Embodiments disclosed herein relate in general to position sensing units, and in particular to position sensing in compact digital cameras included in mobile electronic devices.
Many compact digital cameras that are integrated in handheld electronic devices (“devices”) such as smartphones or tablets use actuators such as voice coil motors (VCMs) or stepper motors, e.g. for actuating a camera lens along a trajectory having a particular direction and range (“stroke” or “L”). The actuation is controlled by a position sensing unit, which is typically based on a magnet assembly (“MA”) that moves relative to a magnetic flux measuring device (MFMD) for example a Hall sensor. For stable control, the position sensing unit must support two conditions: a) it must exhibit linear behavior, i.e. its slope S=ΔB/Δx must be constant along the entire stroke (“linear range”), where ΔB is the change in magnetic flux density between two points located at a distance Δx from each other. For example, the linear range of the position sensing unit limits the stroke, and b) the slope S=ΔB/Δx within the linear range must be sufficiently steep, i.e. it must be above a certain threshold, e.g. S>50 mT or S>200 mT.
Novel Telephoto “(Tele”) cameras entering the market have large effective focal lengths (EFL) of e.g. 10 mm-40 mm for large zoom factors and for Macro photography with high object-to-image magnifications of e.g. 1:1-15:1 at object-lens distances (“u”) of 5 cm-15 cm. Focusing such a large EFL camera to a short u as small as 5 cm-15 cm requires large lens strokes significantly exceeding 1 mm.
Using the thin lens equation 1/EFL=1/u+1/v (“v” being the lens-image distance) and a Tele camera having EFL-25 mm as an example, a lens stroke of about 6.3 mm is required to focus to 10 cm (with respect to focus on infinity). Controlling such large lens strokes cannot be supported by position sensing units used at present in the compact camera industry. Further examples that require large strokes of components are, for example, (i) a 2-state zoom camera described in co-owned international patent application PCT/IB2020/051405, (ii) a pop out mechanism that collapses a camera's total track length (TTL) such as described in the co-owned international patent application PCT/IB2020/058697 and (iii) a continuous zoom camera such as described in co-owned U.S. provisional patent application No. 63/119,853 filed 1 Dec. 2020.
There is need for, and it would be beneficial to have a position sensing unit with a compact form factor that allows realizing position sensing with along large strokes L and with sufficiently large slope S.
1. In various embodiments, there are provided position sensing units, comprising: a magnetic assembly (MA) having a width W measured along a first direction and a height H measured along a second direction and including at least three magnets having respective magnetic polarizations that define along the first direction at least a left MA domain, a middle MA domain and a right MA domain, wherein the magnetic polarizations of each MA domain are different; and a magnetic flux measuring device (MFMD) for measuring a magnetic flux B, wherein the MA is configured to move relative to the MFMD along the first direction within a stroke L that fulfils 1 mm≤L≤100 mm, stroke L beginning at a first point x0 and ending at a final point xmax, and wherein a minimum value Dmin of an orthogonal distance D measured along the second direction between a particular MA domain of the MA and the MFMD of the position sensing unit, fulfills L/Dmin>10. The magnets may be made from a Neodymium based material.
In some embodiments, the MA has a symmetry axis parallel to the second direction. In some embodiments, the symmetry axis is located at a center of the middle MA domain.
In some embodiments, D is not constant for different positions within stroke L.
In some embodiments, L/Dmin>15. In some embodiments, L/Dmin>20.
In some embodiments, B at x0 is B0 and B at xmax is Bmax, and a slope S=(B0−Bmax)/L is larger than 10 mT/mm. In some embodiments, S is larger than 100 mT/mm. In some embodiments, S is larger than 1000 mT/mm. In some embodiments, S is larger than 2500 mT/mm.
In some embodiments, the magnetic polarization of the left MA domain is directed towards the MFMD.
In some embodiments, the magnetic polarization of the right MA domain is directed away from the MFMD.
In some embodiments, the magnetic polarization of the middle MA domain is directed parallel or anti-parallel to the first direction.
In some embodiments, a position sensing unit as above or below may be included in a voice coil motor (VCM). In some embodiments, the VCM includes four coils. In some embodiments, the VCM is included in smartphone camera.
In some embodiments, the MFMD is a Hall sensor.
In some embodiments, a value of D between the left MA domain and MFMD is D(x0), wherein a value of D between the right MA domain and the MFMD is D(xmax), wherein a value of D between the middle MA domain and the MFMD is D(xmax/2) and wherein D(x0)≤D(xmax/2) and D(xmax)≤D(xmax/2). In some embodiments, a value of D between the middle MA domain and the MFMD is D(xmax/2) and wherein D(x0)=D(xmax)≤ D(xmax/2).
In some embodiments, the left, middle and right MA domains are rectangular. In some embodiments, the left and right MA domains are trapezoids, and the middle MA domain is a convex pentagon. In some embodiments, the left and right MA domains are trapezoids, and the middle MA domain is a concave pentagon.
In some embodiments, the MA additionally includes a fourth MA domain and a fifth MA domain having respective magnetic polarizations, wherein the fourth MA domain is located to the left of the left MA domain and wherein the fifth MA domain is located to the right of the right MA domain. In some embodiments, the magnetic polarization of the fourth MA domain is directed away from the MFMD. In some embodiments, the magnetic polarization of the fifth MA domain is directed towards the MFMD.
In some embodiments, L<20 mm. In some embodiments, L<10 mm. In some embodiments, L<7.5 mm. In some embodiments, L<5 mm.
In some embodiments, L/W>0.5. In some embodiments, L/W>0.75.
In some embodiments, L/H>3. In some embodiments, L/H>5.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated like numerals.
MA 202 includes three rectangular permanent magnets 202a, 202b and 202c having respective magnetic polarizations 204a, 204b and 204c. Magnets 202a and 202c are identical in shape and dimensions, but opposite respective magnetizations 204a and 204c. Magnets 202a and 202c are positioned symmetrically with respect to magnet 202b, i.e. both magnets 202a and 202c are (i) located at a same distance d202 from magnet 202b and (ii) are positioned at a same relative y coordinate ΔH with respect to magnet 202b. A center “C” of MA 202 is located at symmetry axis SA 209 of both magnet 202b and MA 202. MA 202 is shaped symmetrically around C with respect to y. MA 202 has a width W202 and a height H202.
Magnets described herein may be made from any material known to be used in the industry, specifically in digital cameras used in mobile electronic devices such as smartphones, for example any Neodymium based material, e.g. N48H, N48SH etc. x0 and xmax may be chosen so that their middle or symmetry point xS=xmax/2 is located at C, or they may be chosen otherwise. That is, the symmetry axis of the stroke with respect to y is located at xS=xmax/2 and may be identical with the SA 209 of MA 202 located at C (such as shown in
The orthogonal distance between any component included in MA 202 and MFMD 206 is marked “D”. “Orthogonal distance” means that it represents only the y-component of a distance between any component included in MA 202 and MFMD 206. Values of D at points x0, C and xmax are marked respectively D(x0), DC and D(xmax). At x0 and Xmas, D has a minimal value Dmin.
As an example, D between magnet 202a and MFMD 206 is D(x0) and D between magnet 202b and MFMD 206 is DC, irrespective from the actual relative distance between magnet 202a and 202b respectively and MFMD 206. As to the relative motion of MA 202 and MFMD 206, in general an actual relative distance is composed of a distance component measured along x and a distance component measured along y. It is noted here that D refers to a distance between a magnet and a packaging device that includes a MFMD, and not to the distance the MFMD itself. In general, a MFMD is included in a packaging device having a housing, wherein the MFMD is located at a MFMD-housing distance of about 50 μm-250 μm from the housing. For calculating the distance between a magnet and the MFMD, the MFMD-housing distance must be added to D. Additionally, it is noted that D is not shown in scale.
In all examples shown herein, D(x0) and D(xmax) can be smaller than or equal to D(x) fulfilling D(x0), D(xmax)≤ D(x). The closest distance between one of the magnets and the MFMD Dmin=D(x0)=Dmax. That is, D(x0) and D(xmax) are smaller than or equal to all other distances in that range. In position sensing unit 200, D(x0)=D(xmax)<DC and L/Dmin>10. Typically, Dmin≥0.1 mm.
At x0, magnetic polarization 204a is directed substantially towards MFMD 206. At xmax, magnetic polarization 204c is directed substantially away from MFMD 206. At C, magnetic polarization 204b is directed substantially in parallel or anti-parallel to X. Magnets 202a, 202b and 202c define three MA domains, a left, a middle and a right MA domain respectively, wherein the magnet polarizations of each MA domain are different from each other.
Magnetic flux density B is a function of x, i.e. B=B(x). In L, the slope S=(Bmax−B0)/Ax of B is linear. In all following examples, S is given for an ideally linear slope such as 216 (see
As mentioned, graph 207 in
MA 302 causes a magnetic field (not shown). At C, MFMD 306 is located at DC away from MA 302. MA 302 moves along a stroke in x direction relative to MFMD 306. The position of MA 302 along x varies from x0 to xmax. x0 and xmax may be chosen so that their middle or symmetry point xs=xmax/2 is located at C, or they may be chosen otherwise. It is noted that D is not shown in scale.
Between x0 and xmax, orthogonal distance D is a function of x, D=D(x). For 300, D(x0)=D(xmax)<DC, D(x0)=D(xmax)=Dmin and L/Dmin≥10. Typically, Dmin≥0.1 mm. For the purpose of illustrating the definition of D, D is shown at 2 further, arbitrary positions x1 and x2, where D is given by D(x1) and D(x2) respectively. At x0, magnetic polarization 304a is substantially directed towards MFMD 306. At xmax, 304c is substantially directed away from MFMD 306. At C, 304b is directed substantially parallel or anti-parallel to x. Magnets 302a, 302b and 302c define three MA domains, a left, a middle and a right MA domain respectively, wherein the magnet polarizations of each MA domain are different from each other.
B 309 measured by MFMD 306 is shown versus the x position of MA 202 (“B versus x curve”). B is a function of x, i.e. B=B(x). In L, S=(Bmax−B0)/Δx of B is linear. Example values of given in Table 1. Values of S are given at DC. An advantage of MA 302 over MA 202 is that a B versus x curve within L exhibits a higher linearity. That is, the B vs. x curve of MA 302 varies less from an ideal linear shape such as 216 than the B vs. x curve of MA 202.
MA 402 causes a magnetic field (not shown). At C. MFMD 406 is located at DC away from MA 402. MA 402 moves along a stroke in x direction relative to MFMD 406. The position of MA 402 along x varies from x0 to xmax. x0 and xmax may be chosen so that their middle or symmetry point xs=xmax/2 is located at C, or they may be chosen otherwise.
Between x0 to xmax, orthogonal distance D is a function of x, D=D(x). For 400, D(x0)=D(xmax)<DC, D(x0)=D(xmax)=Dmin and L/Dmin>10. Typically, Dmin≥0.1 mm. At x0, the magnetic polarization 404a is substantially directed towards MFMD 406. At xmax, 404c is substantially directed away from MFMD 406. At C, 404b is directed substantially parallel or anti-parallel to X. Magnets 402a, 402b and 402c define three MA domains, a left, a middle and a right MA domain respectively, wherein the magnet polarizations of each MA domain are different from each other. It is noted that D is not shown in scale.
B 409 measured by MFMD 406 is shown versus the x position of MA 202. B is a function of x, i.e. B=B(x). In L, S=(Bmax−B0)/ΔX of B is linear. Example values of position sensing unit 400 are given in Table 2. Values of S are given at DC. An advantage of MA 402 over MA 202 is that a B versus x curve within L exhibits a higher linearity.
MA 502 causes a magnetic field (not shown). At C, MFMD 506 is located at De away from MA 502. MA 502 moves along a stroke in x direction relative to MFMD 506. The position of MA 502 along x varies from x0 to xmax. x0 and xmax may be chosen so that their middle or symmetry point xs=xmax/2 is located at C, or they may be chosen otherwise.
Between x0 to xmax, orthogonal distance D is a function of x, D=D(x). For 500, D(x0)=D(xmax)<DC, D(x0)=D(xmax)=Dmin and L/Dmin>10. Typically, Dmin≥0.1 mm. At x0, the magnetic polarization 504a is substantially directed towards MFMD 506. At xmax, 504c is substantially directed away from MFMD 506. At C, 504b is directed substantially parallel or anti-parallel to X. 504d is directed substantially anti-parallel to 504a. 504e is directed substantially anti-parallel to 504c. Additionally to the three MA domains defined by magnets 502a, 502b and 502c, in MA 502 there are two additional MA domains defined by magnets 502d and 502e.
B (not shown) is measured by MFMD 506 versus the x position of MA 202. B is a function of x, i.e. B=B(x). In L, S=(Bmax−B0)/ΔX of B is linear. Example values of given in Table 3. For the values of magnet sub-assembly including magnets 502a, 502b and 502c see magnets 302a, 302b and 302c of Table 1 respectively. Values of S are given at DC.
An advantage of MA 502 over MA 302 is that a B versus x curve has a higher linearity for the same dimensions of magnets 502a, 502b and 502c (which have the same dimensions as magnets 302a, 302b and 302c).
In VCM 510, the magnetic field caused by position sensing unit 500 additionally provides, together with the magnetic field generated by CA 520, the magnetic field configuration which is required for actuating a relative motion between MA 502 and CA 520 as well as MFMD 506. Typically and with respect to a device that includes VCM 510, MFMD 506 and CA 520 are at rest and MA 502 moves. In some examples for lens focusing in devices that include a camera, as shown in exemplary
While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.
It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.
Furthermore, for the sake of clarity the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.
All references mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual reference was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This application is a continuation from U.S. patent application Ser. No. 17/628,905 filed Jan. 21, 2022 (now allowed), which was a 371 of international patent application PCT/IB2021/056693 filed Jul. 26, 2021, and claims priority from U.S. Provisional Patent Application No. 63/059,200 filed Jul. 31, 2020, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3085354 | Rasmussen et al. | Apr 1963 | A |
3584513 | Gates | Jun 1971 | A |
3941001 | LaSarge | Mar 1976 | A |
4199785 | McCullough et al. | Apr 1980 | A |
4792822 | Akiyama et al. | Dec 1988 | A |
5005083 | Grage et al. | Apr 1991 | A |
5032917 | Aschwanden | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5051830 | von Hoessle | Sep 1991 | A |
5099263 | Matsumoto et al. | Mar 1992 | A |
5248971 | Mandl | Sep 1993 | A |
5287093 | Amano et al. | Feb 1994 | A |
5331465 | Miyano | Jul 1994 | A |
5394520 | Hall | Feb 1995 | A |
5436660 | Sakamoto | Jul 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5459520 | Sasaki | Oct 1995 | A |
5502537 | Utagawa | Mar 1996 | A |
5657402 | Bender et al. | Aug 1997 | A |
5682198 | Katayama et al. | Oct 1997 | A |
5768443 | Michael et al. | Jun 1998 | A |
5892855 | Kakinami et al. | Apr 1999 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6101334 | Fantone | Aug 2000 | A |
6128416 | Oura | Oct 2000 | A |
6148120 | Sussman | Nov 2000 | A |
6201533 | Rosenberg et al. | Mar 2001 | B1 |
6208765 | Bergen | Mar 2001 | B1 |
6211668 | Duesler et al. | Apr 2001 | B1 |
6215299 | Reynolds et al. | Apr 2001 | B1 |
6222359 | Duesler et al. | Apr 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6520643 | Holman et al. | Feb 2003 | B1 |
6549215 | Jouppi | Apr 2003 | B2 |
6611289 | Yu et al. | Aug 2003 | B1 |
6643416 | Daniels et al. | Nov 2003 | B1 |
6650368 | Doron | Nov 2003 | B1 |
6680748 | Monti | Jan 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6724421 | Glatt | Apr 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6750903 | Miyatake et al. | Jun 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
7002583 | Rabb, III | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7038716 | Klein et al. | May 2006 | B2 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7248294 | Slatter | Jul 2007 | B2 |
7256944 | Labaziewicz et al. | Aug 2007 | B2 |
7305180 | Labaziewicz et al. | Dec 2007 | B2 |
7339621 | Fortier | Mar 2008 | B2 |
7346217 | Gold, Jr. | Mar 2008 | B1 |
7365793 | Cheatle et al. | Apr 2008 | B2 |
7411610 | Doyle | Aug 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
7509041 | Hosono | Mar 2009 | B2 |
7533819 | Barkan et al. | May 2009 | B2 |
7619683 | Davis | Nov 2009 | B2 |
7738016 | Toyofuku | Jun 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7809256 | Kuroda et al. | Oct 2010 | B2 |
7880776 | LeGall et al. | Feb 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7964835 | Olsen et al. | Jun 2011 | B2 |
7978239 | Deever et al. | Jul 2011 | B2 |
8115825 | Culbert et al. | Feb 2012 | B2 |
8149327 | Lin et al. | Apr 2012 | B2 |
8154610 | Jo et al. | Apr 2012 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8274552 | Dahi et al. | Sep 2012 | B2 |
8390729 | Long et al. | Mar 2013 | B2 |
8391697 | Cho et al. | Mar 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8439265 | Ferren et al. | May 2013 | B2 |
8446484 | Muukki et al. | May 2013 | B2 |
8483452 | Ueda et al. | Jul 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8547389 | Hoppe et al. | Oct 2013 | B2 |
8553106 | Scarff | Oct 2013 | B2 |
8587691 | Takane | Nov 2013 | B2 |
8619148 | Watts et al. | Dec 2013 | B1 |
8752969 | Kane et al. | Jun 2014 | B1 |
8803990 | Smith | Aug 2014 | B2 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
8976255 | Matsuoto et al. | Mar 2015 | B2 |
9019387 | Nakano | Apr 2015 | B2 |
9025073 | Attar et al. | May 2015 | B2 |
9025077 | Attar et al. | May 2015 | B2 |
9041835 | Honda | May 2015 | B2 |
9137447 | Shibuno | Sep 2015 | B2 |
9185291 | Shabtay et al. | Nov 2015 | B1 |
9215377 | Sokeila et al. | Dec 2015 | B2 |
9215385 | Luo | Dec 2015 | B2 |
9270875 | Brisedoux et al. | Feb 2016 | B2 |
9286680 | Jiang et al. | Mar 2016 | B1 |
9344626 | Silverstein et al. | May 2016 | B2 |
9360671 | Zhou | Jun 2016 | B1 |
9369621 | Malone et al. | Jun 2016 | B2 |
9413930 | Geerds | Aug 2016 | B2 |
9413984 | Attar et al. | Aug 2016 | B2 |
9420180 | Jin | Aug 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9485432 | Medasani et al. | Nov 2016 | B1 |
9578257 | Attar et al. | Feb 2017 | B2 |
9618748 | Munger et al. | Apr 2017 | B2 |
9681057 | Attar et al. | Jun 2017 | B2 |
9723220 | Sugie | Aug 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9736391 | Du et al. | Aug 2017 | B2 |
9768310 | Ahn et al. | Sep 2017 | B2 |
9800798 | Ravirala et al. | Oct 2017 | B2 |
9851803 | Fisher et al. | Dec 2017 | B2 |
9894287 | Qian et al. | Feb 2018 | B2 |
9900522 | Lu | Feb 2018 | B2 |
9927600 | Goldenberg et al. | Mar 2018 | B2 |
11700441 | Shahparnia | Jul 2023 | B1 |
11946775 | Kowal | Apr 2024 | B2 |
20020005902 | Yuen | Jan 2002 | A1 |
20020030163 | Zhang | Mar 2002 | A1 |
20020054214 | Yoshikawa | May 2002 | A1 |
20020063711 | Park et al. | May 2002 | A1 |
20020075258 | Park et al. | Jun 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020136554 | Nomura et al. | Sep 2002 | A1 |
20020167741 | Koiwai et al. | Nov 2002 | A1 |
20030030729 | Prentice et al. | Feb 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030156751 | Lee et al. | Aug 2003 | A1 |
20030160886 | Misawa et al. | Aug 2003 | A1 |
20030162564 | Kimura et al. | Aug 2003 | A1 |
20030202113 | Yoshikawa | Oct 2003 | A1 |
20040008773 | Itokawa | Jan 2004 | A1 |
20040012683 | Yamasaki et al. | Jan 2004 | A1 |
20040017386 | Liu et al. | Jan 2004 | A1 |
20040027367 | Pilu | Feb 2004 | A1 |
20040061788 | Bateman | Apr 2004 | A1 |
20040141065 | Hara et al. | Jul 2004 | A1 |
20040141086 | Mihara | Jul 2004 | A1 |
20040227838 | Atarashi et al. | Nov 2004 | A1 |
20040239313 | Godkin | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050013509 | Samadani | Jan 2005 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050134697 | Mikkonen et al. | Jun 2005 | A1 |
20050141390 | Lee et al. | Jun 2005 | A1 |
20050157184 | Nakanishi et al. | Jul 2005 | A1 |
20050168834 | Matsumoto et al. | Aug 2005 | A1 |
20050185049 | Iwai et al. | Aug 2005 | A1 |
20050200718 | Lee | Sep 2005 | A1 |
20050248667 | Schweng et al. | Nov 2005 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060102907 | Lee et al. | May 2006 | A1 |
20060125937 | LeGall et al. | Jun 2006 | A1 |
20060126737 | Boice et al. | Jun 2006 | A1 |
20060170793 | Pasquarette et al. | Aug 2006 | A1 |
20060175549 | Miller et al. | Aug 2006 | A1 |
20060181619 | Liow et al. | Aug 2006 | A1 |
20060187310 | Janson et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20070024737 | Nakamura et al. | Feb 2007 | A1 |
20070114990 | Godkin | May 2007 | A1 |
20070126911 | Nanjo | Jun 2007 | A1 |
20070127040 | Davidovici | Jun 2007 | A1 |
20070159344 | Kisacanin | Jul 2007 | A1 |
20070177025 | Kopet et al. | Aug 2007 | A1 |
20070188653 | Pollock et al. | Aug 2007 | A1 |
20070189386 | Imagawa et al. | Aug 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070285550 | Son | Dec 2007 | A1 |
20080017557 | Witdouck | Jan 2008 | A1 |
20080024614 | Li et al. | Jan 2008 | A1 |
20080025634 | Border et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030611 | Jenkins | Feb 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080088942 | Seo | Apr 2008 | A1 |
20080106629 | Kurtz et al. | May 2008 | A1 |
20080117316 | Orimoto | May 2008 | A1 |
20080129831 | Cho et al. | Jun 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090102948 | Scherling | Apr 2009 | A1 |
20090109556 | Shimizu et al. | Apr 2009 | A1 |
20090122195 | Van Baar et al. | May 2009 | A1 |
20090122406 | Rouvinen et al. | May 2009 | A1 |
20090128644 | Camp et al. | May 2009 | A1 |
20090168135 | Yu et al. | Jul 2009 | A1 |
20090200451 | Conners | Aug 2009 | A1 |
20090219547 | Kauhanen et al. | Sep 2009 | A1 |
20090234542 | Orlewski | Sep 2009 | A1 |
20090252484 | Hasuda et al. | Oct 2009 | A1 |
20090295949 | Ojala | Dec 2009 | A1 |
20090295986 | Topliss et al. | Dec 2009 | A1 |
20090324135 | Kondo et al. | Dec 2009 | A1 |
20100013906 | Border et al. | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103194 | Chen et al. | Apr 2010 | A1 |
20100134621 | Namkoong et al. | Jun 2010 | A1 |
20100165131 | Makimoto et al. | Jul 2010 | A1 |
20100196001 | Ryynänen et al. | Aug 2010 | A1 |
20100202068 | Ito | Aug 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100246024 | Aoki et al. | Sep 2010 | A1 |
20100259836 | Kang et al. | Oct 2010 | A1 |
20100265331 | Tanaka | Oct 2010 | A1 |
20100283842 | Guissin et al. | Nov 2010 | A1 |
20100321494 | Peterson et al. | Dec 2010 | A1 |
20110043193 | Aebi et al. | Feb 2011 | A1 |
20110058320 | Kim et al. | Mar 2011 | A1 |
20110063417 | Peters et al. | Mar 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110121666 | Park et al. | May 2011 | A1 |
20110128288 | Petrou et al. | Jun 2011 | A1 |
20110164172 | Shintani et al. | Jul 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110229054 | Weston et al. | Sep 2011 | A1 |
20110234798 | Chou | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110234881 | Wakabayashi et al. | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110285714 | Swic et al. | Nov 2011 | A1 |
20110298966 | Kirschstein et al. | Dec 2011 | A1 |
20120014682 | David et al. | Jan 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120044372 | Cote et al. | Feb 2012 | A1 |
20120062780 | Morihisa | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120075489 | Nishihara | Mar 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120124525 | Kang | May 2012 | A1 |
20120154547 | Aizawa | Jun 2012 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120196648 | Havens et al. | Aug 2012 | A1 |
20120229663 | Nelson et al. | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120287315 | Huang et al. | Nov 2012 | A1 |
20120320467 | Baik et al. | Dec 2012 | A1 |
20130002928 | Imai | Jan 2013 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130063629 | Webster et al. | Mar 2013 | A1 |
20130076922 | Shihoh et al. | Mar 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130094126 | Rappoport et al. | Apr 2013 | A1 |
20130113894 | Mirlay | May 2013 | A1 |
20130135445 | Dahi et al. | May 2013 | A1 |
20130148215 | Mori et al. | Jun 2013 | A1 |
20130148854 | Wang et al. | Jun 2013 | A1 |
20130155176 | Paripally et al. | Jun 2013 | A1 |
20130163085 | Lim et al. | Jun 2013 | A1 |
20130182150 | Asakura | Jul 2013 | A1 |
20130201360 | Song | Aug 2013 | A1 |
20130202273 | Ouedraogo et al. | Aug 2013 | A1 |
20130229544 | Bando | Sep 2013 | A1 |
20130235224 | Park et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258044 | Betts-LaCroix | Oct 2013 | A1 |
20130258048 | Wang et al. | Oct 2013 | A1 |
20130270419 | Singh et al. | Oct 2013 | A1 |
20130278785 | Nomura et al. | Oct 2013 | A1 |
20130286221 | Shechtman et al. | Oct 2013 | A1 |
20130321668 | Kamath | Dec 2013 | A1 |
20140009631 | Topliss | Jan 2014 | A1 |
20140049615 | Uwagawa | Feb 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140160311 | Hwang et al. | Jun 2014 | A1 |
20140192224 | Laroia | Jul 2014 | A1 |
20140192238 | Attar et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140218587 | Shah | Aug 2014 | A1 |
20140313316 | Olsson et al. | Oct 2014 | A1 |
20140362242 | Takizawa | Dec 2014 | A1 |
20140376090 | Terajima | Dec 2014 | A1 |
20140379103 | Ishikawa et al. | Dec 2014 | A1 |
20150002683 | Hu et al. | Jan 2015 | A1 |
20150002684 | Kuchiki | Jan 2015 | A1 |
20150042870 | Chan et al. | Feb 2015 | A1 |
20150070781 | Cheng et al. | Mar 2015 | A1 |
20150086127 | Camilus et al. | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150103147 | Ho et al. | Apr 2015 | A1 |
20150110345 | Weichselbaum | Apr 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150138381 | Ahn | May 2015 | A1 |
20150145965 | Livyatan et al. | May 2015 | A1 |
20150154776 | Zhang et al. | Jun 2015 | A1 |
20150162048 | Hirata et al. | Jun 2015 | A1 |
20150181115 | Mashiah | Jun 2015 | A1 |
20150195458 | Nakayama et al. | Jul 2015 | A1 |
20150198464 | El Alami | Jul 2015 | A1 |
20150215516 | Dolgin | Jul 2015 | A1 |
20150237280 | Choi et al. | Aug 2015 | A1 |
20150242994 | Shen | Aug 2015 | A1 |
20150244906 | Wu et al. | Aug 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150261299 | Wajs | Sep 2015 | A1 |
20150271471 | Hsieh et al. | Sep 2015 | A1 |
20150281678 | Park et al. | Oct 2015 | A1 |
20150286033 | Osborne | Oct 2015 | A1 |
20150296112 | Park et al. | Oct 2015 | A1 |
20150316744 | Chen | Nov 2015 | A1 |
20150334309 | Peng et al. | Nov 2015 | A1 |
20160028949 | Lee et al. | Jan 2016 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160154066 | Hioka et al. | Jun 2016 | A1 |
20160154202 | Wippermann et al. | Jun 2016 | A1 |
20160154204 | Lim et al. | Jun 2016 | A1 |
20160212358 | Shikata | Jul 2016 | A1 |
20160212418 | Demirdjian et al. | Jul 2016 | A1 |
20160238834 | Erlich et al. | Aug 2016 | A1 |
20160241751 | Park | Aug 2016 | A1 |
20160245669 | Nomura | Aug 2016 | A1 |
20160291295 | Shabtay et al. | Oct 2016 | A1 |
20160295112 | Georgiev et al. | Oct 2016 | A1 |
20160301840 | Du et al. | Oct 2016 | A1 |
20160301868 | Acharya et al. | Oct 2016 | A1 |
20160342095 | Bieling et al. | Nov 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20160353012 | Kao et al. | Dec 2016 | A1 |
20160381289 | Kim et al. | Dec 2016 | A1 |
20170001577 | Seagraves et al. | Jan 2017 | A1 |
20170019616 | Zhu et al. | Jan 2017 | A1 |
20170070731 | Darling et al. | Mar 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170124987 | Kim et al. | May 2017 | A1 |
20170150061 | Shabtay et al. | May 2017 | A1 |
20170187962 | Lee et al. | Jun 2017 | A1 |
20170214846 | Du et al. | Jul 2017 | A1 |
20170214866 | Zhu et al. | Jul 2017 | A1 |
20170219749 | Hou et al. | Aug 2017 | A1 |
20170242225 | Fiske | Aug 2017 | A1 |
20170276954 | Bajorins et al. | Sep 2017 | A1 |
20170289458 | Song et al. | Oct 2017 | A1 |
20180003925 | Shmunk | Jan 2018 | A1 |
20180013944 | Evans, V et al. | Jan 2018 | A1 |
20180017844 | Yu et al. | Jan 2018 | A1 |
20180024329 | Goldenberg et al. | Jan 2018 | A1 |
20180059379 | Chou | Mar 2018 | A1 |
20180109660 | Yoon et al. | Apr 2018 | A1 |
20180109710 | Lee et al. | Apr 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180150973 | Tang et al. | May 2018 | A1 |
20180176426 | Wei et al. | Jun 2018 | A1 |
20180184010 | Cohen et al. | Jun 2018 | A1 |
20180198897 | Tang et al. | Jul 2018 | A1 |
20180216925 | Yasuda et al. | Aug 2018 | A1 |
20180241922 | Baldwin et al. | Aug 2018 | A1 |
20180249090 | Nakagawa et al. | Aug 2018 | A1 |
20180295292 | Lee et al. | Oct 2018 | A1 |
20180300901 | Wakai et al. | Oct 2018 | A1 |
20180307005 | Price et al. | Oct 2018 | A1 |
20180329281 | Ye | Nov 2018 | A1 |
20180368656 | Austin et al. | Dec 2018 | A1 |
20190089941 | Bigioi et al. | Mar 2019 | A1 |
20190096047 | Ogasawara | Mar 2019 | A1 |
20190100156 | Chung et al. | Apr 2019 | A1 |
20190121103 | Bachar et al. | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190130822 | Jung et al. | May 2019 | A1 |
20190154466 | Fletcher | May 2019 | A1 |
20190213712 | Lashdan et al. | Jul 2019 | A1 |
20190215440 | Rivard et al. | Jul 2019 | A1 |
20190222758 | Goldenberg et al. | Jul 2019 | A1 |
20190227338 | Bachar et al. | Jul 2019 | A1 |
20190228562 | Song | Jul 2019 | A1 |
20190297238 | Klosterman | Sep 2019 | A1 |
20190320119 | Miyoshi | Oct 2019 | A1 |
20200014912 | Kytsun et al. | Jan 2020 | A1 |
20200092486 | Guo et al. | Mar 2020 | A1 |
20200103726 | Shabtay et al. | Apr 2020 | A1 |
20200104034 | Lee et al. | Apr 2020 | A1 |
20200118287 | Hsieh et al. | Apr 2020 | A1 |
20200134848 | El-Khamy et al. | Apr 2020 | A1 |
20200162682 | Cheng et al. | May 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20200264403 | Bachar et al. | Aug 2020 | A1 |
20200389580 | Kodama et al. | Dec 2020 | A1 |
20210180989 | Fukumura et al. | Jun 2021 | A1 |
20210208415 | Goldenberg et al. | Jul 2021 | A1 |
20210333521 | Yedid et al. | Oct 2021 | A9 |
20220252963 | Shabtay et al. | Aug 2022 | A1 |
20220368814 | Topliss et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
101276415 | Oct 2008 | CN |
201514511 | Jun 2010 | CN |
102130567 | Jul 2011 | CN |
102215373 | Oct 2011 | CN |
102739949 | Oct 2012 | CN |
102982518 | Mar 2013 | CN |
103024272 | Apr 2013 | CN |
203406908 | Jan 2014 | CN |
103841404 | Jun 2014 | CN |
205301703 | Jun 2016 | CN |
105827903 | Aug 2016 | CN |
105847662 | Aug 2016 | CN |
107608052 | Jan 2018 | CN |
107682489 | Feb 2018 | CN |
109729266 | May 2019 | CN |
1536633 | Jun 2005 | EP |
1780567 | May 2007 | EP |
2523450 | Nov 2012 | EP |
S59191146 | Oct 1984 | JP |
04211230 | Aug 1992 | JP |
H07318864 | Dec 1995 | JP |
08271976 | Oct 1996 | JP |
2002010276 | Jan 2002 | JP |
2003298920 | Oct 2003 | JP |
2003304024 | Oct 2003 | JP |
2004056779 | Feb 2004 | JP |
2004133054 | Apr 2004 | JP |
2004245982 | Sep 2004 | JP |
2005099265 | Apr 2005 | JP |
2005122084 | May 2005 | JP |
2005321592 | Nov 2005 | JP |
2006038891 | Feb 2006 | JP |
2006191411 | Jul 2006 | JP |
2006237914 | Sep 2006 | JP |
2006238325 | Sep 2006 | JP |
2008083377 | Sep 2006 | JP |
2007228006 | Sep 2007 | JP |
2007306282 | Nov 2007 | JP |
2008076485 | Apr 2008 | JP |
2008245142 | Oct 2008 | JP |
2008271026 | Nov 2008 | JP |
2010204341 | Sep 2010 | JP |
2011055246 | Mar 2011 | JP |
2011085666 | Apr 2011 | JP |
2011138407 | Jul 2011 | JP |
2011203283 | Oct 2011 | JP |
2012132739 | Jul 2012 | JP |
2013101213 | May 2013 | JP |
2013106289 | May 2013 | JP |
2016105577 | Jun 2016 | JP |
2017146440 | Aug 2017 | JP |
2019126179 | Jul 2019 | JP |
20070005946 | Jan 2007 | KR |
20090058229 | Jun 2009 | KR |
20100008936 | Jan 2010 | KR |
20110080590 | Jul 2011 | KR |
20130104764 | Sep 2013 | KR |
1020130135805 | Nov 2013 | KR |
20140014787 | Feb 2014 | KR |
101428042 | Aug 2014 | KR |
101477178 | Dec 2014 | KR |
20140144126 | Dec 2014 | KR |
20150118012 | Oct 2015 | KR |
20170105236 | Sep 2017 | KR |
20180120894 | Nov 2018 | KR |
20130085116 | Jun 2019 | KR |
I407177 | Sep 2013 | TW |
2000027131 | May 2000 | WO |
2004084542 | Sep 2004 | WO |
2006008805 | Jan 2006 | WO |
2010122841 | Oct 2010 | WO |
2014072818 | May 2014 | WO |
2017025822 | Feb 2017 | WO |
2017037688 | Mar 2017 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
Zitova Bet al: “Image Registration Methods: a Survey”, Image and Vision Computing, Elsevier, Guildford, GB, vol. 21, No. 11, Oct. 1, 2003 (Oct. 1, 2003), pp. 977-1000, XP00i 189327, ISSN: 0262-8856, DOI: 10_i0i6/ S0262-8856(03)00137-9. |
Office Action in related CN patent application 202180005008.5, dated Oct. 28, 2023. |
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages. |
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages. |
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages. |
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages. |
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages. |
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages. |
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages. |
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages. |
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages. |
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages. |
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages. |
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages. |
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages. |
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages. |
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages. |
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20240247953 A1 | Jul 2024 | US |
Number | Date | Country | |
---|---|---|---|
63059200 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17628905 | US | |
Child | 18591012 | US |