The invention belongs to the field of modified plastics, and specifically relates to a halogen-free fire-retardant polyamide composition and a preparation method and an application thereof.
Polyamide resin has excellent mechanical strength, heat resistance, chemical resistance, wear resistance and self-lubricating property, is widely applied in electronic and electrical appliances, automobiles, furniture, building materials and fibers and has become one of the most important engineering plastics. Materials used as automobile parts and elements of the electronic and electrical appliances need to have excellent heat resistance, moldability and low water absorption, so that various semi-aromatic polyamides with relatively high heat resistance and low water absorption rate need to be adopted.
In recent years, from the viewpoint of environmental protection, surface mounting lead-free solder is developed as a high-density mounting method. The reflux temperature of the lead-free solder is often higher than the temperature of lead and tin eutectic solder which is currently widely used. When the surface mounting technology (SMT) is adopted, the elements for surface mounting must be exposed at high temperature of 250-260° C. Therefore, when the lead-free solder is used for welding printed circuit boards and electronic and electrical elements, the resin used for forming the electronic and electrical elements must have higher heat resistance. In addition, halogen Fire-retardant materials which have always been used have great environmental harm, so that environment-friendly halogen-free Fire-retardant materials must be developed.
Patent WO 9609344 discloses use of fire retardants of mixtures of phosphonates or hypophosphite and triazine derivatives; patent U.S. Pat. No. 6,255,371 discloses a polymer composition containing polyamide or polyester, wherein the polymer composition contains a hypophosphite or diphosphinate and a fire retardant of melamine derivatives; but the fire retardants of the triazine derivatives or the melamine derivatives are unstable at high temperature, and can be precipitated to the material surface under high-temperature and high-humidity conditions particularly. Patent U.S. Pat. No. 5,773,556 discloses a composition containing a polyamide and a hypophosphite or diphosphinate.
The above halogen-free fire retardants have good heat resistance, are stable in the processing process of high temperature-resistant polyamide, but cause a very obvious problem, namely a problem of very obvious mold dirt in the processing process.
Generally, a mold needs to be cleaned when continuous injection molding has been performed for several hours, so the continuity of production is affected, and the phenomenon urgently needs to be solved.
Generally, mold dirt is caused by the fire retardants of the hypophosphite. Due to the presence of the fire retardants, the heat stability of the polyamide compositions is reduced, thereby producing a series of problems, such as more out-gassing, serious mold dirt, serious corrosion of processing equipment and the like. Therefore, many documents and reports have focused on the improvement of the heat stability of the polyamide compositions through a method of adding a heat stabilizer.
Patent EP1950238 discloses a fire-retardant semi-aromatic polyamide composition capable of improving color stability, mainly comprising: 1) at least one semi-aromatic polyamide resin (P); 2) at least one fire retardant (FR) comprising a hypophosphite or diphosphinate; 3) at least one hindered phenolic stabilizer (HP S); and 4) at least one phosphite stabilizer (PS); but the fire-retardant semi-aromatic polyamide composition does not contain a hindered amine stabilizer (ASHS) or the content of the stabilizer in all the stabilizers is not higher than 15% of (HPS)+(PS)+(ASHS). In the embodiment of the patent, FR is Exolit® OP1230, and HPS is Irganox®1010; and PS uses Ultranox®626 and ASHS uses Nylostab® S-EED. Actually, the method has a certain effect on the color stability of the composition, but the problems caused by volatile substances in the processing process can not be fundamentally solved.
Patent US2008068973 discloses a halogen-free fire-retardant polyamide composition, and the composition contains a certain amount of zinc stannate and can reduce the corrosion of equipment in the processing process. Patent US200900301241 discloses a halogen-free fire-retardant polyamide composition, and the composition contains a certain amount of zinc borate and can reduce the corrosion of equipment in the processing process. The essences of the two patents are basically consistent. Acidic substances produced in the processing process of the halogen-free fire-retardant polyamide composition are absorbed through the added compound, so that the corrosive effect of a halogen-free fire-retardant material in the processing process can be reduced to a certain extent.
Chinese patent 0212683.3 discloses a composition containing a semi-aromatic polyamide with not more than 15 μeq/g of terminal amino groups and a copper compound, and the composition has excellent heat aging performance. The copper compound is CuCl/KI. The examples in embodiments refer to polyamide resin or glass fiber reinforced compositions containing some copper compounds, but there are no fire-retardant examples. The situation that the copper compounds can protect amide groups from being oxidized has been widely studied and maturely applied. The copper compounds actually have obvious effects in some non-fire retardant systems, but do not have significant effects in halogen-free fire-retardant systems. Furthermore, the copper compounds contain halogen compounds and are not suitable for halogen-free systems.
Many reports believe that, the lower the content of the terminal amino groups in the polyamide resin is, the better the heat stability of the polyamide will be. So that the content of the terminal amino groups is controlled to be less than 50 mol/t in most of the polyamide resin, and preferably, monocarboxylic acid is used as a terminating agent. Although a specific action mechanism is not clear, in actual applications, it is found that acidic products are easily produced by the halogen-free fire-retardant polyamide composition at high temperature. Particularly, as for the monocarboxylic acid-terminated polyamide, the substances can accelerate the decomposition of the polyamide, so that volatile substances are increased in the processing process, and the problems of mold dirt and corrosion are further caused. The phenomena can be alleviated to a certain extent by improving the heat stability of the halogen-free fire-retardant polyamide composition through the addition of a heat stabilizer or an acid absorption agent.
In order to overcome the defects in the prior art, the invention firstly aims at providing a halogen-free fire-retardant semi-aromatic polyamide composition. The composition has the advantages of good fire retardance, excellent heat stability, little produced volatile gas in a processing process and difficulty in formation of mold dirt.
Another purpose of the invention is to provide a preparation method of the halogen-free fire-retardant polyamide composition.
Further purpose of the invention is to provide a use of the halogen-free fire-retardant polyamide composition.
The purposes of the invention are implemented through the following technical solution.
A halogen-free fire-retardant polyamide composition is prepared from the following components in percentage by mass:
35-71.5% of semi-aromatic polyamide;
10-35% of fire retardant; and
0-50% of inorganic reinforcing filler.
Preferably, a halogen-free fire-retardant polyamide composition is prepared from the following components in percentage by mass:
39.5-71.5% of semi-aromatic polyamide;
10-28% of fire retardant; and
0-50% of inorganic reinforcing filler.
The halogen-free fire-retardant polyamide composition can further contain an antioxidant, a synergist, a heat stabilizer, a lubricant, a plasticizer, a nucleating agent, an anti-dripping agent or a pigment.
The semi-aromatic polyamide is monoamine-terminated, and the content of terminal amino groups is 80-150 mol/t; and the semi-aromatic polyamide with the content of the terminal amino groups within this range can inhibit acidic substances generated in the processing process of the halogen-free fire-retardant polyamide composition and further effectively reduce the gas volatilization amount and the corrosion in the processing process of the halogen-free fire-retardant polyamide composition.
The content of the terminal amino groups in the semi-aromatic polyamide is preferably 80-120 mol/t, particularly preferably 80-100 mol/t. When the content of the terminal amino groups is more than 150 mol/t, the heat stability of the composition becomes poor due to the oxidation of the composition; and when the concentration of the terminal amino groups is too low, the volatile gas of the composition at high temperature is increased.
The intrinsic viscosity of the semi-aromatic polyamide is more than 1.00 dl/g, and the appropriately high intrinsic viscosity can meet the mechanical properties required in actual use; and the melting point of the semi-aromatic polyamide is 280-320° C., the melting point is higher than 280° C. so as to meet the temperature-resistant requirements in a lead-free welding surface mounting technology (SMT) and the melting point is not higher than 320° C. so as to ensure that the processing temperature in the application process can not be too high to cause the decomposition of the polyamide.
The semi-aromatic polyamide is prepared by the following method:
With respect to the pre-polymerization in step (2), reactants firstly interact for 1 h at 220° C., and then the reaction is performed at 230 ° C. and 2 Mpa for 2 h.
The catalyst is one of phosphoric acid, phosphorous acid, hypophosphorus acid or salts or esters thereof, preferably one of sodium phosphate, sodium phosphite, sodium hypophosphite or potassium phosphite; and the using amount of the catalyst is 0.01-2% of the mass of the semi-aromatic polyamide salt in step (2), preferably 0.05-1%.
The terminating agent is preferably monoamines, including aliphatic monoamines, alicyclic monoamines and aromatic monoamines; the aliphatic monoamines are preferably ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, isobutylamine, n-pentylamine, n-hexylamine, n-decylamine, n-dodecylamine and stearylamine; the alicyclic monoamines are preferably cyclohexylamine; and the aromatic monoamines are preferably aniline, p-toluidine, o-toluidine, 2,6-dimethylaniline, 3,4-dimethylaniline and o-ethylaniline. The terminating agent is more than one of the above monoamines, most preferably one of butylamine, n-hexylamine, n-decylamine, n-dodecylamine, aniline or cyclohexylamine The using amount of the terminal agent is 0.2-10% of the mass of the semi-aromatic polyamide salt in step (2), preferably 0.5-5%. When the amount of the terminating agent is too high, the molecular weight of a polymer is slightly small; and when the amount of the terminating agent is too low, the molecular weight of the polymer is slightly large or the content of active terminal groups of the polymer is slightly large. For the solid-phase tackifying reaction in step (3), the reactants react under a nitrogen atmosphere at 260° C. for 12 h.
The fire retardant is a phosphinate with a structure as shown in
In
In
The fire retardant is preferably diethyl aluminum hypophosphite and/or methyl ethyl aluminum hypophosphite.
The inorganic reinforcing filler is more than one of carbon fiber, glass fiber, potassium titanate fiber, glass microbeads, glass flakes, talcum powder, mica, clay, kaolin, silica, silica dust, diatomite or calcium carbonate, preferably more than one of carbon fiber, glass fiber or potassium titanate fiber, particularly preferably glass fiber.
By using the glass fiber, the moldability of the composition is improved, the tensile strength, the flexural strength, the bending modulus and other mechanical properties, as well as heat deformation temperature and other heat-resistant properties of a molded body formed by a resin composition are simultaneously improved.
The halogen-free fire-retardant polyamide composition is obtained by melt-mixing of the semi-aromatic polyamide, the fire retardant and the inorganic reinforcing filler, and the melt-mixing can use a single-screw or twin-screw extruder, a blender, an internal mixer, an open mill and other melt mixers.
The halogen-free fire-retardant polyamide composition can be used for manufacturing electronic components, such as connectors and the like.
The halogen-free Fire-retardant polyamide composition can be manufactured into a molded product by injection molding, blow molding, extrusion or thermoforming.
Compared with the prior art, the invention has the following advantages and effects. The halogen-free Fire-retardant polyamide composition of the invention has good heat stability, releases a small amount of gas in a production process, is less prone to forming mold dirt and can realize continuous production.
The invention is further described in detail in combination with the following embodiments and accompanying drawings, but the implementation ways of the invention is not limited thereto.
A determination method of relevant performance parameters, which is used by the embodiments of the invention is as follows:
1. Intrinsic Viscosity [η]
The inherent −viscosities ηinh of polyamide at the concentrations of 0.05, 0.1, 0.3 and 1 g/dl are respectively measured in concentrated sulfuric acid at 25° C.
ηinh=[ln(t1/t0)]/C
wherein ηinh represents inherent_viscosity (dl/g), t0 represents the flowing-through time of solvent (sec), t1 represents the flowing-through time of sample solution (sec) and C represents the concentration of the sample solution (g/dl).
The data of ηinh is extrapolated to the concentration of 0 to obtain the intrinsic viscosity [η] of a sample.
2. Content of Terminal Amino Groups
The content of terminal amino groups of the sample is titrated by using a full-automatic potentiometric titrator. 0.5 g of polymer is taken, 45 ml of phenol and 3 ml of anhydrous methanol are added, heating reflux is performed, after complete dissolution of a test sample is observed, the test sample is cooled to room temperature, and the content of the terminal amino groups is titrated by using a calibrated hydrochloric acid standard solution.
3. Content of Terminal Carboxyl Groups
The content of terminal carboxyl groups of the sample is titrated by using the full-automatic potentiometric titrator. 0.5 g of polymer is taken, 50 ml of o-cresol is added, reflux dissolution is performed, 400 μL of formaldehyde solution is rapidly added after cooling, and then the content of the terminal carboxyl groups is titrated by using a calibrated KOH-ethanol solution.
4. Testing of Fire Retardance
Halogen-free fire-retardant polyamide is dried at 120° C. for 4 h and then injection-molded according to a standard for testing.
The testing of flame retardance of the test sample with the thickness of 0.8 mm is performed according to the UL-94 standard.
5. Assessment of Volatile Gas of Halogen-Free Fire-Retardant Composition
A preparation method of semi-aromatic polyamide comprises the following steps:
A preparation method of semi-aromatic polyamide comprises the following steps:
Steps (2) and (3): being the same as steps (2) and (3) in Embodiment 1, performing pre-polymerization reaction and tackifying reaction on 5754 g (17 mol) of decanediamine terephthalate and 1015 g (3 mol) of decanediamine isophthalate, the code name of the obtained polyamide is “PA10T-2” and the performance parameters are as shown in
A preparation method of semi-aromatic polyamide comprises the following steps:
Steps (2) and (3): being the same as steps (2) and (3) in Embodiment 2, performing pre-polymerization reaction and tackifying reaction on 3388 g (12 mol) of hexanediamine terephthalate and 2259 g (8 mol) of hexanediamine isophthalate, wherein the code name of the obtained polyamide is “PA6T-1” and the performance parameters are as shown in
A preparation method of semi-aromatic polyamide adopts the same raw materials, process steps and conditions as Embodiment 1, and the difference lies in that the using amount of a terminating agent aniline is 111.6 g (1.2 mol), wherein the code name of the obtained polyamide is “PA10T-3” and the performance parameters are as shown in
A preparation method of semi-aromatic polyamide adopts the same raw materials, process steps and conditions as Embodiment 1, and the difference lies in that a terminating agent adopts benzoic acid (97.6 g, 0.8 mol), wherein the code name of the obtained polyamide is “PA10T-4” and the performance parameters are as shown in
According to the mixture ratio of
The fire retardant in
It can be seen from
The above embodiments are preferred embodiments of the invention, but the invention is not limited thereto, and any other changes, modifications, substitutions, combinations and simplifications made to the invention without departing from the spirit essence and the principle of the invention should be considered as equivalent replacement ways and fall within the protection scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2012/070128 | 1/9/2012 | WO | 00 | 12/10/2014 |