The invention relates to rotating machines including dynamoelectric machines, and more particularly to a sensor and method for accurately sensing a position of a rotor in an electric motor using a magnetic sense element and Hall Effect sensors.
Measuring rotary position is an important element in a wide variety of applications. In dynamoelectric machines for instance, a rotor position sensor gives information about the position of the rotor magnets with respect to stator windings. The position of the rotor magnets is important for properly energizing stator windings. Electric machines, and in particular electric motors, that require controlled armature current waveforms (in order to rotate smoothly, for example) also require accurate rotor position sensing. Some motors use sensor less technologies, but often these technologies do not provide accurate rotor position sensing at very low speeds and are not smooth upon startup of the motor. Currently, state of the art electric machines use either an encoder or a resolver together with associated electronic circuitry to determine rotor positions. Depending on the resolution required, however, these solutions can become prohibitively expensive within applications that require low cost motors.
One class of high resolution encoders is referred to as “sine/cosine encoders”. Sine/cosine encoders generate sine and cosine signals rather than pulse waveforms. When used with additional electronics, processor capability and software, sine/cosine encoders indicate rotor position with fine resolution.
Magnets and digital Hall Effect sensors are often used as a rotor position sensing mechanism within brushless direct current (DC) motor applications where square-wave or six-step drive control is used. This method of sensing provides relatively low resolution, typically six position steps per electrical cycle when using three sensors. However, the magnets and Hall effect sensors used in the position sensor are subject to the environment and may be impacted by electromagnetic fields operating within the rotating machine
Accordingly, a low-cost device that senses rotor position without electromagnetic interference would be advantageous in numerous applications.
According to one embodiment of the invention, described herein is a position sensor and method for measuring the rotation of a rotary shaft. The position sensor includes a rotary shaft having a cavity at an axial end thereof, a permanent magnet array where the permanent magnet array disposed at a periphery of the cavity, and a first Hall Effect sensor configured to detect a magnetic field produced by the permanent magnet array in a first radial axis.
In addition to one or more of the features described above, or as an alternative, further embodiments may include a second Hall Effect sensor configured to detect a magnetic field and/or voltage produced by the permanent magnet array in a second radial axis.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the second radial axis is orthogonal to the first radial axis.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the permanent magnet array is arranged as at least one of a Halbach cylinder and a polygon.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that a magnetic field produced by the permanent magnet array is substantially uniform in a center of the Halbach array.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that a magnetic field produced by the permanent magnet array radially outward of the Halbach array is substantially cancelled.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the permanent magnet array comprises at least four permanent magnets.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the permanent magnet array comprises permanent magnets of at least one of square axial cross section, rectangular axial cross section, and a partial circumferential annular axial cross section.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the rotary shaft is a portion of an electric machine.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the cavity is cylindrical, and the permanent magnet array is disposed at an outer circumference of the cavity.
Also described herein an embodiment is an electric machine including a housing including a stator having a stator coil, a rotor assembly disposed in the housing on a rotary shaft and operable to rotate within the housing, the rotor configured to operably couple magnetic with the stator, the rotary shaft having a cavity in an axial end thereof, and a position sensing assembly. The position sensing assembly includes a permanent magnet array arranged as a Halbach array, the permanent magnet array disposed at a periphery of the cavity, and a first Hall Effect sensor configured to detect a magnetic field produced by the permanent magnet array in a first radial axis.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the position sensing assembly further including a second Hall Effect sensor configured to detect a magnetic field produced by the permanent magnet array in a second radial axis.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the second radial axis is orthogonal to the first radial axis.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the permanent magnet array is arranged as at least one of a Halbach cylinder and a polygon.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that a magnetic field produced by the permanent magnet array is substantially uniform in a center of the Halbach cylinder.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that a magnetic field produced by the permanent magnet array radially outward of the Halbach array is substantially cancelled.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the permanent magnet array comprises eight permanent magnets.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the permanent magnet array comprises permanent magnets of at least one of square axial cross section, rectangular axial cross section, and a partial circumferential annular axial cross section.
Also described herein in an embodiment is a method for measuring the rotation of a rotary shaft. The method includes employing a rotary shaft having a cavity in an axial end thereof, disposing a permanent magnet array arranged as a Halbach array at a periphery of the cavity, operably disposing a first Hall Effect sensor configured to detect a magnetic field produced by the permanent magnet array in a first radial axis, measuring the magnetic field from the permanent magnet array, and computing a rotational position of the rotary shaft based on the measurement.
In addition to one or more of the features described above, or as an alternative, further embodiments may include operably disposing a second Hall Effect sensor configured to detect a magnetic field and/or voltage produced by the permanent magnet array in a second radial axis, wherein the second radial axis is orthogonal to the first radial axis and the computing is independent of at least one of a rotational position and rotational speed of the rotor shaft.
Additional features and advantages are realized through the techniques of the present disclosure. Other embodiments and aspects of the disclosure are described in detail herein. For a better understanding of the disclosure with the advantages and the features, refer to the description and to the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended. The following description is merely illustrative in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. As used herein, the term controller refers to processing circuitry that may include an application specific integrated circuit (ASIC), an electronic circuit, an electronic processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable interfaces and components that provide the described functionality.
Additionally, the term “exemplary” is used herein to mean “serving as an example, instance or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The terms “at least one” and “one or more” are understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” are understood to include any integer number greater than or equal to two, i.e. two, three, four, five, etc. The term “connection” can include an indirect “connection” and a direct “connection”.
As shown and described herein, various features of the disclosure will be presented. Various embodiments may have the same or similar features and thus the same or similar features may be labeled with the same reference numeral, but preceded by a different first number indicating the figure to which the feature is shown. Thus, for example, element “a” that is shown in Figure X may be labeled “Xa” and a similar feature in Figure Z may be labeled “Za.” Although similar reference numbers may be used in a generic sense, various embodiments will be described and various features may include changes, alterations, modifications, etc. as will be appreciated by those of skill in the art, whether explicitly described or otherwise would be appreciated by those of skill in the art.
In general, rotor position measurement and estimation techniques typically involve placing permanent magnets on either the end or circumferential face of the rotating shaft and capturing the magnetic field using a Hall Effect sensor place near these permanent magnets. This method relies on magnetic flux distributed around the magnets and the Hall Effect sensors. However, in most systems this means that the Hall Effect sensors can be impacted by other disturbances. In electric machine applications, electromagnetic interference from the permanent magnets or coil currents can impact the measured magnetic fields and, thereby, the operation of the sensors.
Embodiments herein relate generally to a rotor position sensor employing permanent magnets (PMs) arranged in a Halbach array to provide a uniform magnetic field. One or more of these embodiments may address one or more of the above noted concerns. The rotor position sensor may be applied to any application for measuring shaft rotation but is particularly useful for applications in an electric machine where electromagnetic interference (EMI) may be cause difficulty measuring lower level signals from the Hall effect sensors.
A multiple pole outer stator assembly shown generally as 20, typically of the multiphase alternating current (AC) type, circumscribes the rotor assembly 30. The stator assembly 20 has multiple ferromagnetic stator teeth 23 coupled to a ferromagnetic stator core 21, and arranged around the periphery of the stator core 21, one stator tooth 23 for each of the slots of the stator assembly 20. A distal end 25 of each stator tooth 23 forms an inner periphery 26 of the stator assembly 20 and is proximate the outer annular periphery 36 of the rotor assembly 30. In one embodiment, a small outer air gap 12 exists between the outer annular periphery 36 of the rotor assembly 30 and the stator teeth 21 of the stator assembly 20. The stator assembly 20 also has multiple stator coils 24 mounted in the slots 22 between the stator teeth 23. In an embodiment, the ferromagnetic stator core 21 and stator teeth 23 may be constructed of a variety of ferromagnetic materials including, but not limited to steel laminations, sintered magnetic powder material, and solid ferromagnetic material such a steel. In one embodiment steel laminations are employed. The stator winding 24, also called an armature winding, is typically a three-phase winding. However, it should be understood that any number of phases can be designed. The minimum number of phases is one.
The PM rotor assembly 30 comprises multiple PMs 37 arranged and mounted thereon. By way of example only,
It will be appreciated that while the embodiments herein are described with respect to a PM brushless DC machine, such description is for example only and not intended to be limiting in any way on the described embodiments and the claims.
Turning now to
Turing now to
Advantageously, the position sensing apparatus and methodology described herein provides for accurate prediction of position measurement of a rotary shaft. In particular, as may be employed for measuring the rotor position for and electric machine and motor drive control. The described embodiments may be modified for particular applications, size and speed of the rotating apparatus and machine. The advantages of employing the depth of the permanent magnet array 32 within the shaft to reduce axial load sensitivity and effectively eliminated radial load constraints typical of conventional Hall Effect sensing devices. Application of a permanent magnets arranged in a Halbach array to create uniform magnetic field improves detectability and sensitivity compared to conventions measurement schemes. The implementation of Hall Effect sensors positioned on stationary frame and arranged orthogonally to capture quadrature signals indicative of the position of the rotating shaft facilitates conventional signal processing of the data to determine the rotor position.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one more other features, integers, steps, operations, element components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.