The present invention relates generally to optical devices and components. More specifically, it relates to photonic crystal microcavities, distributed-Bragg-reflector micropost microcavities, and related devices.
Photonic crystal microcavities exhibiting cavity quantum electrodynamic (QED) phenomena can be used to construct optical devices such as high-efficiency light emitting diodes, low-threshold lasers, and single photon sources. During the growth process of a solid-state microcavity, a single narrow-linewidth emitter (quantum dot) can be embedded in the device, enabling cavity-field interaction with the quantum dot. The coupling between the quantum dot and the electric field in the cavity enhances the radiative transition rate of the quantum dot. The coupling is enhanced by a strong electric field intensity located at the quantum dot. The coupling is also increased if the volume of the fundamental electromagnetic mode in the cavity is small. Thus, for many applications of microcavities, it is desirable that the microcavity has a high quality factor (Q) and a low mode volume (V) for the fundamental mode. In other words, it is desirable that the ratio Q/V is large. For example, increasing Q/V can lead to a reduction in laser threshold. Controlling the Q/V is also useful in single-photon sources for enhancing the coupling efficiency of the dot to an output mode of interest.
A standard microcavity is the cylindrical micropost design, as illustrated in
b is a graph of refractive index and corresponding electric field intensity along the longitudinal length of the device shown in
To reduce the mode volume, one could design an alternative micropost microcavity as shown in
To obtain an electric field maximum in a half-wavelength spacer, one could design an alternative micropost design as shown in
In summary, although it is possible to achieve a maximum field intensity at the center of a high-index spacer, as shown in the graph of
Surprisingly, the present invention provides micropost microcavity devices having maximum electric field intensity in a high-index material, as well as a small mode volume. These devices have higher Q/V values than known micropost microcavity devices. According to one embodiment of the present invention, a micropost microcavity device has an approximately half-wavelength thick low-refractive index spacer with an electric field maximum at the center of the spacer. The unique spacer has a high-index subspacer layer positioned at its center. The subspacer layer has a thickness smaller than a quarter wavelength. As a result, the electric field intensity remains a maximum at the center of the spacer where the high-index subspacer is located. A micropost microcavity with infinite diameter (i.e., the planar microcavity case) is designed for operating at a wavelength λ. Because the device of this embodiment has a finite micropost diameter, the actual operating wavelength λop for the device is blue-shifted (reduced) below the value λ for a planar microcavity. The spacer layer is sandwiched between first and second mirrors made of quarter-wave stacks of alternating layers of a low index material and high index material. The low index material has a refractive index nl, while the high index material has a refractive index nh where nl<nh. The alternating low index and high index layers have alternating quarter-wave thicknesses λ/4nl and λ/4nh, respectively. The spacer is made of a low index material having refractive index nl containing at its center a subspacer layer of high-index material having refractive index nh. The spacer has a thickness roughly equal to a half-wavelength λ/2nl, and the subspacer layer has a thickness less than λ/4nh. As a result of this unique design, the device provides a low mode volume, a high-index material at the center of the spacer, and operates with a field intensity maximum at the center of the spacer where an active layer (such as a quantum dot or quantum well) may be located. Although the cavity with the spacer thickness exactly equal to λ/2nl works, the optimum cavity design (i.e., the one with maximum Q-factor and also maximum Q/V ratio) has the spacer slightly thinner than λ/2nl. Thus, in one specific embodiment, the optimum spacer thickness is equal to an optimum value of 0.44λ/nl.
The devices of the present invention operate with an electric field intensity maximum at the center of the cavity where the active layer is located, thus providing strong interaction between the cavity field and the active layer. At the same time, the devices provide a high-refractive-index material at the center of the cavity, thus enabling the active layer to be embedded at the center of the cavity, where the field intensity is maximum. The devices also provide an increase in the ratio Q/V relative to all previously known microposts.
a is a cross-sectional view of a conventional cylindrical micropost microcavity design having a high-index spacer thickness of approximately one wavelength.
b is a graph of refractive index and corresponding electric field intensity along the longitudinal length of the device shown in
a is a cross-sectional view of an alternative cylindrical micropost microcavity design, according to conventional design principles, wherein the high-index spacer thickness is approximately half a wavelength.
b is a graph of refractive index and corresponding electric field intensity along the longitudinal length of the device shown in
a is a cross-sectional view of an alternative cylindrical micropost microcavity design, according to conventional design principles, wherein the low-index spacer thickness is approximately half a wavelength.
b is a graph of refractive index and corresponding electric field intensity along the longitudinal length of the device shown in
a is a cross-sectional view of an embodiment of a micropost microcavity according to the invention, wherein the low-index spacer thickness is approximately half a wavelength and comprises a high refractive-index subspacer.
b is a graph of the refractive index and associated electric field intensity along the length of the micropost microcavity of
One embodiment of a micropost microcavity according to the invention is shown in
As is well known in the art, many material systems can be used to fabricate suitable DBR mirrors. Preferably, the GaAs/AlAs material system is used for the construction of the DBR mirrors, i.e., the high index material 430 is GaAs and the low index material 440 is AlAs, because this material system provides high Q factors and small mode volumes with a small number of mirror pairs. In this case, the refractive indices of the low- and high-refractive-index regions are nl=2.94 and nh=3.57, corresponding to AlAs and GaAs, respectively. At an wavelength of λ=999.6 nm, for example, the thicknesses of GaAs and AlAs mirror layers 430 and 440 are 70 nm and 85 nm, respectively, corresponding to quarter-wavelength stack in a planar cavity. The number of mirror pairs on top and bottom may be, for example, and 30, respectively. Various other material systems may be used in other embodiments of the invention. For example, the high refractive index material for the DBR mirrors and the subspacer may be GaAs, while the low refractive index material for the mirrors and spacer is AlxGa1-xAs where 0<x<1. (This includes AlAs as a special case when x=1. Typically, x>0.9.) The active layer (quantum dots or quantum wells) may be composed of InyGa1-yAs, 0<y<1, embedded in GaAs. In another embodiment, the high refractive index material for the DBR mirrors and subspacer may again be GaAs, while the low refractive index material for the mirrors and spacer is AlOx (aluminum oxide). The active layer may be InyGa1-yAs, 0<y<1, embedded in the GaAs. In yet another material system, the high refractive index material for the DBR mirrors and subspacer is again GaAs, while the low refractive index material for the mirrors and spacer is AlxGa1-xAs where 0>x>1. (This includes AlAs as a special case when x=1. Typically, x>0.9.) The active layer in this case may be a InxGa1-xAsyN1-y quantum well, 0<x<1, 0<y<1, embedded in GaAs. These material systems may be selected in part to provide emission at wavelengths typically from around 900 nm to 1000 nm, or emission at wavelengths from 1300 nm to 1550 nm (e.g., for telecom applications).
Preferably, the thickness of the subspacer is between 0.57 and 0.86 of the quarter wavelength λ/(4nh). Preferably, the thickness of the spacer is approximately a half wavelength, which for the purposes of this description will be defined to mean 0.4λ/nl to 0.6λ/nl. More preferably, the spacer is slightly thinner that a half wavelength, and most preferably, the spacer thickness is 0.44λ/nl. This thickness is approximately equal to λ/4nl+λ/4nh, i.e., equal to the thickness of one DBR mirror pair. (In our example, the DBR mirror pair thickness is 70+85=155 nm, and the optimum low-index spacer thickness is 150 nm.)
The number of mirror pairs used for the top and bottom mirrors is selected as in standard VCSEL designs. The number of mirror pairs on the bottom is larger, so that the light exits on top (i.e., the laser emits on top). If there was no asymmetry, the structure would emit equally on top and on bottom, which is undesirable. Typical numbers that give good results are 15 and 30 layers. Those skilled in the art will appreciate that other numbers may be used as well.
The spacer 400 is made of the low index material having refractive index nl containing at its center a subspacer layer 470 of the high-index material having refractive index nh. The spacer has an approximately half-wavelength thickness sL=λ/2nl (e.g, an optimum value that is slightly less than half a wavelength), and the subspacer layer has a thickness sH<λ/4nh. Since the total thickness of the spacer is λ/2nl, and the high index subspacer thickness is less than λ/4nh, the total thickness of the two low index layers of the spacer is at least λ/2nl−λ/4nh. If the subspacer is centered, then the two low index layers have equal thickness of half this total, or at least (λ/2nl−λ/4nh)/2=λ/4nl−λ/8nh. In the case where the GaAs/AlAs material system is used, the subspacer layer 470 is composed of GaAs and the rest of the spacer is composed of AlAs. The spacer with the subspacer layer at its center may be fabricated by depositing a first portion of the low-index material, depositing the subspacer layer of high index material, then depositing a second portion of the low-index material. Embedded within the GaAs subspacer layer is an active region 480, such as InAs or InGaAs quantum dots or quantum wells, or InGaAsN quantum wells. The active region (e.g., comprising quantum dots or quantum wells) is placed in the high-refractive-index subspacer layer. The active layer may comprise, for example, a single layer of quantum dots, a single quantum well, or multiple quantum wells.
Standard procedures that are used to fabricate conventional microposts and VCSELs may be used to make the devices of the present invention. For example, the whole structure may be grown in a vertical direction (DBR mirror layers, spacer bottom, subspacer bottom, active region, subspacer top, spacer top, DBR mirror layers) using the same molecular beam epitaxy (MBE) process. This gives a planar microcavity structure. A lithography process performed on the top surface of such structure is used to define locations of finite-diameter posts and their cross-sections (i.e., we define the etching mask). Posts are then constructed by dry etching, using the previously defined etching mask. For electrically pumped structures, extra fabrication steps are required to define contacts, as is well known in the art.
Micropost diameters can range from fractions of a micron to several microns. For single photon sources, we are typically interested in smaller diameters, from 0.4 μm to 0.5 μm. VCSELs are usually made with larger diameters, but can also be made with smaller diameters.
The micropost microcavity device may be rotationally symmetric around its vertical axis, or may have a discrete rotational or reflection symmetry (e.g., it may have a square or elliptical cross-section). Confinement of light is achieved by the combined action of distributed Bragg reflection (DBR) in the longitudinal direction (along the vertical axis of
b is a graph of the refractive index and associated electric field intensity along the length of the micropost microcavity of
To illustrate the advantages enjoyed by devices built in accordance with the present invention, consider as an example a cylindrical micropost microcavity device having an operational wavelength of λop=880 nm GaAs and AlAs mirror layers with thicknesses 70 nm and 85 nm, and a post diameter D=0.4 μm. (Due to the finite post diameter of 0.4 microns, the operating wavelength is blue-shifted, i.e., decreased, from the operating wavelength of the structure with infinite diameter, i.e., λ about 1000 nm.) In the conventional device shown in
Moreover, the new design is robust and insensitive to small variations in the thickness of the GaAs subspacer. For example, using the above illustration as an example, an increase in the thickness of the high-refractive-index subspacer from 40 nm to 60 nm does not degrade the Q factor significantly. The electric field reaches its maximum value in the center of the GaAs subspacer, where an active layer can be placed.
The microcavities of the present invention have many useful applications. The improved microcavities may be used in place of conventional microcavities to provide increased performance. They may also be used for applications where conventional microcavities proved inadequate. The devices of the present invention may be used to construct single photon sources, single dot lasers, or devices for strong coupling between a single quantum dot and the cavity field which can be used as components of photonic integrated circuits, quantum computers, quantum networks, or quantum cryptographic systems. They are also useful to create VCSEL-type lasers. Such novel VCSELs have the same DBR micropost type structure shown in
This application claims priority from U.S. provisional patent application 60/399,913 filed Jul. 30, 2002, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6687274 | Kahen | Feb 2004 | B2 |
20020163947 | Ostergaard et al. | Nov 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20070183471 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60399913 | Jul 2002 | US |