Information
-
Patent Grant
-
6612862
-
Patent Number
6,612,862
-
Date Filed
Friday, April 19, 200222 years ago
-
Date Issued
Tuesday, September 2, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 489
- 439 352
- 439 358
- 439 357
- 439 354
-
International Classifications
-
Abstract
A lock arm (31) includes a leg portion (31b), which is provided at an intermediate portion of a lock portion (34) between at a front end portion and a rear end thereof, and extends to a housing body (35) of a male connector housing (33), and the lock arm can be pivotally moved on the leg portion (31b) serving as a fulcrum. A fitting detection member (51) of a lever-like shape is mounted on the male connector housing (33) such that when the fitting detection member is pressed down by a detection member-limiting portion (61), provided at the rear end of the lock arm (31), a front end portion of the fitting detection member is pivotally displaced outwardly from the housing body (35).
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a half-fitting prevention connector for connecting automotive wire harnesses together, and more particularly to a half-fitting prevention connector in which a mutually-fitted condition of a pair of connector housings, which are to be fitted together in a male-female manner, can be confirmed by the look of a fitting detection member provided at one of the connector housings.
The present application is based on Japanese Patent Application No. 2001-123107, which is incorporated herein by reference.
2. Related Art
FIGS. 10
to
12
show a conventional half-fitting prevention connector used for connecting automotive wire harnesses together.
This half-fitting prevention connector
1
is disclosed in JP-A-5-234637, and comprises a male connector housing
5
, having a lock arm
3
, a female connector housing
9
, which has an engagement portion
7
for engagement with a lock portion
3
a
of the lock arm
3
, and can be connected to the male connector housing
5
in a locked condition when it is fitted on the male connector housing
5
in a male-female manner, a fitting detection member
11
pivotally mounted on the female connector housing
9
, and detection member-limiting portions
13
and
14
for pivotally displacing the fitting detection member
11
outwardly from the female connector housing
9
when the mutually-fitted condition of the pair of connector housings
5
and
9
is incomplete, that is, a half-fitted condition.
As shown in
FIGS. 11 and 12
, the fitting detection member
11
comprises a support shaft
11
a
, mounted on a rear portion of a housing body
9
a
of the female connector housing
9
, a pivotal arm
11
b
, pivotally supported on this support shaft
11
a
, elastic retaining piece portions
11
c
, which are formed on and project from a distal end of the pivotal arm
11
b
, and are engageable with an arm retaining portion
9
b
of the housing body
9
a
to hold the pivotal arm
11
b
in contiguous relation to the surface of the housing body
9
a
(as shown in FIG.
11
), and a fitting confirmation projection
11
d.
When the elastic retaining piece portions
11
c
are disposed out of engagement with the arm retaining portion
9
b,
this fitting detection member
11
can be pivotally moved outwardly from the housing about the support shaft
11
a
as indicated by arrow A in FIG.
12
.
At an initial stage of the fitting of the connector housings
5
and
9
, a tapering portion
14
a
, formed at a front end of one detection member-limiting portion
14
, pushes a distal end of the elastic retaining piece portion
11
c
, retained by the arm retaining portion
9
b
, thereby canceling the engagement between the arm retaining portion
9
b
and the elastic retaining piece portion
11
c
, so that the fitting detection member
11
can be pivotally moved outwardly form the housing.
Before the connector housings
5
and
9
are completely fitted together, the detection member-limiting portions
13
and
14
are held against a lower end of the fitting confirmation projection lid to limit the pivotal movement of the fitting detection member
11
toward the housing, and therefore the fitting detection member
11
is kept displaced outwardly from the housing, so that the fitting confirmation projection lid is exposed to the exterior of the housing body
9
a
, as shown in FIG.
12
.
When the connector housings
5
and
9
are completely fitted together as shown in
FIG. 11
, with the lock portion
3
a
engaged with the engagement portion
7
, the detection member-limiting portions
13
and
14
are disposed at their respective positions where they will not interfere with the elastic retaining piece portions
11
c
and the fitting confirmation projection lid, so that the fitting detection member
11
can be returned into its initial position where the elastic retaining piece portions
11
c
are retained by the arm retaining portion
9
b
. As a result, the completely-fitted condition of the two connector housings can be confirmed.
Namely, in the half-fitting prevention connector
1
, the fitting confirmation projection
11
d
of the fitting detection member
11
projects outwardly from the housing, and the elastic retaining piece portions
11
c
can not engage the arm retaining portion
9
b
, and by doing so, the half-fitted condition of the two connector housings can be detected.
However, the length L of outward projection of the fitting detection member
11
from the housing in the half-fitted condition is determined by the height of the detection member-limiting portion
13
(on which the fitting confirmation projection
11
d
can slide) and the height of the fitting confirmation projection
11
d
. When the dimensions of these portions are reduced as a result of a compact design of the connector, the projecting length L in the half-fitted condition is also reduced, and therefore it is difficult to confirm with the eyes whether or not this projecting has occurred, and this has invited a problem that the half-fitted condition has been overlooked.
SUMMARY OF THE INVENTION
This invention has been made under the above circumstances, and an object of the invention is to provide a half-fitting prevention connector in which the overlooking of a half-fitted condition of two connector housings can be positively prevented even in the case where the dimension of a detection member-limiting portion for displacing a fitting detection member outwardly from the housing is reduced as a result of a compact design of the connector.
The above object has been achieved by a half-fitting prevention connector comprising: a first connector housing having a lock arm including a leg portion provided at an intermediate portion of the lock arm between a front end portion and a rear end thereof and extending to a housing body of the first connector, the lock arm pivotally movable on the leg portion serving as a fulcrum; a second connector housing having an engagement portion engagable with a lock portion of the lock arm, and fitted relative to the first connector housing; a fitting detection member pivotally mounted on the first connector housing in a lever-like manner; and a detection member-limiting portion provided at the rear end of the lock arm; wherein the detection member-limiting portion prevents a pivotal movement of the fitting detection member when the lock portion and the engagement portion are not in an engaged condition, and the fitting detection member is inclined when the fitting detection member is pressed down by the detection member-limiting portion before an engagement of the lock portion with the engagement portion is completed, so that a front end portion of the fitting detection member is pivotally displaced outwardly from the housing body of the first connector housing.
In the above construction, even in the case where the dimensions of the detection member-limiting portion, which can displace the fitting detection member outwardly from the housing, are reduced, the length of outward projection of the fitting detection member from the housing in the half-fitted condition is amplified to a value, larger than the displacement amount actually transmitted by the detection member-limiting portion, by the leverage of the lock arm and fitting detection member, and therefore this projection length can be increased to a value large enough to enable an easy conformation of whether or not this projecting has occurred.
In the above half-fitting prevention connector, preferably, an elastically-deformable rib is provided at a rear end of the fitting detection member, and the elastically-deformable rib is pressed down by the detection member-limiting portion of the lock arm upon inclination of the lock arm, so as to produce a bending moment to increase a displacement of the front end portion of said fitting detection member.
In this construction, the amount of outward pivotal displacement of the front end portion of the fitting detection member from the housing is the sum of the amplified displacement amount, obtained by the leverage of the lock arm and fitting detection member, and the pivotal displacement amount obtained by the bending moment produced by the elastically-deformable rib. Thus, the amount of displacement of the fitting detection member in the half-fitted condition is further increased.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view showing the appearance of one preferred embodiment of a half-fitting prevention connector of the invention in a completely-fitted condition;
FIG. 2
is a cross-sectional, perspective view showing a condition before two connector housings of
FIG. 1
are fitted together;
FIG. 3
is a cross-sectional, perspective view showing a condition in which the two connector housings are in the process of being fitted together;
FIG. 4
is a cross-sectional, perspective view showing a condition in which a lock portion of a lock arm begins to slide onto an engagement portion of a mating connector when the two connector housings are in the process of being fitted together;
FIG. 5
is a cross-sectional, perspective view showing a half-fitted condition in which the lock portion of the lock arm slides on the engagement portion of the mating housing when the two connector housings are in the process of being fitted together;
FIG. 6
is a cross-sectional, perspective view showing a condition immediately before a fitting detection member is returned to an initial position after the fitting of the two connector housings relative to each other is properly completed;
FIG. 7
is a cross-sectional, perspective view showing the completely-fitted condition of the two connector housings, in which the fitting detection member is returned to the initial position after the fitting of the two connector housings is properly completed;
FIG. 8
is an enlarged view of important portions of the two connector housings of
FIG. 4
which are in the process of being fitted together;
FIG. 9
is an enlarged view of important portions of the two connector housings of
FIG. 5
which are in the process of being fitted together;
FIG. 10
is an exploded, perspective view of a conventional half-fitting prevention connector, showing a condition before a fitting operation is effected;
FIG. 11
is a vertical cross-sectional view of the half-fitting prevention connector of
FIG. 10
in a completely-fitted condition; and
FIG. 12
is a vertical cross-sectional view of the half-fitting prevention connector of
FIG. 10
in a half-fitted condition.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A preferred embodiment of a half-fitting prevention connector of the present invention will now be described in detail with reference to the drawings.
FIGS. 1
to
9
show one preferred embodiment of the half-fitting prevention connector of the invention, and
FIG. 1
is a perspective view showing the appearance of the half-fitting prevention connector of the invention in a completely-fitted condition;
FIG. 2
is a cross-sectional, perspective view showing a condition before two connector housings are fitted together;
FIG. 3
is a cross-sectional, perspective view showing a condition in which the two connector housings are in the process of being fitted together;
FIG. 4
is a cross-sectional, perspective view showing a condition in which the two connector housings are in the process of being fitted together;
FIG. 5
is a cross-sectional, perspective view showing a half-fitted condition in which a lock portion of a lock arm slides on an engagement portion of the mating housing when the two connector housings are in the process of being fitted together;
FIG. 6
is a cross-sectional, perspective view showing a condition immediately before a fitting detection member is returned to an initial position after the fitting of the two connector housings relative to each other is properly completed;
FIG. 7
is a cross-sectional, perspective view showing the two connector housings in a completely-fitted condition;
FIG. 8
is an enlarged view of important portions of the two connector housings of
FIG. 4
which are in the process of being fitted together; and
FIG. 9
is an enlarged view of important portions of the two connector housings of
FIG. 5
which are in the process of being fitted together.
This half-fitting prevention connector
21
comprises the male connector housing (first connector housing)
33
, having the lock arm
31
, the female connector housing (second connector housing)
43
, which has an engagement portion
41
for engagement in the lock portion
34
of the lock arm
31
, and can be fitted on the male connector housing
33
in a male-female manner, the fitting detection member
51
pivotally mounted on the male connector housing
33
, and a detection member-limiting portion
61
for preventing the pivotal movement of the fitting detection member
51
in a connector-half-fitted condition in which the length of fitting of the connector housings
33
and
43
relative to each other does not reach a predetermined value, so that the lock portion
34
is disposed out of engagement with the engagement portion
41
. In this construction, whether or not the fitted condition of the connector housings
33
and
43
is good is judged by the outward projection of the fitting detection member
51
from the housing.
The male connector housing
33
includes a housing body
35
having terminal receiving chambers
35
a
for respectively receiving and holding female terminals (not shown), and this housing body
35
can be inserted into a housing body
45
of the female connector housing
43
as shown in
FIGS. 3
to
7
.
The lock arm
31
includes an arm portion
31
a
, which is formed on an upper surface of the housing body
35
in a projected manner, and has the lock portion
34
formed at a front end thereof, and also has a lock cancellation-operating pressing portion
36
formed on an upper surface of a rear end portion thereof, and leg portions
31
b
connecting an intermediate portion of the arm portion
31
a
to the upper surface of the housing body
35
. The arm portion
31
a
can be turned on the leg portions
31
b
(each serving as a fulcrum) so that front and rear ends of this arm portion
31
a
can be pivotally displaced upward and downward.
The front end portion of the arm portion
31
a
is formed into a wedge-shaped cross-section, and has upper and lower tapering surfaces. The lock portion
34
is defined by a retaining hole which is formed in an upward-downward direction through that portion of the arm portion
31
a
disposed immediately adjacent to the cross-sectionally wedge-shaped front end portion thereof.
In this embodiment, the lower surface of the rear end portion of the arm portion
31
a
serves as the detection member-limiting portion
61
for displacing the fitting detection member
51
.
The female connector housing
43
includes a housing body
45
, having terminal receiving chambers
45
a
for respectively receiving and holding male terminals (not shown), the engagement portion
41
, formed on and projecting from an upper surface of this housing body
45
, and detection member cancellation projections
46
formed on the upper surface of the housing body
45
.
The engagement portion
41
is in the form of a projection having a tapering surface
41
a
formed at its distal end, and when the connector housings
33
and
43
are fitted together, this engagement portion
41
slides under the front end portion of the arm portion
31
a
as shown in
FIGS. 4 and 5
, and advances between the housing body
35
of the male connector housing
33
and the arm portion
31
a
while elastically deforming the front end of the arm portion
31
a
upwardly through its tapering surface
41
a
, and when the length of fitting of the two housings relative to each other reaches the predetermined value, that is, when the completely-fitted condition is achieved, the engagement portion
41
is fitted into the elastically-restored lock portion
34
from the lower side, and thus this engagement portion is engaged in the lock portion
34
.
Namely, when the front end portion of the arm portion
31
a
slides onto the tapering surface
41
a
and apex of the engagement portion
41
, and is lifted, the lock arm
31
is turned on the leg portions
31
b
(serving as a fulcrum) to be inclined in such a manner that the front end of the arm portion
31
a
is pivotally moved outwardly from the housing while the rear end of this arm portion
31
a
is pivotally moved toward the housing. When the engagement portion
41
is engaged in the lock portion
34
, so that the lifting of the arm portion
31
a
by the engagement portion
41
is canceled, the inclined condition of the arm portion
31
a
is canceled by its own elastic restoring force.
The fitting detection member
51
is a lever-like member, and when the lock arm
31
is pivotally moved by the engagement portion
41
, this fitting detection member
51
is pressed down by the detection member-limiting portion
61
, formed at the rear end portion of the lock arm
31
, so that the front end portion of this fitting detection member
51
is pivotally displaced outwardly from the connector housing.
Elastic retaining piece portions
53
, which can be retained by a provisionally-retaining portion
38
formed at the male connector housing
33
, are formed at a front end of the fitting detection member
51
, and an elastically-deformable rib
54
, which can be pressed down by the detection member-limiting portion
61
, defined by the lower surface of the rear end portion of the arm portion
31
a
, is formed at a rear end of the fitting detection member
51
. The fitting detection member
51
is pivotally mounted on the male connector housing
33
by a pivot shaft (not shown) which is provided at the fitting detection member
51
, and is engaged in pivot holes (not shown) formed in the male connector housing
33
, the axis of pivotal movement of the fitting detection member
51
being slightly spaced from the elastically-deformable rib
54
toward the front end.
When the front end of the fitting detection member
51
is pressed down to its initial position as indicated by arrow B in
FIG. 2
, the provisionally-retaining portion
38
retains hook portions
53
a
, formed respectively at distal ends of the elastic retaining piece portions
53
, and this provisionally-retaining portion
38
thus retains the fitting detection member
51
against accidental pivotal movement during the transport of the connector.
The detection member cancellation projections
46
, formed on and projecting from the female connector housing
43
, press the hook portions
53
a
of the elastic retaining piece portions
53
rearwardly when these cancellation projections
46
pass beneath the provisionally-retaining portion
38
at the initial stage of the fitting of the connector housings
33
and
43
, and at this time, the elastic retaining piece portions
53
are elastically deformed, so that the engagement of the hook portions
53
a
with the provisionally-retaining portion
38
is canceled, thereby enabling the pivotal movement of the fitting detection member
51
, as shown in FIG.
3
.
Before the front end of the arm portion
31
a
slides onto the tapering surface
41
a
of the engagement portion
41
during the fitting operation, the detection member cancellation projections
46
respectively support auxiliary projections
56
, projecting downwardly from an intermediate portion of the fitting detection member
51
, from the lower side as shown in
FIG. 4
, thereby keeping the front end of the fitting detection member
51
projected outwardly more than a predetermined amount from the connector housing
33
.
At the initial stage of the engagement of the two housings with each other at which the engagement of the elastic retaining piece portions
53
with the provisionally-retaining portion
38
is canceled by the detection member cancellation projections
46
, a slight gap S is formed between the elastically-deformable rib
54
of the fitting detection member
51
and the detection member-limiting portion
61
provided at the rear end of the arm portion
31
a
as shown in FIG.
3
.
Then, as shown in
FIG. 4
, the fitting of the two housings proceeds, and the detection member cancellation projections
46
abut against the lower surfaces of the auxiliary projections
56
, respectively, and immediately before the front end of the arm portion
31
a
slides onto the tapering surface
41
a
, the above-mentioned gap S is eliminated, and the elastically-deformable rib
54
at the rear end of the fitting detection member
51
is held between the housing body
35
and the detection member-limiting portion
61
in a gripped manner as shown in FIG.
8
.
Then, the fitting of the two housings further proceeds, and when the front end of the arm portion
31
a
slides onto the tapering surface
41
a
, so that the arm portion
31
a
is inclined, with its front end raised as indicated by arrow C in
FIG. 5
, the elastically-deformable rib
54
is pressed down in a direction of arrow D by the detection member-limiting portion
61
, formed at the rear end of this arm portion
31
a
, and by the leverage, obtained at this time, the front end portion of the fitting detection member
51
is much pivotally moved outwardly from the housing as shown in FIG.
5
.
In this embodiment, when the detection member-limiting portion
61
depresses the elastically-deformable rib
54
to pivotally move the fitting detection member
51
, the elastically-deformable rib
54
is elastically deformed as shown in
FIG. 9
, and the shape and dimensions of the elastically-deformable rib
54
are so determined that the elastically-deformable rib
54
, thus elastically deformed, can produce a bending moment M to increase the amount of displacement of the front end portion of the fitting detection member
51
.
Then, the fitting of the two housings further proceeds, and when the front end of the arm portion
31
a
passes past the engagement portion
41
as shown in
FIG. 6
, the engagement portion
41
is engaged in the lock portion
34
provided at the arm portion
31
a
. When the inclination of the arm portion
31
a
, slanting upwardly forwardly, is canceled as a result of engagement of the engagement portion
41
in the lock portion
34
, the detection member-limiting portion
61
is returned to its initial position, and the depression of the elastically-deformable rib
54
by the detection member-limiting portion
61
is canceled. As a result, the fitting detection member
51
is returned to the same inclined condition as obtained when the engagement of the elastic retaining piece portions
53
with the provisionally-retaining portion
38
is canceled by the detection member cancellation projections
46
, and a slight gap S
1
is formed between the detection member-limiting portion
61
and the elastically-deformable rib
54
.
In this condition, the front end portion of the fitting detection member
51
is pressed down as indicated by arrow E in
FIG. 7
to bring the hook portions
53
a
of the elastic retaining piece portions
53
into engagement with the provisionally-retaining portion
38
, thus completing the operation for fitting the connector housings
33
and
43
together.
If the connector housings
33
and
43
are disposed in a half-fitted condition, the front end portion of the fitting detection member
51
much projects outwardly from the housing as shown in
FIG. 5
, and the pivotal movement of the fitting detection member
51
is prevented, with the elastically-deformable rib
54
grippingly held between the detection member-limiting portion
61
and the housing body
35
, and therefore even when the front end portion of the fitting detection member
51
is pressed, the fitting detection member
51
can not be returned to its initial position.
In the half-fitting prevention connector
21
of this embodiment, even in the case where the dimensions of the detection member-limiting portion
61
are reduced as a result of a compact design of the connector, the length X of outward projection of the fitting detection member
51
from the housing in the half-fitted condition is amplified to a value, larger than the displacement amount actually transmitted from the detection member-limiting portion
61
, by the leverage of the lock arm
31
and fitting detection member
51
, and therefore this projection length can be set to a value large enough to enable an easy conformation of whether or not this projecting has occurred.
Therefore, when the half-fitted condition is encountered, a large amount of pivotal movement of the fitting detection member
51
occurs, and therefore merely by confirming with the eyes whether or not the fitting detection member
51
is projected, the half-fitted condition can be positively detected, and the overlooking of the half-fitted condition can be positively prevented.
In this embodiment, when the elastically-deformable rib
54
, provided at the end of the fitting detection member
51
, is depressed by the detection member-limiting portion
61
, this rib
54
is elastically deformed to produce a bending moment to increase the amount of pivotal movement of the front end portion of the fitting detection member
51
. Therefore, the amount of outward pivotal displacement of the fitting detection member
51
from the housing is the sum of the amplified displacement amount, obtained by the leverage of the lock arm
31
and fitting detection member
51
, and the pivotal displacement amount obtained by the bending moment produced by the elastically-deformable rib
54
. Thus, the amount of displacement of the fitting detection member
51
in the half-fitted condition is further increased, and it is easier to confirm with the eyes whether or not the fitting detection member
51
is projected.
The structure of the elastically-deformable rib is not limited to that of this embodiment. The shape and dimensions of the elastically-deformable rib can be suitably changed in so far as a large bending moment can be produced when the rib is depressed by the detection member-limiting portion, and is elastically deformed.
In the half-fitting prevention connector of the present invention, the length of outward projection of the fitting detection member from the housing in the half-fitted condition is amplified to a value, larger than the displacement amount actually transmitted from the detection member-limiting portion, by the leverage of the pivotally-moving lock arm and fitting detection member, and therefore this projection length can be set to a value large enough to enable an easy confirmation of whether or not this projecting has occurred.
Therefore, if the two connector housings are in the half-fitted condition, a large amount of pivotal movement of the fitting detection member occurs, and therefore merely by confirming with the eyes whether or not the fitting detection member is projected, the half-fitted condition can be positively detected, and the overlooking of the half-fitted condition can be positively prevented.
In the construction of claim 2, the amount of outward pivotal displacement of the front end portion of the fitting detection member from the housing is the sum of the amplified displacement amount, obtained by the leverage of the lock arm and fitting detection member, and the pivotal displacement amount obtained by the bending moment produced by the elastically-deformable rib. Thus, the amount of displacement of the fitting detection member in the half-fitted condition is further increased, and it is easier to confirm with the eyes whether or not the fitting detection member is projected.
Claims
- 1. A half-fitting prevention connector comprising:a first connector housing having a lock arm including a leg portion provided at an intermediate portion of said lock arm between a front end portion and a rear end thereof and extending to a housing body of said first connector, said lock arm pivotally movable on said leg portion serving as a fulcrum; a second connector housing having an engagement portion engagable with a lock portion of said lock arm, and fitted relative to said first connector housing; a fitting detection member pivotally mounted on said first connector housing in a lever-like manner; and a detection member-limiting portion provided at said rear end of said lock arm; wherein said detection member-limiting portion prevents a pivotal movement of said fitting detection member when said lock portion and said engagement portion are not in an engaged condition, and said fitting detection member is inclined when a rear end of said fitting detection member is pressed down by said detection member-limiting portion before an engagement of said lock portion with said engagement portion is completed, so that a front end portion of said fitting detection member is pivotally displaced outwardly from said housing body of said first connector housing.
- 2. A half-fitting prevention connector according to claim 1, wherein an elastically-deformable rib is provided at a rear end of said fitting detection member, andsaid elastically-deformable rib is pressed down by said detection member-limiting portion of said lock arm upon inclination of said lock arm, so as to produce a bending moment to increase a displacement of said front end portion of said fitting detection member.
Priority Claims (1)
Number |
Date |
Country |
Kind |
P2001-123107 |
Apr 2001 |
JP |
|
US Referenced Citations (5)
Foreign Referenced Citations (7)
Number |
Date |
Country |
0 660 451 |
Jun 1995 |
EP |
0 993 078 |
Apr 2000 |
EP |
5-234637 |
Sep 1993 |
JP |
8-31517 |
Feb 1996 |
JP |
9-134757 |
May 1997 |
JP |
9-148003 |
Jun 1997 |
JP |
9-180818 |
Jul 1997 |
JP |