member that fits about a portion of the surface. During use, the curling mandrel can be heated. A mass of hair is clamped against the surface by the clamping member and curled by rotating the surface. Heat applied to the surface can alter the texture of the hair so as to curl it. After a predetermined amount of time, the clamping member is disengaged from the surface, and the curled hair released. A disadvantage of such clamping configurations includes uneven distribution of hair under the clamp. Often times the end of the hair dislodges or otherwise slips from under the clamp. Another disadvantage is that the hair, which may be combed out prior to curling, is now bunched up again. Usually, curling operations using clamps is a two-handed procedure. This can be hard on the user's wrists.
Some conventional devices include a motorized heated surface to automatically wind hair around it. However, these motorized devices do not provide a means for maintaining precombed hair. For example, many of these motorized devices include a clamp to reversibly anchor hair to the heated surface at the beginning of winding. However, the user needs to move the motorized and heated curling iron toward her scalp and/or face as the barrel rotates.
State of the art devices without a clamp are inefficient in holding hair at the right angle or in the right amount such that sufficient heat cannot be imparted to the hair to affect a curl.
A need exists in the art for a system that can simplify hair curling. A need also exists for a system and method to create more naturally and evenly curled hair while the hair may be in a combed state. The system and method should allow for simultaneous hair curling and combing in a single-handed operation, particularly without the aforementioned clamps of state of the art systems.
An object of the present invention is to provide a device and method for curling hair that overcomes the drawbacks of the state of the art.
Another object of the invention is to provide a device and method for simultaneously curling and combing hair. A feature of the invention is that no clamp exists or is required to curl the hair about a heated cylindrical surface. As such, the heating surface of the device is not overlaid by a clamp or any other structure and therefore the entire heating surface is completely exposed and therefore accessible. An advantage of the invention is that any amount of hair or thickness of hair may be both curled and combed simultaneously, and with one hand operation. Another advantage is that the hair is prevented from tangling.
Still another object of the invention is to provide a device which styles hair more efficiently. A feature of the invention is that comb teeth extend towards a hairstyling surface without contacting the hairstyling surface. Another feature is the incorporation of medially extending, thermally conductive or nonconductive blades, the latter of which may rigid or reversibly deformable (i.e., a non-rigid material). An advantage of the invention is that the medially extending combs and blades press the hair against the hairstyling surface for a time and at a pressure to allow heat from the hairstyling surface to transfer to the hair.
Still another object of the invention is to provide a device and method for combining several hair styling operations into one system. A feature of the invention is that an elongated rotating surface of an apparatus is in close spatial relationship to one or more axially extending members, each of the members having a first proximal end attached to a rotating plate and a second distal end which may or may not contact the surface. Another feature of the invention is that each of one or more of the axially extending members may be overlaid with a comb or a blade. An advantage of the invention is that it simultaneously combs, curls and heats the hair, all without the need of a clamp seen in prior art systems, all in a one-handed operation. This results in shorter styling time and therefore healthier hair.
An object of the invention is to provide a versatile, hand-held device for curling and otherwise styling hair. A feature of the device is a heated, longitudinally-extending barrel that can be stationary or rotating. An advantage of the invention is that radially protruding members such as combs and other protuberances are removably spaced from each other and from the barrel as customized by the user so as to not interfere with each other. This is particularly helpful when styling forehead hair or “bangs” during which the device is held horizontally.
Briefly, a hairstyling apparatus is provided, comprising a barrel defining a hairstyling surface and a central axis; a heating element in thermal communication with the barrel for heating the heated barrel; and a rotating member disposed at an end of the hairstyling surface and configured to rotate around the longitudinal axis of the heated barrel. The rotating member comprises a rotating plate that surrounds a bottom portion of the heated barrel (so as to be in close spatial relationship to the proximal end of the barrel) and a tab extending from the rotating plate along a longitudinal length of the hairstyling surface over less than an entire longitudinal length of the hairstyling surface. Alternatively, the tab may be removably attached to the sleeve/collar of the rotating member or else integrally molded therewith. The rotating member further comprises a comb member which is removably attached to the tab (for example slidably received along the tab's longitudinal axis) and defines a plurality of comb teeth arranged along longitudinally extending surfaces of the hairstyling surface.
Also provided is a method for curling hair, the method comprising supplying a heated barrel defining a hairstyling surface and an axially extending comb, engaging the hair with the comb and rotating the heated barrel central axis; a heating element for heating the heated barrel; and a rotating member disposed at an end of the hairstyling surface and configured to rotate around the central axis of the heated barrel, the rotating member comprising a rotating plate that surrounds a bottom portion of the heated barrel and a tab extending from the rotating plate along a longitudinal length of the hairstyling surface over less than an entire longitudinal length of the hairstyling surface; wherein the rotating member comprises a comb member which is attached to the tab and comprises a plurality of comb teeth arranged along the longitudinal length of the hairstyling surface; positioning a free end of the hairstyling surface in proximity to a user's head; causing hair attached to the user's head to be placed at the rotating member; and wrapping the retained hair around the hairstyling surface to impart a curl in the hair by rotating the rotating member around the hairstyling surface to wind the hair around the hairstyling surface.
The invention together with the above and other objects and advantages will be best understood from the following detailed description of the preferred embodiment of the invention shown in the accompanying drawings, wherein:
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
The invention provides hair curling devices that include a rotating member configured to wrap hair around a generally stationary heated barrel. Other embodiments of the invention include the use of a rotating heated barrel.
A feature of the invention is that the hairstyling apparatus includes a rotating member which comprises an axially-extending tab or protuberance, and a comb which is attached to the tab and comprises a plurality of teeth arranged along the longitudinal axis α of the hairstyling surface, wherein the teeth extend in a direction at an angle Ø from the longitudinal axis α. This allows the hair to be more evenly along the tab.
Generally, the hair is contacted with an elongated, stationary or rotating member. A distal end of the member terminates in at least one longitudinally extending tab or protuberance. In instances where more than one protuberance is present, the protuberances are spaced apart from each other along an arc defining a distal periphery of the rotating member. The protuberances may be symmetrically spaced with each other so as to catch approximately same amount of hair. This would cause a more even winding of the hair about the surface of a heated barrel, described infra. However, asymmetric positioning of the tabs will still result in catching and winding of the hair. The aforementioned tabs are positioned radially from the barrel so as to provide a space between the tab(s) and the hairstyling surface to allow catching of hair caught by the tab, so also to prevent the hair from being compressed, and trapped against the surface for an over-extended period. This open configuration (compared to a clamping curler for example) also provides the option for one or more of the tabs to be overlaid with a comb, fluid-filled micro-applicator, etc.
As shown in
The barrel 102 defines a hairstyling surface 132 that in one embodiment does not rotate relative to (e.g., is not rotatably coupled to) the handle 104. Rather the surface 132 provides an immobile cylindrically shaped surface around which hair can be wrapped and heated to create curls. The barrel 102 generally defines the aforementioned first proximal end 109 (shown in phantom dashed lines), a second distal end terminating in a heat insulating tip 122, and a longitudinally extending surface between its two ends.
The barrel 102 typically includes a heating element 103 (e.g., a ceramic heating element), schematically shown in
A heat selection switch 118 (shown in
The barrel 102 is typically formed of a thermally conductive, yet resilient material, such as a metal selected from the group consisting of aluminum, iron, steel, silver, their alloys, and combinations thereof. The thermally conductive yet resilient material is surrounded (e.g., coated or wrapped) with a material that is less thermally conductive than the barrel (e.g., a thermally non-conductive material) so as to prevent or minimize damage to the hair. Such less thermally conductive material may be a nonmetallic material selected from the group consisting of ceramic, glass, stone (e.g., Tourmaline), and combinations thereof.
The barrel 102 can be formed in various widths (e.g., diameters) based on the intended curls desired by the user. In some embodiments, the barrel 102 can have a cross section or diameter that is about 0.375 inches to about 2.5 inches. Exemplary diameters range from about 0.5 inches to about 1.5 inches. In the example illustrated, the barrel 102 has a diameter of approximately 1 inch.
The aforementioned heat insulated cooling tip 122 is disposed at the free, exposed, second distal end of the barrel 102. In some embodiments, the free distal end of the barrel is disposed opposite the handle. The cooling tip 122 can help to reduce the likelihood that the user will burn themselves with the barrel 102, for example, by creating a physical barrier between the end of the barrel 102 and the user's head.
The free, exposed end of the styling device, comprising the exposed, distal end of the barrel, is typically free of hair-snagging housings or enclosures. That is, the free end of the barrel is typically unenclosed and open to the surrounding environment so that hair can be more easily captured and wrapped around the hairstyling surface. The resulting curled hair is then more easily slid toward the distal end of the device for removal. Otherwise, such housing or enclosures could create an obstruction that may make it more difficult for a user to easily remove hair from the styling device. For example, hair could get wound around one or more surfaces within any confines created by such an enclosure.
In some embodiments, at least a portion of the cooling tip has a width (e.g., diameter) that is larger than the barrel 102 to help keep the user from accidentally placing the sides of the barrel 102 on their head. The distal end of the larger diameter region may terminate in a radially extending flange, plate, wall or similar barrier (not shown) for preventing hair from slipping off the end of the barrel.
A sleeve 106 is positioned between the first proximal end 109 of the barrel and the second distal end 111 of the handle 104. The sleeve 106 is rotatable relative to the hairstyling surface 132 of the barrel 102 and typically also the handle 104 as the handle 104 and the barrel 102 can be coupled to one another. As such, the rotating member is in rotating communication with the barrel and the handle.
In addition, the barrel 102 may rotate instead of the sleeve, or in conjunction with the sleeve 106. Further, the barrel 102 may rotate at the same speed (e.g. RPMs) as the sleeve 106 or at a different speed. For example, the barrel revolution rate may be slightly less than the sleeve rate so as to provide a more gradual curl to the hair, depending on user preference.
As shown schematically in
The proximal end of the barrel 102 defines a first gear surface 123 adapted to mate with the barrel rotating gear.
The drive motor 107 is typically an electric motor (e.g., an AC or a DC electric motor). Electricity can be provided to the drive motor using a rotatable power cord (e.g., a swivel power cord) 120 communicating with the proximal end (i.e., heel end) of the handle.
As depicted in
Positioned inferior from the directional switch 114, 116 is the gear mechanism of switches and comprises a curl dial rotating gear 127 and an internal gear of the curl dial 129. The rotating gear 127 comprises a radially extending plurality of teeth circularly arranged to form a disk. The internal gear 129 is configured to matingly receive the teeth such that the internal gear comprises a medially facing, cylindrical surface with a topography of gear teeth.
An electrical circuit (e.g., a printed circuit board) can be arranged within the handle or another component to distribute electrical signals from the various switches to the motor 107 and heating element 103.
While the handle 104 is illustrated as generally being a cylindrical member formed in-line with the heated barrel 102, other configurations are possible. For example, in some embodiments, the handle can be a pistol grip-like handle that is arranged at an angle (e.g., substantially perpendicular) relative to the heated barrel.
The hair curling device 100 can include any of various drivetrain components (e.g., gear systems or transmission devices) to convert the rotation of the motor into the rotation of the sleeve 106, the barrel 102, or a combination thereof. The drive motor (including any drivetrain components) can be configured to rotate the rotating member 106 at any of various suitable speeds. For example, the drive motor can cause the sleeve 106 to rotate at about 10 rpm to about 300 rpm (and within that range e.g., about 20 rpm to about 100, e.g., or about 50 rpm to about 100 rpm). Bearing elements can be disposed between the sleeve 106 and the barrel 102 or handle 104 to help reduce and limit rotational friction so that the sleeve 106 can rotate more easily relative to the barrel 102.
The sleeve 106 is typically configured to rotate relative to the barrel 102 (e.g., around the hairstyling surface) to receive (e.g., gather, grasp, retain, trap, grip, pick, or otherwise attach) hair and wrap the hair around the heated barrel 102 to be curled as it rotates. As illustrated in
As depicted in
The tab 110 is radially displaced from the hairstyling surface so as to provide space for other parts, for example, the comb member 134. In some embodiments, the comb member 134 may extend substantially the full length of the tab 110. In some other embodiments, the comb member 134 may extend along a part of the tab 110, but shorter than the tab, for example, two-thirds of the full length of the tab 110.
As illustrated, the comb 134 comprises a plurality of comb teeth 136 that are disposed along the length of the hairstyling surface and extending at an angle Ø to the longitudinal axis of the comb. The angle Ø is generally in a range between 10 and 170 degrees, for example between 45 and 135 degrees, and also about 90 degrees. Generally, the teeth 136 can typically extend towards the hairstyling surface 132 while keeping spaced from the hairstyling surface 132 to provide adequate room for hair to fit between the comb member 134 and barrel 102.
The length of the comb's teeth may be different each other. Referring to
In some embodiments, the length of several comb teeth near the proximal end 140 of the comb member 134 (for example, tooth {circle around (1)}, {circle around (2)}, {circle around (3)} in
The space between the comb member and barrel accommodates the hair for styling, depending on the tooth length of the comb. Different comb teeth lengths may be employed depending on hair thicknesses and lengths. For example, longer teeth may be used when thinner hair or smaller volumes of hair are to be worked. The inventors envision that when the ends of the hair only are to be curled, a longer tooth comb may be utilized by the user. Shorter teeth may be used when thick hair is to be manipulated.
The comb teeth 136 increase the friction force with the hair and thus may catch the hair easily. The comb teeth 136 also form some partitions along the length of the hairstyling surface and thus prevent the hair from moving along the length of the hairstyling surface. Therefore, the hair can be evenly disposed. The comb teeth 136 extending towards the hairstyling surface 132 also press the hair against the hairstyling surface 132. Thus, the heat can be effectively transferred from the hairstyling surface onto the hair.
The comb defines a first proximal end 140 and a second distal end 141. As illustrated, the length of the respective comb teeth 136 become gradually longer in a direction from the distal end 141 of the comb member 134 towards the proximal end or bottom 140 of the comb member 134. This makes the space between the comb member 134 and the hairstyling surface 132 greater at the distal end 141 than the bottom 140. It facilitates the user to position a bundle of hair into that space from the end 141. It also facilitates the tab to catch the hair, and press the hair against and wrap the hair around the hairstyling surface 132. In other embodiments, the comb teeth may have consistent lengths. In yet other embodiments, the comb teeth may have other forms of varying length. For example, the center teeth may be longer than the teeth at either end. In other examples, the tip of the teeth may form a profile such as a wave-like form.
In some embodiments, the comb teeth have varying teeth lengths such that at least one tooth leaves a space between its tip and the styling surface while at least one other tooth contacts the styling surface. In this case, the comb teeth are made of a material with some degree of elasticity, such as, silicone, rubber, and plastics. The teeth, especially longer ones that contact the surface will deform and thus exert a force pressing the hair against the hairstyling surface. In yet other embodiments, all the teeth may extend to be with in a close spatial relationship with the styling surface (but not touching the surface) or even touch the styling surface to apply greater force to the hair against the styling surface.
As illustrated, the comb member 134 comprises a single row of comb teeth 136 arranged along the length of the hairstyling surface 132. In some embodiment, the comb member 134 may comprise more than one row of comb teeth. For example, the comb may have a plurality of rows of teeth, such as 2, 3 or 4 rows of teeth. The plurality of rows may be arranged to define a brush. In yet other embodiments, the comb member 134 may comprise a plurality of comb teeth that may not necessarily align with each other either in the length or the width of the tab. Further, the teeth may not align necessary straight but define a curvature along the length of the comb. This allows the user to impart different shapes to the wound hair on the barrel. As such, different comb configurations defined by deviations along the comb longitudinal axis are part of the styling device.
In some embodiments, the comb teeth can extend from the tab 110 not medially, but rather in a direction away from the hairstyling surface 132. For example, and as depicted in
The invention facilitates styling small or large bundles of hair. At least one of the axially extending protruding members of the device may be the same length, longer, or shorter in length than the tab. These additional axially extending members may support a medially directed blade or fin 144 adapted to catch, contact, or otherwise engage a small bundle of hair around the hairstyling surface and press the hair against the hairstyling surface.
The comb depicted in
Furthermore, the comb 134 is not physically attached to the rotating plate 130, such that only the comb moves radially or medially.
One torsion spring is positioned at the bottom part of comb. When a large bundle of hair is wound on the barrel, the comb is leaned with an angle to the inside of the tab and holds the large bundle of hair. When user finishes hair styling, the comb moves to the original position by the restoration force of the torsion spring. This feature provides a means for eliminating the need for the user to pull back the comb with her free hand. Rather, hair styling can commence in a normal way with a bundle of hair pushing or otherwise moving the comb. In another embodiment, the comb is attached to the tab and they would be leaned together with an angle.
As illustrated in
As illustrated, the protruding member 142 is typically shorter than the tab 110. The protruding member 142 with shorter length is more efficient in catching a smaller bundle of hair. In some embodiments, the protruding member 142 may have a length that is from one third to two thirds of the length of the tab 110. In some other embodiments, the protruding member 142 has a length that is substantially the same as or even longer than the length of the tab 110.
The protruding members 142 and the tab 110 are arranged evenly along a circumferential direction of the hairstyling surface 132. When two protruding members 142 are provided, the two protruding members 142 are spaced from each other for an angle of between about 10 degrees to 270 degrees, and within that range, for example from 30 degrees and 180 degrees, for example about 120 degrees. Each of the protruding members 142 is spaced from the tab 110 for an angle of 120 degrees. Therefore, the two protruding members 142 and tab 110 are spaced from each other and will not interfere with each other. In some other embodiments, the protruding members and the tab can be arranged unevenly.
As described supra, the rotating sleeve 106 comprises one or more hair retaining elements disposed around a peripheral region of a rotating plate. The retaining elements catch the hair when the rotating member rotates around the hair, further enabling the user from using the device with one hand.
The retaining elements may protrude from the sleeve or collar 106. The hair retaining elements are configured to receive a user's hair so that the hair can be wrapped around the styling surface for curling. However, the rotating member may further comprise radially extending ridges 146 (
In an embodiment of the invention, the ridges exist in pairs to provide a means for catching hair in both directions (e.g., clockwise and counter-clockwise). When the rotating dial rotates in clockwise direction, the hair is caught by a first ridge (R1) in the square-designated area. The other direction is vice versa, such that the hair is caught in the oval-designated area. The first space is smaller or larger in arc distance than the space between pairs of ridges. It should be noted that more than one ridge is not necessary if a single ridge has a proper size and enough area in both sides of it to catch the hair in both directions.
The ridges 146 enable the user to retain and wrap hair around the barrel 102 in a more uniform, even distribution. For example, the user may lightly grasp the handle 104 of the device, but with distal portions of hair lightly held between the handle and the user's hand. Prior to curling, the user positions proximal portions of the hair between the ridges.
As illustrated, every set of two ridges 146 are arranged between adjacent protruding members 142 and between the protruding member 142 and the tab 110. Therefore, three sets of ridges 146 are distributed substantially evenly around the rotating member. The spacing of adjacent ridges 146 create recess-like regions in which hair can lie and be retained. In some other embodiments, the ridges 146 can be simply arranged evenly around the rotating member.
Retaining elements formed along the rotating member can include any of various types of features capable to catch or gather one or more strands of hair. For example, the retaining elements can include one or more of hooks, recesses (e.g., semi-circular holes or other depressions), protrusions (e.g., knobs, pins, bristles, bosses), or any suitable combinations or these of other suitable elements.
The rotating member 106 together with the ridges 146 are typically longitudinally spaced away from the hairstyling surface of the barrel and more proximal to the handle 104 and therefore at the proximal end 109 of the barrel 102. That is, the hairstyling surface can be positioned at the free, exposed end of the hairstyling device relative to the rotating member 106. Such a configuration can enable the user to place the free end of the curling device towards their head so that the rotating member can gather the user's hair and wrap the free end of the hair around the heated barrel 102. This causes the hair to be gathered using the rotating member and wound around the proximal end of the hairstyling surface and therefore at the end opposite the free or distal end of the hairstyling surface.
As aforementioned, the hairstyling apparatus 100 also includes directional switches (e.g., toggle switches) 114 and 116 that can be used to change the rotational direction of the rotating member 106 so that the user can create differently shaped curls.
After a period of time has passed and the hair is heated, the user can remove the hair curling device from their hair. As discussed above, since the hair is not directly grasped, pinched, or held by the rotating member or the barrel (e.g., as would be the case for a curling iron with a clamp), the user can typically just pull the hair curling device away from their head. While pulling the hair curling device away, the user may also press the switches 114 and 116 to facilitate the pulling and/or creating different curl shapes. When pulled away, the hair can typically become loosened from the barrel and slide through the retaining elements.
Referring to
A user can position a free end of a hairstyling surface (e.g., defined by a heated barrel) of a hairstyling device, such as the hair curling devices 100 discussed above, in proximity to (e.g., at or near) the user's head. In some embodiments, the hair curling device (i.e., a longitudinal axis of the hairstyling surface) can be positioned substantially vertically next to the user's head. As illustrated, hair can be retained (e.g., gathered) within a rotating member of the hairstyling device. For example, hair can be gathered by retaining elements 146 of the rotating member. As shown, the hair can be retained at an end of the hairstyling surface that is opposite the free end of the styling device.
In some cases, as the rotating member rotates, additional hair can be gathered and retained automatically by the retaining elements of the rotating member. Through the aid of the tab and the protruding members, the hair is wrapped around and pressed against the heated hairstyling surface. As the rotating member rotates, the tab and the protruding members extending from the rotating member can be used to press some or all of the hair against the hairstyling surface at the bottom end of the styling surface opposite the free end.
As the hair is wrapped around the hairstyling surface, free end regions of the hair can be drawn through one or more regions (e.g., retaining elements) of the rotating member and onto the hairstyling surface.
In some embodiments, the rotating member can continuously rotate about the barrel after the hair has been fully wrapped. In some cases, the rotating member can continue to rotate until the user releases the directional button (or presses a stop button) on the handle.
After a period of time has passed and the hair is heated, the user can remove the hair curling device from their hair. As discussed above, since the hair is not directly grasped, pinched, or held by the rotating member or the barrel (e.g., as would be the case for a curling iron with a clamp) or enclosed by a hair capturing housing or enclosure, the user can typically just pull the hair curling device away from their head. When pulled away, the hair can typically become loosened from the barrel and slide through the retaining elements.
Wrapping the user's hair around the barrel 102 in this manner, including winding the hair around the relatively stationary (i.e., non-rotating) barrel 102 using the rotating member 106 and pressing the hair against the barrel 102 using the tab and/or the protruding members can result in fewer snags, tangles, or pulled hairs during use. This enhanced performance is, at least in part, a result of the hair being pulled loosely by the retaining elements 108 and the holding tab 110, neither of which tightly clamp onto the hair. In other words, when the rotating member 106 rotates to grip and rotate (e.g., twist, curl, wrap, spiral, or otherwise displace) hair (rather than clamping hair to the barrel and rotating it), the hair is guided around the barrel 102 and as it is formed into a spiral-like curl, it is tightened to the stationary barrel rather than a moving part, which could cause the hair to be pulled causing discomfort. Therefore, the rotating members described herein can typically reduce (or in some embodiments eliminate) the need for additional protection components such as clutches or sensor systems and make it easy for the users to create curled hairstyles.
Separate blade or fins 144 are depicted in
The fins 144 further define a distal portion 147 which provides medially directed contact points with the styling surface and therefore the hair disposed therebetween. The distal portion is wide enough to impose pressure on the hair, but not so narrow as to cut or otherwise damage the hair.
In another embodiment, related to
Viewed in conjunction with
Although exemplary implementations of the invention have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the following claims.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the invention, they are by no means limiting, but are instead exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This application claims priority as a Continuation-In-Part of U.S. patent application Ser. No. 16/111,970, filed on Aug. 24, 2018, presently pending, which is a reissue application of U.S. patent application Ser. No. 15/076,065, filed on Mar. 21, 2016, patented as U.S. Pat. No. 10,010,147 on Jul. 3, 2018, which is a continuation in part of U.S. patent application Ser. No. 14/980,280 filed on Dec. 28, 2015, patented as U.S. Pat. No. 10,117,488 on Nov. 6, 2018, the contents of which are all hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1429167 | Scharer | Sep 1922 | A |
1623758 | Santurello | Apr 1927 | A |
1652279 | Jacobs | Dec 1927 | A |
1661747 | Capdevila | Mar 1928 | A |
1662411 | Bonat | Mar 1928 | A |
1763655 | Ingrassia | Jun 1930 | A |
RE17832 | Borden | Oct 1930 | E |
1815266 | Mack | Jul 1931 | A |
1824497 | Percell | Sep 1931 | A |
1901430 | Bjorkman | Mar 1933 | A |
2424815 | Grant | Jul 1947 | A |
2454558 | Kleinsmith | Nov 1948 | A |
2527218 | Heaton | Oct 1950 | A |
2788006 | Trabish | Apr 1957 | A |
3057363 | Talbot | Oct 1963 | A |
3105503 | Safianoff | Oct 1963 | A |
3859497 | McNair | Jan 1975 | A |
3890984 | Lesetar | Jun 1975 | A |
3918465 | Barradas | Nov 1975 | A |
4023578 | Buhler | May 1977 | A |
4024375 | Olesen | May 1977 | A |
4177824 | Gnaga | Dec 1979 | A |
4233999 | Thomas | Nov 1980 | A |
4267431 | Rick | May 1981 | A |
4267851 | Plaisted | May 1981 | A |
4314137 | Dorn | Feb 1982 | A |
4329567 | Kunz | May 1982 | A |
4419565 | McGaw | Dec 1983 | A |
4443688 | Andis | Apr 1984 | A |
4456815 | Andis | Jun 1984 | A |
4468554 | Andis | Aug 1984 | A |
4469934 | Isshiki | Sep 1984 | A |
4473086 | Thaler | Sep 1984 | A |
4593708 | Goeller | Jun 1986 | A |
4641010 | Abura | Feb 1987 | A |
4664132 | Schillig | May 1987 | A |
4829156 | Robert | May 1989 | A |
4866248 | Altamore | Sep 1989 | A |
4953574 | Tsuji | Sep 1990 | A |
5046516 | Barradas | Sep 1991 | A |
5091630 | Djuric | Feb 1992 | A |
5186188 | Fasolt | Feb 1993 | A |
5191907 | Hirzel | Mar 1993 | A |
5365037 | Chan | Nov 1994 | A |
5400810 | Taylor | Mar 1995 | A |
5513665 | Chan | May 1996 | A |
5558107 | Kim | Sep 1996 | A |
5765575 | Denebeim | Jun 1998 | A |
6554000 | Lin | Apr 2003 | B2 |
6627852 | Savone | Sep 2003 | B1 |
7271368 | Yeung | Sep 2007 | B2 |
8132571 | Jackson | Mar 2012 | B1 |
8539964 | Rong | Sep 2013 | B2 |
8646465 | Tam | Feb 2014 | B2 |
9185957 | Richmond | Nov 2015 | B2 |
10010147 | Lee | Jul 2018 | B2 |
20030052115 | Leung | Mar 2003 | A1 |
20050172980 | Julemont | Aug 2005 | A1 |
20050252521 | Leblanc | Nov 2005 | A1 |
20060237418 | Bousfield | Oct 2006 | A1 |
20070175881 | Yeung | Aug 2007 | A1 |
20070278205 | Pencook | Dec 2007 | A1 |
20100083978 | Hottenrott | Apr 2010 | A1 |
20100263684 | De Benedictis | Oct 2010 | A1 |
20110284020 | Tam | Nov 2011 | A1 |
20120111354 | Cafaro | May 2012 | A1 |
20120145180 | Rong | Jun 2012 | A1 |
20130025621 | De Benedictis | Jan 2013 | A1 |
20130068245 | De Benedictis | Mar 2013 | A1 |
20130125919 | De Benedictis | May 2013 | A1 |
20130263882 | Kim | Oct 2013 | A1 |
20130263883 | Story | Oct 2013 | A1 |
20140076348 | Deng | Mar 2014 | A1 |
20140366909 | Richmond | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2770438 | Apr 2006 | CN |
101896091 | Nov 2010 | CN |
201958032 | Sep 2011 | CN |
102711549 | Oct 2012 | CN |
102783803 | Nov 2012 | CN |
202680933 | Jan 2013 | CN |
202722897 | Feb 2013 | CN |
203207435 | Sep 2013 | CN |
104366944 | Feb 2015 | CN |
104366944 | May 2015 | CN |
204336124 | May 2015 | CN |
204670560 | Sep 2015 | CN |
8206841 | Jul 1982 | DE |
4312453 | Oct 1994 | DE |
0057094 | Aug 1982 | EP |
0571389 | Jun 1996 | EP |
2622989 | Aug 2013 | EP |
2392222 | Sep 2013 | EP |
1327927 | May 1963 | FR |
2879415 | Jun 2006 | FR |
153060 | Oct 1978 | GB |
22772261 | Oct 1994 | GB |
3185229 | Aug 2013 | JP |
3988960 | Aug 2013 | JP |
1020020015082 | Feb 2002 | KR |
101166913 | Jul 2012 | KR |
101263801 | May 2013 | KR |
101326212 | Nov 2013 | KR |
101538288 | Jul 2015 | KR |
20170003804 | Nov 2017 | KR |
2011124137 | Oct 2011 | WO |
Entry |
---|
Evaluation Report of Utility Model Patent No. ZL2014201064595, dated Jun. 4, 2015 [Cited in Parent]. |
Sedu Revolution Clipless Curling Iron, Folica, http://www.folica.com/tools/curling-irons/sedu-revolution-clipliss-curling-iron, (Screenshot taken on Nov. 25, 2013) [Cited in Parent]. |
Cortex 4-in-1 Ceramic Clipless Curling Iron Set, Folica, http://www.folica.com/tools/curling-irons/cortex-professional-4-in-1-ceramic-clipless-curling-iron-se:#tab=overview, (Screenshot taken on Nov. 25, 2013) [Cited in Parent]. |
3/4 Clipless Curling Iron—19mm—Turquoise, Brilliance New York, http://www.brilliancenewyork.com/product/34-clipless-curling-iron-19mm-turtouise/./ (Screenshot taken on Nov. 25, 2013) [Cited in Parent]. |
International Search Report dated Feb. 4, 2015 of International Application No. PCT/US2014/064082 (3 pages) [Cited in Parent]. |
Written Opinion dated Feb. 4, 2015 of International Application No. PCT/US2014/064082 (6 pages) [Cited in Parent]. |
Japanese Office Action dated Jul. 14, 2015 of Japanese Application No. 2014-134312 [Cited in Parent]. |
Communication Pursuant to EPC Article 94(3) dated Feb. 7, 2018 for European Application No. 17201455.7 [Cited in Parent]. |
Extended European Search Report dated Feb. 7, 2018 for European Application No. 17201455.7 [Cited in Parent]. |
Examination Notice dated Feb. 7, 2018 for Taiwanese Application No. 106106308 [Cited in Parent]. |
Notification of Second Chinese Office Action dated Jul. 3, 2018, for Chinese Patent Application No. 201410084698.X [Cited in Parent]. |
Cortex Clipless Curling Iron, Folica, http://www.folica.com/tools/curling-irons/cortex-clipless-curling-iron#tab=overview, as viewed on the Way Way Back Machine dated May 7, 2013, https://web.archive.org/web/20130612074603/http://m.folica.com/tools/curling-irons/cortex-clipless-curling-iron [Cited in Parent]. |
Number | Date | Country | |
---|---|---|---|
20200352303 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16111970 | Aug 2018 | US |
Child | 16943159 | US | |
Parent | 14980280 | Dec 2015 | US |
Child | 15076065 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15076065 | Mar 2016 | US |
Child | 16111970 | US |