The present invention relates to a half mirror, a light guide device, and a display device.
As a wearable information appliance, an image display device worn on a user's head, such as a head-mounted display, has been recently provided. Furthermore, a see-through image display device is known. The see-through image display device allows the user wearing it to see an image composed of display elements and to see through it at the same time. The image display device of this type includes a half mirror that reflects image light toward the user's eyes and allows external light to pass therethrough toward the user's eyes.
JP-A-2014-224891 discloses a half mirror including a silver layer, a first dielectric multilayer film including a first aluminum oxide layer and a titanium oxide layer, and a second dielectric multilayer including a zirconium oxide-based dielectric layer and a second aluminum oxide layer. JP-A-2014-224891 describes that the half mirror mainly includes silver as a metal, which causes less light loss due to absorption than aluminum, and thus the silver layer is allowed to have a larger thickness, enabling stable formation of the silver layer.
In the half mirror including a dielectric multilayer film, the reflectance for the p-polarized component at an angle near Brewster's angle is very close to 0%. Thus, if the incident angle of the light onto the half mirror is substantially the same as Brewster's angle due to the design of the display device, only the s-polarized component is used as image light, leading to low light use efficiency.
A half mirror including a metal film is employed to use both the p-polarized component and the s-polarized component such that the light use efficiency does not decrease. In the half mirror including the metal film, the reflectance and the transmittance is able to be adjusted by controlling the thickness of the metal film. For example, in JP-A-2014-224891, a silver film having a thickness of about 19 nm is employed to have a reflectance of about 35% over the entire visible wavelength range. A silver film having a further smaller thickness may be used to have a further lower reflectance. In such a case, it is difficult to produce a half mirror having desired optical properties.
An advantage of some aspects of the invention is that a half mirror having desired optical properties and a low reflectance, a light guide device including the above-described half mirror, and a display device including the above-described light guide device are provided.
A half mirror according to a first aspect of the invention includes a silver layer and an anti-aggregation layer in contact with the silver layer.
According to the first aspect of the invention, the anti-aggregation layer reduces aggregation of silver, and thus aggregation, which adversely affects the optical properties, is less likely to occur, enabling formation of a silver layer having a small thickness. Thus, a half mirror having desired optical properties and a low reflectance is obtained.
In the half mirror according to the first aspect, the anti-aggregation layer may be composed of one of indium tin oxide (ITO) and indium gallium oxide (IGO). Alternatively, the anti-aggregation layer may be composed of an organic molecular film having a thiol group. Alternatively, the anti-aggregation layer may be composed of an alloy including silver in an amount of 97% or more and an element X (X=any one of Au, Mg, Zn, Cu, Al, Si, Pd, Sn, Pt, Ti, and Cr).
The inventors have confirmed that the half mirror having preferable optical properties and a low reflectance is obtained by the anti-aggregation layer formed of the above-described material. This is described later in detail.
In the half mirror according to the first aspect, the silver layer may have a thickness of 12 nm or less.
With this configuration, a half mirror having a low reflectance of about 20%, for example, is obtained.
The half mirror according to the first aspect may further include a dielectric layer in contact with the silver layer and a dielectric layer in contact with the anti-aggregation layer.
With this configuration, spectral reflectance is able to be adjusted by the dielectric layer, and thus the reflectance is made low over a wide visible wavelength range.
A half mirror according to a second aspect of the invention includes an alloy layer including silver in an amount of 97% or more and an element X (X=any one of Au, Mg, Zn, Cu, Al, Si, Pd, Sn, Pt, Ti, and Cr).
According to the second aspect of the invention, instead of the layer including only silver, the alloy layer including silver and the element X is employed. This reduces aggregation of silver, enabling formation of a silver alloy layer having a small thickness. Thus, a half mirror having desired optical properties and a low reflectance is obtained.
In the half mirror according to the second aspect of the invention, the alloy layer may have a thickness of 12 nm or less.
With this configuration, a half mirror having a low reflectance of about 20%, for example, is obtained.
The half mirror according to the second aspect of the invention may further include a dielectric layer in contact with the alloy layer.
With this configuration, spectral reflectance is able to be adjusted by the dielectric layer, and thus the reflectance is made low over a wide visible wavelength range.
A light guide device according to a third aspect of the invention includes a light guide and the half mirror according to any one of the aspects that is configured to reflect some of light traveled in the light guide.
Since the light guide device according to the third aspect of the invention includes the half mirror according to one of the aspects of the invention, the light guide device has desired optical properties.
A display device according to a fourth aspect of the invention includes an image forming device and the light guide device according to the third aspect of the invention that is configured to guide image light generated by the image forming device.
Since the display device according to the fourth aspect of the invention includes the light guide device according to the third aspect of the invention, the display device has desired display characteristics.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, a first embodiment of the invention is described with reference to
As illustrated in
The base 60 is composed of a material having light transmissivity, such as glass and plastic. The thickness of the base 60 is about 0.5 mm to about 2 mm, for example, but the base 60 may have any thickness.
The anti-aggregation layer 61 functions as a foundation layer and prevents silver aggregation caused when the silver layer having a small thickness is formed on the base 60. The anti-aggregation layer 61 may be formed of indium tin oxide (ITO) or indium gallium oxide (IGO), for example.
Alternatively, the anti-aggregation layer 61 may be formed of an organic molecular film having a thiol group. Specific examples of the material of the organic molecular film having a thiol group include 3-Mercaptopropylmethyldimethoxysilane and (3-Mercaptopropyl) trimethoxysilane.
Alternatively, the anti-aggregation layer 61 may be composed of an alloy including silver (Ag) in an amount of 97% or more and an element X (X=any one of Au, Mg, Zn, Cu, Al, Si, Pd, Sn, Pt, Ti, and Cr) in an amount of less than 3%.
The thickness of the anti-aggregation layer 61 is about 0.1 to about 2 nm, for example, but the anti-aggregation layer 61 may have any thickness.
The silver layer 62 of this embodiment is composed only of silver. The silver layer 62 has a thickness of 12 nm or less and is formed over the entire surface of the anti-aggregation layer 61. The half mirror 51 including the silver layer 62 has a relatively low reflectance of about 5% to about 30%, for example.
Problems involved in a conventional half mirror including a dielectric multilayer film are described with reference to
If the incident angle α of the light L is equal to Brewster's angle, the reflectance for the p-polarized component Lp is substantially 0%. Thus, the p-polarized component Lp passes through the half mirror 101 as it is and travels inside the base 60 without being extracted to the outside. In this case, the reflectance for the s-polarized component Ls is set at 46% such that the reflectance of the half mirror 101 for the entire polarized components of the light L becomes 23%.
The output light from the first half mirror 101 that receives the light L first is referred to as output light L3. The output light from the second half mirror 101 that receives the light L after the first half mirror 101 is referred to as output light L4. The percentage of the light quantity of the output light L3 (the s-polarized component Ls) with respect to the total light quantity is 23% (=0.5×0.46), and the percentage of the light quantity of the output light L4 (the s-polarized component Ls) with respect to the total light quantity is 12.42% (=0.5×0.54×0.46). Thus, the difference in brightness between the output light from the first half mirror 101 and the output light from the second half mirror 101 is 10.58%.
As seen from the above, in the conventional half mirror 101, the difference in brightness between the output light rays from the two half mirrors located next to each other is substantially equal to the brightness between the output light rays from the second half mirror. Thus, unevenness in brightness of the output light is large.
Next, operation of the half mirror 51 of this embodiment is described with reference to
In the half mirror including a metal layer such as a silver layer, the reflectance for the p-polarized component Lp does not become 0% even if the incident angle α is equal to Brewster's angle, contrary to the half mirror including only the dielectric multilayer film. The reflectance for the s-polarized component Ls and that of the p-polarized component Lp are both able to be set at 23%. Thus, the p-polarized component Lp is extracted to the outside together with the s-polarized component Ls.
The output light from the first half mirror 51 that receives the light L first is referred to as output light L1. The output light from the second half mirror 51 that receives the light L after the first half mirror 51 is referred to as output light L2. The percentage of the light quantity of the output light L1 (the s-polarized component Ls+the p-polarized component Lp) with respect to the total light quantity is 23% (=0.5×0.23+0.5×0.23), and the percentage of the light quantity of the output light L2 (the s-polarized component Ls+the p-polarized component Lp) with respect to the total light quantity is 17.71% (=0.5×0.77×0.23+0.5×0.77×0.23). Thus, the difference in brightness between the output light from the first half mirror 51 and the output light from the second half mirror 51 is 5.29%.
As seen from the above, if the half mirror 51 of the embodiment has the reflectance equal to that of the conventional half mirror 101, the difference in brightness between the output light rays from the half mirrors 51 located next to each other is reduced to a half of that from the conventional half mirrors 51. Thus, unevenness in brightness of the output light rays from the half mirrors of the embodiment is smaller than that of the output light from the conventional half mirrors.
The half mirror including a metal layer may have a reflectance of 35%. In such a case, the difference in brightness between the output light rays from the half mirrors located next to each other is 12.25% when calculated as above. The brightness unevenness is large. To reduce the brightness unevenness, the reflectance of the half mirror is set at 30% or less. This reduces the difference in brightness between the output light rays from the half mirrors located next to each other to about 10% or less. In view of this, the reflectance of the half mirror is preferably 30% or less. It has been confirmed by an experiment that the brightness difference of 10% or less is unlikely to be recognized by a human eye and the unevenness is invisible. Furthermore, it has been confirmed by an experiment that when the brightness difference is 5% or less, the unevenness is completely invisible.
The inventors of this invention produced various types of half mirrors having the configurations of the embodiment and evaluated appearance and optical properties of the silver layers of the half mirrors. The results of the evaluations are described below.
A half mirror including an anti-aggregation layer formed of IGO and a silver layer on the anti-aggregation layer was produced as Example 1. A half mirror including an anti-aggregation layer formed of 3-Mercaptopropylmethyldimethoxysilane or (3-Mercaptopropyl)trimethoxysilane, which is an organic thin film, and a silver layer on the anti-aggregation layer was produced as Example 2. A half mirror including a silver layer directly on a base and not including an anti-aggregation layer was produced as Comparative Example 1. The target value of the thickness of the silver layer was 10 nm in the half mirrors of the Example 1, Example 2, and Comparative Example 1. As the base, BK7, which is one type of optical glass, was used.
As indicated in
Compared with this, as indicated in
Since the silver layer of the invention has a very small thickness, the silver layer may have portions through which the foundation is exposed as indicated in
Next, a half mirror illustrated in
As Example 1, a half mirror including ZrO2 in the form of the first dielectric layer, the anti-aggregation layer formed of IGO, the silver layer, ZrO2 in the form of the second dielectric layer, and SiO2 in the form of the third dielectric layer in this order on the base was produced. As Example 2, a half mirror including ZrO2 in the form of the first dielectric layer, the anti-aggregation layer formed of 3-Mercaptopropylmethyldimethoxysilane or (3-Mercaptopropyl)trimethoxysilane as an organic thin film, the silver layer, ZrO2 in the form of the second dielectric layer, and SiO2 in the form of the third dielectric layer in this order on the base was produced. As Comparative Example 1, a half mirror including ZrO2 in the form of the first dielectric layer, the silver layer, ZrO2 in the form of the second dielectric layer, and SiO2 in the form of the third dielectric layer in this order on the base was produced.
In
A difference G between the sum of the reflectance and the transmittance and 100% probably corresponds to the amount of light absorbed by the half mirror. Then, the spectral curve JY indicating the sum of the actual measured values is focused. As indicated in
Compared with this, in the half mirror of Example 1, as indicated in
In the half mirror 51 of the embodiment, the use of the silver layer 62, instead of the dielectric multilayer film, enables the p-polarized component to be used when an incident angle is close to Brewster's angle. Thus, of the half mirrors having the same light use efficiency, the half mirror including the silver layer 62, which enables both the s-polarized component and the p-polarizes component to be used, has higher reflectance and allows the reflected light therefrom to have higher brightness than the half mirror including the dielectric multilayer film, which reflects only the s-polarized component.
The reduction of aggregation of silver by using the anti-aggregation layer 61 as the foundation of the silver layer 62 enables the silver layer having a small thickness to be relatively stably formed. This reduces the light absorption at the half mirror 51, and thus a half mirror having desired optical properties and a low reflectance is obtained. In particular, the silver layer 62 having a thickness of 12 nm or less reduces the reflectance of the half mirror to about 30% or less.
Hereinafter, a second embodiment of the invention is described with reference to
As illustrated in
The silver layer 87 of this embodiment includes silver in an amount of 97% or more and an element X (X=any one of Au, Mg, Zn, Cu, Al, Si, Pd, Sn, Pt, Ti, and Cr) in an amount of less than 3%. The thickness of the alloy layer is 12 nm or less. The element X may include only one of Au, Mg, Zn, Cu, Al, Si, Pd, Sn, Pt, Ti, and Cr or two or more of them. When the element X includes two or more of the elements, the sum of the contents of the two or more elements is less than 3%. In other words, the half mirror 53 of this embodiment further includes the dielectric layers in contact with the alloy layer constituting the silver layer 87.
The inventors have conducted various studies and found that if the alloy layer includes silver in an amount of less than 97%, the aggregation of silver is reduced, but the light absorption by the element X is increased, and thus light loss is caused in the light passing therethrough. The light loss was particularly observed in the visible wavelength range. In view of this, the silver content needs to be 97% or more. Furthermore, the content of the element X in the alloy layer is preferably 0.5% or more and less than 3%. If the content of the element X is less than 0.5%, the aggregation of silver is not sufficiently reduced.
The first dielectric layer 81, the second dielectric layer 82, the third dielectric layer 83, the fourth dielectric layer 84, the fifth dielectric layer 85, the sixth dielectric layer 86, the seventh dielectric layer 88, the eighth dielectric layer 89, the ninth dielectric layer 90, the tenth dielectric layer 91, and the eleventh dielectric layer 92 may be formed of any combination of materials widely used as materials of a dielectric multilayer film, such as Al2O3, ZrO2, SiO2, and TiO2. In this example, eleven dielectric layers are employed, but the number of dielectric layers may be suitably changed in accordance with optical properties required for the half mirror 53. Furthermore, the thickness of each dielectric layer may be suitably changed in accordance with optical properties required for the half mirror 53.
The adhesive layer 93 is composed of an adhesive and is used when the bases 60 each having the half mirror 53 on one surface thereof are bonded together to produce an optical element, which is described in an embodiment described later. Examples of the adhesive layer 93 include an ultraviolet curable adhesive having light transmissivity, such as an acrylic adhesive and an epoxy adhesive.
The half mirror 53 of this embodiment does not include the anti-aggregation layer 61. However, the silver layer 87 composed of the alloy including silver and the element X reduces aggregation of silver. In other words, aggregation of silver is reduced by the silver layer 87 including the element X.
The inventors produced various half mirrors according to the embodiment and evaluated appearance and optical properties of the half mirrors. The results are described below.
A half mirror having layers as indicated in Table 1 below was produced as Example 3. The target value of the reflectance of the half mirror is 15%. In the silver layer, the silver (Ag) content is 99% and the copper (Cu) content is 1%. The copper may be a copper alloy. In such a case, the gold (Au) content is 0.5% and the copper (Cu) content is 0.5%. The numbers suffixed to the layers in Table 1 correspond to the reference numerals of the layers in
A half mirror having layers as indicated in Table 2 below was produced as Example 4. The target value of the reflectance of the half mirror is 20%. In the silver layer, the silver (Ag) content is 99% and the copper (Cu) content is 1%. The copper may be a copper alloy. In such a case, the gold (Au) content is 0.5% and the copper (Cu) content is 0.5%. The numbers suffixed to the layers in Table 2 correspond to the reference numerals of the layers in
A half mirror including a silver layer composed only of silver, instead of the alloy layer including silver and copper in Examples 3 and 4, on a base was produced as Comparative Example 2.
As indicated in
Compared with this, as indicated in
In
In
As indicated in
As indicated in
A display device of this embodiment is used as a head-mounted display configured to be worn on a user's head, for example.
As illustrated in
The image display device 10 includes an organic electroluminescence (EL) element 11 and a projection lens 12. The organic EL element 11 outputs image light GL that constitutes an image, such as a moving image and a still image. The image forming device may include a liquid crystal element, for example, not the organic EL element 11. The projection lens 12 is a collimator lens configured to make rays of the image light GL from different portions of the organic EL element 11 to be substantially parallel rays. The projection lens 12 is formed of glass or plastic and may include one or two or more lenses. The projection lens 12 is not limited to a spherical lens and may be a non-spherical lens, or a free-form surface lens, for example.
The light guide device 20 is composed of a planar light transmissive member. The light guide device 20 guides the image light GL generated by the image forming device 10 and outputs the image light GL toward the eye EY of the user while allowing the external light EL providing an outside image to pass therethrough. The light guide device 20 includes an input portion 21 configured to take in the image light, a parallel light guide 22 configured mainly to guide the image light, and an output portion 23 configured to allow the image light GL and the external light EL to exit. The parallel light guide 22 and the input portion 21 are integrally formed of a resin material having high light transmissivity. In this embodiment, the optical paths of the image light GL traveling through the light guide device 20 are the same type of optical paths that are reflected the same number of times, not a synthesized optical path including multiple types of optical paths. The light guide device 20 includes the parallel light guide 22 and the half mirror 53 configured to reflect some of the light that has traveled through the parallel light guide 22. The half mirror 53 is described later.
The parallel light guide 22 is tilted relative to the optical axis AX corresponding to the line of sight of the user's eye EY seeing the front side. The normal direction Z to a planar surface 22a of the parallel light guide 22 is tilted relative to the optical axis AX by an angle κ. With this configuration, the parallel light guide 22 is able to be positioned along the face and the line normal to the planar surface 22a of the parallel light guide 22 is able to be tilted relative to the optical axis AX. In this way, since the line normal to the planar surface 22a of the parallel light guide 22 is tilted by the angle κ relative to the z direction, which is parallel to the optical axis AX, image light GL0 on and near the optical axis AX that exits from the optical element 30 is tilted by the angle κ relative to the line normal to a light output surface OS. The direction parallel to the optical axis AX is the z direction. The horizontal and vertical directions perpendicular to the z direction are the x direction and the y direction, respectively.
The input portion 21 has a light input surface IS and a reflection surface RS. The image light GL from the image forming device 10 enters the input portion 21 through the light input surface IS. The image light GL in the input portion 21 is reflected by the reflection surface RS and guided in the parallel light guide 22. The light input surface IS includes a curved surface 21b recessed when seen from the side of the projection lens 12. The curved surface 21b also reflects all the image light GL reflected by the reflection surface RS at the inner side.
The reflection surface RS includes a curved surface 21a recessed when seen from the side of the projection lens 12. The reflection surface RS is composed of a metal film such as an aluminum film formed on the curved surface 21a by a vapor-deposition technique, for example. The reflection surface RS reflects the image light GL entered through the light input surface IS to bend the optical path. The curved surface 21b reflects all the image light GL reflected by the reflection surface RS to bend the optical path. In this way, the input portion 21 reflects the image light GL entered through the light input surface IS two times to bend the optical path to reliably guide the image light GL to the inside of the parallel light guide 22.
The parallel light guide 22 is a planar light guiding member extending parallel to the y axis and tilted relative to the z axis. The parallel light guide (a light guide) 22 is formed of a resin material having light transmissivity and has two planer surfaces 22a and 22b substantially parallel to each other. The planar surfaces 22a and 22b parallel to each other do not magnify the outside image and do not cause defocusing. The planar surface 22a functions as a total reflection surface that reflects all the image light from the input portion 21 and guides the image light GL to the output portion 23 with little loss. The planar surface 22a is a surface of the parallel light guide 22 positioned adjacent to the outside and functions as a first total reflection surface. The planar surface 22a may be referred to as an external surface in this specification.
The planar surface 22b may be referred to as a user side surface in this specification. The planar surface 22b (the user side surface) extends to one end of the output portion 23. Here, the planar surface 22b is an interface IF between the parallel light guide 22 and the output portion 23 (see
In the parallel light guide 22, the image light GL reflected by the reflection surface RS or the light input surface IS of the input portion 21 enters the planar surface 22a, which is the total reflection surface, and fully reflected by the planar surface 22a toward the rear side of the light guide device 20, i.e., toward the +x side or the X side where the output portion 23 is disposed. As illustrated in
As illustrated in
The output portion 23 includes an optical element 30 including a plurality of half mirrors 53 having light transmissivity. The half mirrors 53 are arranged in one direction. The structure of the optical element 30 is described later in detail with reference to
In the light guide device 20 having the above-described configuration, as illustrated in
The area FR has a width in the longitudinal direction of the xy-plane smaller than that of the output portion 23. In other words, a bundle of rays of the image light GL that enters the output portion 23 (or the optical element 30) has a larger incident width than a bundle of rays of the image light GL that enters the area FR. The smaller incident width of the bundle of rays of the image light GL that enters the area FR reduces the possibility that the optical path interference will occur. Thus, the image light GL from the area FR readily directly enters the output portion 23 (or the optical element 30) without being guided by the interface IF or without by being reflected by the interface IF.
The image light GL in the output portion 23 is bent at a proper angle in the output portion 23 to be extracted through the light output surface OS. The image light GL from the light output surface OS enters the eye EY of the user as a virtual image light. The virtual image light forms an image at the retina of the user such that the user recognizes the image light GL in the form of a virtual image.
Here, the incident angles of the image light GL, which is used to form an image, onto the output portion 23 gradually increase with distance from the input portion 21, which is located adjacent to the light source. In other words, the image light GL enters the rear portion of the output portion 23 at a large angle with respect to the Z direction perpendicular to the planar surface 22a adjacent to the outside or with respect to the optical axis AX and is bent at a relatively large angle, and the image light GL enters the front portion of the output portion 23 at a relatively small angle with respect to the Z direction or with respect to the optical axis AX and is bent at a relatively small angle.
Hereinafter, an optical path of image light is described in detail. As illustrated in
The main components of the image light GL0, GL1, and GL2 passed through the projection lens 12 enters the light guide device 20 through the light input surface IS and travel through the input portion 21 and the parallel light guide 22 to the output portion 23. More specifically described, among the image light GL0, GL1, and GL2, the image light GL0 emitted from the middle section of the emission surface 11a is bent in the input portion 21 to gather in the parallel light guide 22, and then is fully reflected by the area FR of the planar surface 22a at a normal reflection angle θ0. Then, the image light GL0 passes through the interface IF between the parallel light guide 22 and the output portion 23 (or the optical element 30) without being reflected by the interface IF and directly enters a middle portion 23k of the output portion 23. The image light GL0 is reflected by the portion 23k at a predetermined angle to exit through the light output surface OS in the optical axis AX direction (a direction tilted by the angle κ with respect to the Z direction), which is tilted with respect to the XY-plane including the light output surface OS, in the form of parallel rays.
The image light GL1 emitted from one end (on the −x side) of the emission surface 11a is bent in the input portion 21 to gather in the parallel light guide 22, and then is fully reflected by the area FR of the planar surface 22a at a maximum reflection angle θ1. Furthermore, the image light GL1 passes through the interface IF between the parallel light guide 22 and the output portion 23 (or the optical element 30) without being reflected by the interface IF. The image light GL1 is reflected by a rear portion 23h (on the +x side) of the output portion 23 at a predetermined angle to exit through the light output surface OS in a predetermined direction in the form of parallel rays. In an output angle γ1 at this time, an angle at which the light returns toward the input portion 21 is relatively large.
The image light GL2 emitted from the other end (on the +x side) of the emission surface 11a is bent in the input portion 21 to gather in the parallel light guide 22, and then is fully reflected by the area FR of the planar surface 22a at a minimum reflection angle θ2. Furthermore, the image light GL2 passes through the interface IF without being reflected by the interface IF between the parallel light guide 22 and the output portion 23 (or the optical element 30). The image light GL 2 is reflected by a portion 23m on the front side (−x side) of the output portion 23 at a predetermined angle to exit through the light output surface OS in a predetermined direction in the form of a parallel rays. In an output angle γ2 at this time, an angle at which the light returns toward the input portion 21 is relatively small.
The three lines of the image light GL0, GL1, and GL2, which indicate components of the light, are representatives of components of the image light GL. The other components of the image light GL are guided in the same way as the image light GL0, GL1, or GL2, for example, and are output through the light input surface OS. Thus, the other components are not illustrated and described.
Here, if the refractive index n of the transparent resin material that forms the input portion 21 and the parallel light guide 22 is 1.4, for example, the critical angel θc is approximately 45.6°. The total reflection condition for necessary image light is satisfied by making the smallest reflection angle θ2 among the reflection angles θ0, θ1, and θ2 of the image light GL0, GL1, and GL2 larger than the critical angle θc.
The image light GL0 for the middle enters the portion 23k of the output portion 23 at an elevation angle φ0 (=90°−θ0). The image light GL1 for the periphery enters the portion 23h of the output portion 23 at an elevation angle φ1 (=90°−θ1). The image light GL2 for the periphery enters the portion 23m of the output portion 23 at an elevation angle φ2 (=90°−θ2). The elevation angles φ0, φ1, and φ2 reflect the magnitude relationship among the reflection angles θ0, θ1, and θ2 and satisfy the relationship of φ2>φ0>φ1. In other words, an incident angle ι (see
The overall behavior of the bundle of rays of image light GL reflected by the planar surface 22a of the parallel light guide 22 adjacent to the outside toward the output portion 23 is described. As illustrated in
Hereinafter, the configuration of the optical element 30 constituting the output portion 23 is described.
As illustrated in
The transmissive member 32 is a columnar member having a parallelogram cross-sectional shape when taken along line perpendicular to the longitudinal direction. The transmissive member 32 has first and second pairs of parallel planes extending in the longitudinal direction. One of the planes of the first pair is an input surface 32a through which the image light GL and the external light EL enter, and the other of the planes of the first pair is an output surface 32b through which the image light GL and the external light EL exit. The half mirror 53 is disposed on one of the planes of the second pair. The transmissive member 32 is formed of glass or transparent resin, for example.
The transmissive members 32 are configured such that the half mirrors 53 are arranged parallel to each other when units of one transmissive member 32 and one half mirror 53 are bonded together. Although not illustrated in
The half mirror 53 is composed of a reflective film sandwiched between the transmissive members 32. The reflective film is composed of a dielectric multilayer film including alternately laminated dielectric thin films having different refractive indexes, for example. Alternatively, the reflective film may be composed of a metal film. The half mirror 53 has short sides tilted relative to the input surface 32a and the output surface 32b of the transmissive member 32. More specifically described, the half mirror 53 is tilted such that a reflective surface 31r faces the input portion 21 toward the outside of the parallel light guide 22. In other words, the half mirror 53 is tilted with respect to the YZ-plane perpendicular to the planar surfaces 22a and 22b such that the upper end (on the +Z side) of the longitudinal side (the Y direction) of the half mirror 53 is turned in a counterclockwise direction.
The reflectance of the half mirror 53 for the image light GL is 10% or more and 50% or less, for example, when the image light GL is incident at an angle in a possible incident angle range, in order to transmit the external light EL such that the user sees through it and readily sees the outside image. Furthermore, the reflectance of the half mirror 53 for the image light GL that has entered a surface of the half mirror 53 at a relatively small incident angle is smaller than the reflectance of the half mirror 53 for the image light GL that has entered the surface of the half mirror 53 at a relatively large angle. The effects and advantages obtained by this characteristic are described in detail later.
Hereinafter, the angle between the reflective surface 31r of the half mirror 53 and the output surface 32b is defined as an inclination angle δ of the half mirror 53. In this embodiment, the inclination angle δ of the half mirror 53 is 45° or more and smaller than 90°. In this embodiment, the refractive index of the transmissive member 32 and that of the parallel light guide 22 are equal to each other, but the refractive indexes may be different. If the transmissive member 32 and the parallel light guide 22 have different refractive indexes, the inclination angle δ of the half mirror 53 needs to be changed from that in the case having the equal refractive index.
The half mirrors 53 are tilted at the inclination angle δ of about 48° to about 70° in a clockwise direction with respect to the planar surface 22b of the parallel light guide 22 adjacent to the user, specifically at the inclination angle δ of 60°, for example. The elevation angle φ0 of the image light GL0 may be 30°, for example, the elevation angle φ1 of the image light GL1 may be 22°, for example, and the elevation angle φ2 of the image light GL2 may be 38°, for example. In such a case, as illustrated in
With this configuration, the image light GL is able to be efficiently extracted at an angle that allows the image light GL as a whole to gather onto the eye EY of the user, when a component of the image light GL reflected at a relatively large total reflection angle (the image light GL1) mainly enters the portion 23h of the output portion 23 on the +x side and a component of the image light GL reflected at a relatively small total reflection angle (the image light GL2) mainly enters the portion 23m of the output portion 23 on the −x side. In other words, the image light GL entering the input surface 32a of the optical element 30 from the light guide 22 at a relatively large incident angle (a relatively small elevation angle) is efficiently extracted from the parallel light guide 22. Since the optical element 30 is configured such that the image light GL is extracted at the above-described angle, the light guide device 20 allows the image light GL to travel through the optical element 30 basically only one time, not more than one time. Thus, the image light GL is extracted as virtual light with a small loss.
The pitch PT between the adjacent half mirrors 53 is about 0.5 mm to about 2.0 mm. The pitch PT between the half mirrors 53 may be not strictly equally spaced interval and may be a variable pitch. More specifically described, the pitch PT between the half mirrors 53 of the optical element 30 may be a random pitch in which the distance randomly increases or decreases from the reference distance. In this way, the arrangement of the half mirrors 53 in the random pitch in the optical element 30 reduces non-uniform diffraction and moiré pattern. The pitch is not limited to the random pitch. A predetermined pitch pattern in which the distance increases and decreases in a stepwise manner may be repeated.
The thickness of the optical element 30 or the thickness TI of the half mirror 53 in the Z-axis direction is about 0.7 mm to about 3.0 mm. The thickness of the parallel light guide 22 supporting the optical element 30 is about a few mm to about 10 mm, preferably about 4 mm to about 6 mm. The parallel light guide 22 having a thickness sufficiently larger than that of the optical element 30 reliably decreases the incident angle of the image light GL onto the optical element 30 or the interface IF and reduces the reflection of the image light GL at the half mirror 53 from which the image light GL does not travel to the eye EY. However, the parallel light guide 22 and the light guide device 20 are readily made lighter by making the parallel light guide 22 smaller.
Since the display device 100 of the embodiment includes the light guide device 20 including the half mirror 53 of the above-described embodiment, uneven brightness with vertical streaks is less likely to occur and thus a bright image is provided.
Hereinafter, a fourth embodiment of the invention is described with reference to
As illustrated in
The output portion 23 of the third embodiment is composed of the optical element 30 on the surface of the parallel light guide 22 adjacent to the user. The output portion 23B of this embodiment does not include the optical element 30, which is a separate component from the parallel light guide 22, and includes the half mirrors 53 in the parallel light guide 22. In this embodiment, the input portion 21 is produced by resin molding, and the parallel light guide 22 including the half mirrors 53 is produced by cutting out a laminated glass plate. The input portion 21 and the parallel light guide 22, which are separately produced, are connected together.
The display device 200 of this embodiment provides an image having less uneven brightness with vertical streaks, which is the same advantage obtained in the third embodiment.
The technical scope of the invention is not limited to the above-described embodiments. Various modifications may be added thereto without departing from the spirit of the invention. The number, shape, and material of components constituting the half mirror, the light guide device, and the display device are not limited to those in the above-described embodiments and may be suitably changed. For example, the image forming device may be an organic EL device or a combination of a laser light source and a MEMS scanner, other than a liquid crystal display device. The light guide device may be used in a lighting device, for example, other than in the display device.
The entire disclosure of Japanese Patent Application No. 2017-107694 filed May 31, 2017 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2017-107694 | May 2017 | JP | national |