1. Field of the Invention
This invention relates to upright piano actions, or more specifically the mechanisms in upright pianos that transmit motion from a piano player's fingers into motion of a hammer, located inside the piano, causing the hammer to strike a piano string, thereby producing sound or music from the piano. A piano action is a complicated assembly of smaller mechanical components. In every piano, there is a separate piano action and hammer corresponding to each piano key, where there are typically 88 keys in a piano. This invention relates to one subcomponent of an upright piano action, namely the hammer butt as detailed below.
2. Description of Related Art
An upright piano action comprises the following interconnected subcomponents: a dowel capstan, a whippen, a jack, a hammer butt, a damper lever, a hammer shank, and a hammer. Basically, when a piano player presses down on a piano key, this causes the back side of the key, located inside the piano, to rise upwards in response. The back side of the piano key then pushes upwards on the dowel capstan, which in turn pushes upwards on the whippen, causing the whippen to rotate. As the whippen rotates, it pushes on the damper lever, rotating the damper lever in the opposite direction, to lift damper off the piano strings. The rotating whippen also pushes on the jack, lifting the jack upwards. The jack in turn pushes upwards on the hammer butt, causing the hammer butt to rotate, which causes the hammer shank and hammer to rotate because the hammer butt is rigidly connected to the hammer shank, which is rigidly connected to the hammer. Rotation of the hammer causes the hammer to strike one or more piano strings, thereby creating music or sound in the piano.
As discussed below, with an upright piano action, the hammer is attached or mounted to the hammer shank at an angle, so to speak, where the hammer is leaned or tilted to one side or the other as mounted on the hammer shank. Also, at the other end of the hammer shank, the hammer shank is attached or mounted to the hammer butt also at an angle, so the hammer shank is leaned or tilted to one side or the other as mounted on the hammer butt.
In order to manufacture upright piano actions with the above referenced tilt designs in the hammer assemblies, piano manufacturers have “tapered” or “shaved” cylindrical hammer shanks in various ways in order to effect this tilt design. As discussed below, a tapered hammer shank allows angled or tilted assembly of a hammer shank to a hammer butt.
This invention does not teach the tapering or shaving of the hammer shank in order to effect the angled or tilted assembly of a hammer shank to a hammer butt. This invention teaches the use of a precisely shaped half-conical hole in the hammer butt, into which the hammer shank is mounted, to yield the required angled or tilted assembly of a hammer shank to a hammer butt.
It is an aspect of this invention to provide a hammer butt for an upright piano action that is a precisely shaped molded article, wherein this precisely shaped molded article includes a precisely shaped and located “half-conical shaped” hammer shank hole on its upper surface, in which the hammer shank is mounted at a precise tilt angle in relation to the hammer butt.
It is an aspect of this invention to provide a hammer butt for an upright piano action that is a precisely shaped molded article, wherein this precisely shaped molded article includes a precisely shaped and located “half-conical shaped” hammer shank hole on its upper surface, wherein the half-conical hammer shank hole has a cylindrical cross section as viewed from the side and a trapezoidal cross section as viewed from the front.
It is an aspect of this invention to provide a hammer butt for an upright piano action with a “half-conical shaped” hammer shank hole on its upper surface, wherein the half-conical hammer shank hole has a cylindrical cross section as viewed from the side and a trapezoidal cross section as viewed from the front, where the trapezoidal sides of the hammer shank hole are at an angle from vertical plumb ranging from plus or minus 0.1-10 degrees.
It is an aspect of this invention to provide a hammer butt for an upright piano action that is easily affixable to a hammer shank to yield a hammer shank mounting angle that is plus or minus 10 degrees from vertical plumb, where the hammer shank does not include any tapering or shaving on an end.
It is an aspect of this invention to provide a hammer butt for an upright piano action, capable proper assembly at a precise left or right tilt angle, that ranges from plus or minus 10 degrees from vertical plumb, where the hammer shank is a rigid hollow thin-walled tubular-shaped member without tapering or shaving on an end.
It is an aspect of this invention to provide a hammer butt for an upright piano action that does not require the second operation of tapering or shaving of the shank at one end in order to precisely mount the hammer shank at the exact specific left or right angle that is required for the proper installation and clearance of all 88 hammers of a piano action.
An upright piano action comprises the following interconnected subcomponents: a dowel capstan (not depicted), a whippen 6, a jack (depicted, not labelled), a hammer butt 4, 14, 30, a damper lever 3, a damper 2, a hammer shank 7, 11, 12, 13, 26, 29 and a hammer 1, 9, 10. Basically, when a piano player presses down on a piano key (not depicted), this causes the back side of the key, located inside the piano, to rise upwards in response. A piano key is a pivoting member teetering upon a center balance point. The back side of the piano key then pushes upwards on the dowel capstan (not depicted), which in turn pushes upwards on the whippen 6, causing the whippen 6 to rotate. As the whippen 6 rotates, it pushes on the damper lever 3, rotating the damper lever 3 in the opposite direction, to lift damper 2 off the piano strings (not depicted). The rotating whippen 6 also pushes on the jack, lifting the jack upwards. The jack in turn pushes upwards on the hammer butt 4, causing the hammer butt 4 to rotate, which causes the hammer shank 7 and hammer 1 to rotate, as the hammer butt 4 is rigidly connected to hammer shank 7 which is rigidly connected to hammer 1. Rotation of hammer shank 7 causes hammer 1 to strike one or more piano strings, thereby creating music or sound in the piano.
Upright pianos are typically of a “over-strung” design, meaning that the piano strings are positioned at a diagonal inside the rectangular box frame of the upright piano. The diagonal fit of the strings provides the ability to string and fit longer piano strings inside a smaller box, as opposed to just stringing parallel to the sides of the rectangular box frame of the upright piano.
In
The individual points where hammers 1 strike the piano strings 52, 53, for each of the 88 keys in the piano, form a line, called the “strike line” 48. Note that the strike line 48 is a horizontal line that runs parallel to the horizontal row of pianos keys (not depicted), which is positioned slightly below and forward to the strike line 48. The keys are positioned in a horizontal row for ease of piano playing for the pianist. Strike line 48 is a parallel to the horizontal row of the piano keys because each the piano actions is of an overall similar size, which leads to hammers 1 striking points on the strings 52, 53 along a line parallel to the horizontal row of keys. Traditionally and typically, upright pianos are designed, built, and tuned with a designated specific strike line 48 set at a specific location on the strings 52, 53, so the piano should maintain this strike line 48 very accurately and precisely in order to maintain the piano in peak form.
Further, traditionally and typically, upright pianos are designed, built, and tuned so that hammers 1 strike the piano strings 52, 53 in parallel, so that the top-to-bottom axis of hammer 1 is in alignment with the running axis of its corresponding target string, one of 52 or 53. That is to say that hammers must strike strings this way in order to yield optimal sound of the piano.
Typically, the tilted mounts of hammers 9, 10 on hammer shanks is achieved by drilling or boring a mounting hole in the bottom of a hammer 9, 10 at the appropriate angle, so that the cylindrically shaped hammer shank may slide into the mounting hole and mount hammer 9, 10 at the appropriate angle to allow the hammer 9, 10 to strike in parallel with its target piano string or strings 52, 53.
Traditionally and typically, each hammer shank 11 of an upright piano is hand-cut to its proper length to insure the proper striking point of hammer 11 on striking line 48.
Traditionally and typically, during the final production stage of an upright piano action, where the 88 actions are mounted to the action rail 5, the piano assembly technician requires the ability to make fine adjustments in the side-to-side mounting angle between hammer shank 7, 26 and hammer butt 4, 14, 30. Upright piano actions have a target design angle of 90 degrees here so that hammer shank 7, 26 is held exactly vertically plumb as seen from the front of the piano. However, invariably, the piano assembly technician requires the ability to make fine adjustments in this angle, about 0-10 degrees, in order to effect the proper clearances between the 88 hammers of the piano action as required for proper actuation of the piano action. Thus, the piano assembly technical requires the ability to adjust the side-to-side angle of the mount between the hammer shank and the hammer butt.
In the prior art, this adjustment is achieved by shaving or tapering one or both sides of the hammer shank 7, 11, 12, 13 in order to fit the hammer shank 7, 11, 12, 13 into the cylindrical hammer shank hole 22 of hammer butt 4, 14 at the proper clearance angle. Note that no shaving or tapering is done on the front or back of the hammer shank because, traditionally and typically, no adjustment in this axis is necessary to achieve the proper installation of piano actions. The side-to-side adjustment of the hammer shanks is also traditionally and typically done by hand for each of the 88 hammer shanks in the piano action.
This invention preserves ability for the piano assembly technician to make this adjustment without shaving or tapering the hammer shank 7, 26, 29. The shaving or tapering of a hammer shank 7, 26, 29 is to be avoided when using a thin-walled hollow hammer shank 7, 26, 29. See
The invention achieves this with a specially designed hammer butt 30 with a half-conical shaped hammer shank hole 41, 42, 43, 44, 45, 46, 47.